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Credible reasons are presented to reveal that
many of the lingering century old enigmas, sur-
rounding the behavior of at least an individual

quantum particle, can be comprehended in terms of
an objectively real specific wave function. This wave
function is gleaned from the single particle energy-
momentum eigenstate offered by the theory of space
filling universal quantum fields that is an inevitable
outcome of Dirac’s pioneering masterpiece. Exam-
ples of these well-known enigmas are wave particle
duality, the de Broglie hypothesis, the uncertainty
principle, wave function collapse, and predictions of
measurement outcomes in terms of probability in-
stead of certainty. Paul Dirac successfully incorpo-
rated special theory of relativity into quantum me-
chanics for the first time. This was accomplished
through his ingenious use of matrices that allowed
the equations of motion to maintain the necessary
first order time derivative feature necessary for posi-
tive probability density. The ensuing Dirac equation
for the electron led to the recognition of the mystify-
ing quantized spin and magnetic moment as intrinsic
properties in contrast to earlier ad hoc assumptions.
The solution of his relativistic equation for the hydro-
gen atom produced results in perfect agreement with
experimental data available at the time. The most far
reaching prediction of the celebrated Dirac equation

was the totally unexpected existence of anti-particles,
culminating in the eventual development of the quan-
tum field theory of the Standard Model that reveals
the deepest secrets of the universe known to date.
Quanta 2019; 8: 88–100.

1 Introduction

Just after getting his Ph.D. in 1926, the same year in
which physics started to advance at breakneck speed fol-
lowing the successful formulation of quantum physics
to resolve the perplexities of the atomic domain, Paul
Dirac entered the field of research as a freshly minted
scientific prodigy. Within a mere couple of years, he
fashioned an elegant equation, ever to be known as the
iconic Dirac equation of the electron. In contrast to exten-
sive earlier efforts, his ingenious use of a special type of
non-commutative 4 × 4 matrices allowed the relativistic
quantum mechanical equations of motion to maintain the
sought after hallmark first order time derivative charac-
teristic of the Schrödinger nonrelativistic wave equation.
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This was a brilliant scheme for successfully combining
the special theory of relativity with quantum mechan-
ics to explain the behavior of electrons more accurately,
avoiding the various problems encountered in earlier in-
vestigations.

First we present an extended overview of the emer-
gence of Dirac’s seminal equation, which had a profound
impact for a large variety of topics including, most im-
portantly, that seeded the eventual development of the
quantum field theory of the Standard Model of particle
physics. We will then focus on how the principles of
the quantum field theory can be utilized for successfully
uncovering the century old enigmas surrounding quantum
physics.

In order to fully appreciate Dirac’s momentous contri-
bution, it would be helpful to briefly portray the particu-
larly confounding circumstances of the period following
the epochal unveiling of the Schrödinger’s quantum me-
chanical wave equation. As early as in 1887, while trying
to find a precise standard of length for use in their in-
tended detection of ether drift, Albert A. Michelson and
Edward W. Morley [1] observed that the red hydrogen
spectral line is actually a closely spaced double line. The
accuracy of measurement was so impressive that Michel-
son received the 1907 physics Nobel Prize for precision
metrology and spectroscopy—and not, as might be com-
monly assumed, for the celebrated null result for ether
drift that eventually provided one of the underpinnings
for Einstein’s formulation of special relativity.

The remarkable effectiveness of incorporating the spe-
cial theory of relativity by Arnold Sommerfeld into the
old quantum theory, before Schrödinger, was already evi-
dent in providing a more accurate agreement with exper-
imental results of the hydrogen spectrum. Hence it was
natural to seek a relativistic quantum mechanical wave
equation. In fact, in his own attempt to formulate the
quantum mechanical wave equation, Schrödinger first
constructed a relativistic equation. He did not, however,
publish this formulation since it did not agree with exper-
imental results.

2 The Klein–Gordon Equation

In 1926, a number of authors independently formulated a
relativistic wave equation, although the priority in publi-
cation belongs to Oscar Klein [2]. It is known today as
the Klein–Gordon equation.

The Klein–Gordon equation is derived using the rela-
tivistic mass-energy equation

E2 = m2
0c4 + p2c2 (1)

and drawing on the quantum mechanical energy and mo-

mentum operators,

E = ı~
∂

∂t
, p = −ı~

∂

∂x
(2)

ensuing in

− ~2 ∂
2

∂t2 = m2
0c4 − ~2c2 ∂

2

∂x2 . (3)

For a wave function ψ, dividing equation (3) by ~2c2

and rearranging the terms, the Klein–Gordon equation
becomes

1
c2

∂2

∂t2ψ − ∇
2ψ +

m2
0c2

~2 ψ = 0. (4)

The equation (4) can be written in a graceful form(
� + µ2

)
ψ = 0 (5)

where µ =
m0c
~ and � is the d’Alembert operator,

� =
1
c2

∂2

∂t2 − ∇
2. (6)

Soon the equation became the subject of numerous pa-
pers and was considered by many to be the correct and
natural generalization of the Schrödinger equation. How-
ever, although it had a mathematical and aesthetic appeal,
before long the limitation of its range of applicability be-
came clear. To begin with, just like Schrödinger’s earlier
unpublished work, the equation failed to reproduce Som-
merfeld’s formula for the hydrogen spectrum that was in
exact agreement with experiments. Possibly one of the
biggest disappointments with the Klein–Gordon equation
was its failure to account for the spin of the electron, as
was also true of the nonrelativistic Schrödinger equation.
However, it has been revived for use in the quantum field
theory of spin 0 particles such as the Higgs boson.

Even before the emergence of the brave new world
of contemporary quantum physics, some experimental
observations were very baffling and required the intro-
duction of electron spin to make sense of them. These
are exemplified by the Stern–Gerlach experiment, the
anomalous Zeeman effect, and Wolfgang Pauli’s need for
two additional quantum numbers to complete his Pauli
exclusion principle, which provides a natural explanation
for the periodic table of atoms.

In 1922, Otto Stern and Walther Gerlach conducted
a rather remarkable experiment [3] to test the Bohr–
Sommerfeld model of the atom of the old quantum theory.
A beam of silver atoms having a single electron in their
outer shell was passed through a spatially varying mag-
netic field, which deflected them before they struck a
detector screen. Stern and Gerlach found that the elec-
trons were deflected discretely into only two clusters, a
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spectacular evidence of space quantization in an atom,
supporting the evolving quantum paradigm at the time.

Niels Bohr was so startled that he personally wrote to
Gerlach

I would be grateful if you or Stern could let
me know, in a few lines, whether you interpret
your experimental results in this way that the
atoms are oriented only parallel or opposed, but
not normal to the field, as one could provide
theoretical reasons for the latter assertion. [4]

Furthermore, in some experiments with atoms in a mag-
netic field, spectral lines were observed to split into four,
six, or even more lines and some triplets showed wider
spacing than expected. These deviations were labeled
“anomalous Zeeman effect” and were completely incom-
prehensible to early investigators.

Meanwhile Pauli devised the Pauli Exclusion Principle
in 1925. The principle states that no two electrons can
share the same quantum state at the same time [5]. This
means that no two electrons in a single atom can have
the same n, `, m, and s numbers. However, the fourth
quantum number was unknown at the time and he had to
introduce it as an arbitrary assumption.

To explain all these conundrums, two graduate stu-
dents, George Uhlenbeck and Samuel Goudsmit boldly
hypothesized [6] that each electron spins with an angular
momentum of one half Planck constant and carries a mag-
netic moment of one Bohr magneton. Spin is a quantum
property of electrons without a classical analogue and
is a form of angular momentum. The magnitude of this
angular momentum is invariable.

Consequently, spin is now considered to be an intrinsic
property of the electron with quantum number s having
values of s = +1

2 and − 1
2 . Along with Lorentz, Pauli

initially was adamantly against the concept of rotation
of a presumed rigid electron that could lead to a viola-
tion of relativity at the periphery. Goudsmith was so
disappointed that he requested his thesis advisor Paul
Ehrenfest not to submit their paper on spin for publi-
cation. Serendipitously, by then Ehrenfest had already
submitted the paper and remarked that his students were
young enough to accept some stupidity.

Eventually, Pauli relented and accepted the notion of
the electron spin, as it gave a persuasive explanation for
his two assumed additional quantum numbers as well as
for the anomalous Zeeman Effect. The Stern–Gerlach ex-
periment was also correctly explained as a consequence
of the two distinct values of the electron spin quantum
number. The result of the Stern–Gerlach experiment has
been of abiding interest since no other experiment demon-
strates such a graphic evidence of the quantized spin.

Pauli also presented a modified Schrödinger equation
for spin 1

2 particles taking into account the interaction
of the particle’s spin magnetic moment with an external
magnetic field caused by the orbital motion of the elec-
tron [7]. This was a somewhat ad hoc modification to the
Schrödinger equation to explain the existence of a doublet
of additional energy levels attributable to the presence
of spin. The natural occurrence of the electron spin and
its magnetic moment still remained shrouded in a great
mystery and the scientific community continued to devote
significant efforts to find a cogent explanation of the co-
nundrum. The relativistic Klein–Gordon equation offered
no help either.

Perhaps the major concern with the Klein–Gordon
equation was that the probability density given by the
equation was not positive-definite. Apparently Dirac was
the first to realize the problem with the probability inter-
pretation for equations with second-order time derivatives.
Also, because special relativity requires treating time and
space on equal footing, Dirac reasoned that the equation
has to be first order not only in time derivatives, but also in
spatial derivatives. Instinctively, he persevered on finding
an equation with these features.

While Dirac was focusing his full attention on the de-
velopment of a relativistic quantum equation of motion
in first order, to his great surprise, he did not receive any
encouragement from the illustrious pioneer Niels Bohr.
As Dirac recalls

I remember once when I was in Copenhagen,
that Bohr asked me what I was working on and
I told him that I was trying to get a satisfactory
relativistic theory of the electron, and Bohr said
‘But Klein and Gordon have already done that!’
That answer first rather disturbed me. Bohr
seemed quite satisfied by Klein’s solution, but
I was not because of the negative probabilities
that it led to. I just kept on with it, worrying
about getting a theory which would have only
positive probabilities. [8, p. 690]

3 The Dirac Equation

To derive the equation, as usual Dirac started with the
relativistic mass-energy equation (1), which using the
Pythagoras relation p2 = p2

x + p2
y + p2

z yields

E2 = m2
0c4 +

(
p2

x + p2
y + p2

z

)
c2 (7)

Getting the equation (1) in first order appeared to be
a daunting task to most scientists of the time. Dirac
was also very aware that a number of other physicists
were working hard to construct a satisfactory relativistic
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quantum theory of the electron. It is just that time when
Dirac’s coup came along. As the story goes according
to George Gamow [9, p. 125], the intuition to achieve
the correct equation flashed in Dirac’s mind one evening
while he was staring into the fireplace at St John’s College,
Cambridge.

With his superb insight, Dirac ingeniously realized that
the seemingly irresolvable conflict between the demands
of relativity and his keenly perceived need for a first order
equation in time derivative could be realized if he could
find some matrices α0, α1, α2, α3 that would satisfy the
relation,

α2
0 = α2

1 = α2
2 = α2

3 = 1 (8)

and the anti-commutation relations hold

αiα j = −α jαi, (i , j) . (9)

He could then construct an equation for energy

E = α0m0c2 + c
(
pxα1 + pyα2 + pzα3

)
(10)

By taking the square of the equation (10), one could get
the relativistic energy equation (7). The matrices α0, α1,
α2, α3 are 4 × 4 matrices as follows

α0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (11)

α1 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , (12)

α2 =


0 −ı 0 0
ı 0 0 0
0 0 0 ı

0 0 −ı 0

 , (13)

α3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (14)

Dirac was unaware of the fact that this type of matrices
had been developed by William K. Clifford in 1877 and
even earlier in 1840 by William R. Hamilton to take
square root of a second order wave operator, which was
subsequently shown to be subtly relativistically invariant.
To quote Sir Roger Penrose

It is perhaps not surprising that Dirac was un-
aware of Clifford’s discoveries of over half a
century earlier, because this work was not at
all well known in 1920s, even to many special-
ists in algebra. Even if Dirac had known of
Clifford’s algebras before, this would not have
dimmed the brilliance of the realization that
such entities are of importance for the quantum
mechanics of a spinning electron—this con-
stituting a major and unexpected advance in
physical understanding. [10, p. 619]

These matrices are appropriate to be introduced in quan-
tum mechanics since they are like linear operators acting
on the wave function similar to the actions of the non-
commuting position and momentum operators. Rather
unexpectedly, these special types of matrices must refer
to and act upon some new degrees of freedom in addi-
tion to the usual position and momentum variables of the
quantum particle. The new degrees of freedom describe
the physical spin of the electron and were later found
to be true for all the fermions of nature as well. In the
Dirac equation, these matrices act as operators on the
wave function ψ dubbed spinor, a name apparently coined
by Paul Ehrenfest, the thesis advisor of the fortunate duo
Uhlenbeck and Goudsmit. What Dirac had efficaciously
introduced in quantum mechanics was a powerful new for-
malism, known today as spinor calculus. The very name
spinor invokes rotation. But how exactly the electron
spins remains mysterious [11].

Again, using the energy and momen-
tum operators (2), the Dirac equation for
a wave function ψ(x, y, z, t) becomes

ı~
∂

∂t
ψ(x, y, z, t) =

[
m0c2α0 − ı~c

(
∂

∂x
α1 +

∂

∂y
α2 +

∂

∂z
α3

)]
ψ(x, y, z, t) (15)

This is the equation essentially in the form originally
proposed by Dirac [12, p. 255]. It is rather helpful for an
intuitive understanding of the Dirac equation. Equation
(15) can be presented very elegantly by drawing on the
momentum four-vector with its magnitude remaining in-

variant under Lorentz transformation. As usual, we start
with the relativistic energy-momentum relation (1), which
after rearranging terms becomes

E2

c2 − p2 = m2
0c2 (16)
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or (E
c

)2
− p2

x − p2
y − p2

z = m2
0c2. (17)

Equation (17) represents the equation for 4-momentum,
whose magnitude remains invariant under Lorenz trans-
formation. By using Dirac γ matrices,

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (18)

γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (19)

γ2 =


0 0 0 −ı

0 0 ı 0
0 ı 0 0
−ı 0 0 0

 , (20)

γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (21)

where
γ2

0 = 1, γ2
1 = γ2

2 = γ2
3 = −1, (22)

γiγ j = −γ jγi (i , j) (23)

we construct an equation

γ0
E
c

+ γ1 px + γ2 py + γ3 pz = m0c (24)

where by squaring equation (24), we can get equation
(17).

Again, using the energy and momentum operators (2),
equation (24) becomes

ı~

(
γ0

1
c
∂

∂t
− γ1

∂

∂x
− γ2

∂

∂y
− γ3

∂

∂z

)
= m0c, (25)

which in vector multiplication notation can be written as

ı~

(
γ0

1
c
∂

∂t
− γ.∇

)
= m0c. (26)

The quantity within parenthesis in equation (26) is called
the Dirac operator that can be written as γµ∂µ where γµ

are Dirac matrices and ∂µ is the relativistically invariant
4-gradient,

∂µ =

(
1
c
∂

∂t
,∇

)
. (27)

Then equation (26) can be written elegantly as

ı~γµ∂µ = m0c (28)

With the Dirac operator operating on a wave function ψ,
we get an eigenvalue equation

ı~γµ∂µψ − m0cψ = 0 (29)

Using natural units ~ = c = 1 and the Feynman slash
notation /∂ = γµ∂µ, the equation becomes(

ı/∂ − m0
)
ψ = 0 (30)

This is one of the most graceful equations, which is just
about as well known for its stunningly magnificent beauty
as for its dramatic prediction for the deeper secrets of
nature. Its physical consequences are more extensive and
far-reaching than anyone could have imagined. A great
deal more was hidden in the Dirac equation than even the
author himself anticipated.

4 Solution of Dirac Equation

Since the Hamiltonian is a 4×4 matrix, the wave-function
ψ(r, t) it acts on is naturally a 4-component column vector:

ψ(r, t) =


ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

 (31)

which gives a set of four coupled linear equations. The
four-component wave function represents a new class of
mathematical object in physical theories and makes their
first appearance in Dirac’s masterpiece.

Shortly after its earliest presentation [13], Dirac equa-
tion for the electron was solved for the hydrogen atom
by Gordon [14] and Darwin [15] and subsequently by
others. Now the results appear in contemporary text-
books [16, 17]. A summary of the results is presented
below:

(a) Dirac’s initial goal of developing a quantum theory
of the electron with positive definite probability in a rel-
ativistic quantum theory was achieved with a first order
time derivative.

(b) As an immediate consequence of his equation, the
paradox of the mysterious quantized spin and the associ-
ated magnetic moment of the electron were understood
to be a natural outcome of the Dirac equation. In the
rest frame, the spin operator ŝ for the Dirac particle, hav-
ing eigenvalues ± 1

2~, necessarily has an intrinsic spin,
s = 1

2 , that is not related to ordinary orbital angular mo-
mentum `. However, the spin operator does not commute
with the Hamiltonian in any frame other than the rest
frame, p = 0, so the expectation value of the spin opera-
tor is not a conserved quantity for p , 0. This agrees with
the Stern–Gerlach experiment, where the single electron
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in the outermost shell having ` = 0, m = 0, still shows
deflection of the beam into only two discrete values of
its magnetic moment relating to s = ± 1

2 and confirming
that spin is an intrinsic property of the electron that was
enigmatic even to Pauli himself.

Similarly, the orbital angular momentum operator L̂
does not commute with the Hamiltonian in any frame
other than the rest frame, so orbital momentum is not
a conserved quantity either. However, the operator
Ĵ = L̂ + ŝ commutes with the Hamiltonian in all frames.
This strongly suggests that Ĵ should be interpreted as
the operator for the total angular momentum, which is
conserved.

(c) The gyro magnetic ratio of the electron spin turned
out to be very close to 2. But its spin angular momentum
1
2~ compensates giving an effective value of g = 1 as
previously assumed.

(d) The solution of the problem of the central field,
which can be carried out exactly, leads to the prediction
of the fine details of the spectrum of the hydrogen atom
in rigorous agreement with the experimental results.

(e) The two unexpected extra equations resulting from
the four component wave function seemed very perplex-
ing. Two equations were enough to explain the two values
of the spin as in Pauli’s earlier provisional theory.

What then the other two spin values signify? Further-
more, the two extra equations seem to represent negative
energy states. Even classically the negative energy states
are indicated when we take the square root of equation
(1). They are usually discarded as non-physical. How-
ever, doing so in quantum mechanics could be risky since
complex numbers are used. But accepting them would
make transitions from positive to negative energy states
possible. Seemingly out of desperation, Dirac proposed
his uncanny sea of electrons. Presumably all the possi-
ble states of the electron in the universe would be filled
following Pauli’s exclusion principle. One missing elec-
tron from the sea would be a hole into which an electron
could transition. In spite of its obvious criticism, this
strange idea persisted for a rather long time until Julian
Schwinger proposed to retire it as an historical oddity.

Dirac then toyed with the idea that the two negative
energy states could be for protons, which were the only
positively charged particles known at the time. Evidently
that idea also ran into trouble since the protons are about
two thousand times heavier than the electrons. Dirac
finally hit upon an unexpected winner. Seemingly the
very baffling problem at its inception turned out to be
a colossal discovery hidden in the equations. After the
early confusion, a startling corollary of Dirac’s equation
yielded the prediction [18] of a new particle, the positron,
an antimatter counterpart of the electron! The spins in the
two additional equations belonged to two positrons.

The new particle would have the same mass as the
electron but with opposite electric charge, and be capa-
ble of annihilating an electron, both being converted into
pure energy in the process. Conversely, an electron and
positron pair could be created provided there was enough
energy available, unveiling a totally new vista of nature’s
mysteries. Exactly such an occurrence was soon discov-
ered by Carl Anderson in 1932 from a meticulous analysis
of cosmic ray tracks in a cloud chamber [19].

The physics Laureate Steven Weinberg affirms

The discovery of the more-or-less predicted
positrons, together with the earlier success of
the Dirac equation in accounting for the mag-
netic moment of the electron and the fine struc-
ture of hydrogen, gave Dirac’s theory a prestige
that it has held for over six decades. [20, p. 13]

And Franck Wilczek articulates

Dirac searched for a mathematical equation
satisfying physically motivated hypotheses. He
found that to do so he actually needed a sys-
tem of equations, with four components. This
was a surprise. Two components were most
welcome, as they clearly represented the two
possible directions of an electron’s spin. But
the extra doubling at first had no convincing
physical interpretation. Indeed, it undermined
the assumed meaning of the equation. Yet the
equation had taken on a life of its own, tran-
scending the ideas that gave birth to it, and be-
fore very long the two extra components were
recognized to portend the spinning positron, as
we saw.

With this convergence, I think, we reach the
heart of Dirac’s method in reaching the Dirac
equation, which was likewise Maxwell’s in
reaching the Maxwell equations, and Einstein’s
in reaching both the special and the general
theories of relativity. [21, p. 185]

Is it then any wonder that Dirac’s accomplishment has
been described as fully on a par with the works of Newton,
Maxwell, and Einstein before him [22, p. 228].

5 Harbinger of Quantum Field
Theory

While there are many aspects of Dirac’s equation that led
to uncovering the riddles of nature, we will now focus
on how his seminal work initiated the development of
the Quantum Field Theory that steers us to the deeper
mysteries of nature revealed to date.
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The groundbreaking discovery of creation and annihi-
lation of particle–antiparticle pairs indeed led to a radical
change in our perception of nature, guiding us to the
conclusion that particles could not be the primary reality
of the universe as had been intuitively presumed so far.
What then is the primary reality? Again, Dirac’s pioneer-
ing contribution eventually guided us to the answer. As
Anthony Zee articulates

It is in the peculiar confluence of special rela-
tivity and quantum mechanics that a new set of
phenomena arises: Particles can be born and
particles can die. It is this matter of birth, life,
and death that requires the development of a
new subject in physics, that of quantum field
theory. [23, p. 4]

The very foundation of our understanding of the deeper
secrets of nature is thus provided by successfully combin-
ing relativity with quantum mechanics in a way that even
Dirac did not foresee when he embarked on the project.

Since the properties of a particle like an electron are
exactly the same throughout the universe, a natural infer-
ence was that an underlying space filling quantum field
is the primary reality, a quantized excitation of which
appears as a particle. Thus Dirac’s pivotal discovery even-
tually led to the new paradigm of Quantum Field Theory
(QFT) that presents a unified view of nature, obliterating
our long held perception that matter particles and forces
possess totally different attributes.

Additionally, it was Dirac’s innovative work leading
to the first successful quantization of the electromag-
netic field [24] that also gave a thoroughly quantum-
mechanical treatment of spontaneous emission. Further-
more, Dirac also coined the name Quantum Electrody-
namics for the simplest quantum field theory. Unfortu-
nately, the theory got hopelessly bogged down for quite
some time due to unexpected difficulties arising from the
lack of cancellation of infinities.

Motivated by some key new experimental observations,
particularly those of Willis Lamb [25] and P. Kusch [26],
a new generation of young scientists predominantly Ju-
lian Schwinger [27], Richard Feynman [28], Shinichiro
Tomonaga [29] and Freeman Dyson [30] succeeded in
eliminating the infinities by utilizing the technique of
renormalization. Following this achievement, it was natu-
ral to make attempts to develop a Quantum Field Theory
that would encompass not only photons, electrons and
positrons but also the plethora of other particles that were
continually being discovered at the time in particle ac-
celerators and cosmic rays together with the weak and
strong nuclear forces that act upon them.

With contributions from many outstanding physicists,
some of whom garnered Nobel Prizes for their excep-

tional efforts throughout the second half of the twentieth
century, we now have such a quantum field theory, known
as the Standard Model of particle physics, which is a com-
prehensively expanded version of the quantum electrody-
namics initiated by Paul Dirac. Experimentally verifiable
accounts of the deepest design of nature revealed to date
rest upon this quantum field theory of Standard Model.
Needless to say, it by no means provides a complete ac-
count. Most conspicuously, it does not include gravity nor
does it account for dark matter, dark energy, and possibly
others that we have not glimpsed yet. However, Steven
Weinberg affirms

We can be certain that the Standard Model will
appear as at least an approximate feature of any
better future theory. [31, p. 264]

Based on the discoveries completed to date, we now make
a plausible effort to understand the various enigmas of the
quantum world. Quantum theory is the most successful
and supremely accurate theory propounded in recorded
history. Yet, famously, certain aspects of the theory ap-
pear as weird and counter intuitive. Fortunately, I believe
this “weirdness” can be understood from the precepts
of QFT that portrays a reality different from our daily
classical reality, both coexisting by transitioning from the
quantum to the classical domain.

6 The wave function of an electron

According to QFT, a particle like an electron arises as
a quantized excitation of the underlying electron quan-
tum field. Such an energy-momentum eigenstate of the
field can be expressed as a specific Lorentz covariant
superposition of field shapes of the electron field along
with all the other quantum fields of the Standard Model
of particle physics. Superposition of field shapes in a
one-particle state is not stationary in time but evolve in a
simple wavelike manner.

The individual field shapes, each with their own com-
putable dynamic time evolution, are actually the vac-
uum fluctuations comprising the very structure of the
energy-momentum eigenstate. The vacuum fluctuations
are evanescent in the sense that they pass away soon after
coming into being. But new ones are constantly boil-
ing up to establish an equilibrium distribution so stable
that their contribution to the electron g-factor results in
a measurement accuracy of one part in a trillion [32].
The Lorentz covariant superposition of vacuum fluctua-
tions of all the quantum fields in the one-particle quantum
state can therefore be conveniently represented using the
Fourier synthesis approach leading to a well behaved
smooth wave packet that is everywhere continuous and
continuously differentiable.
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The wave function ψ(x), for simplicity in one dimen-
sion, will be given by the Fourier integral

ψ(x) =
1
√

2π

∫ ∞

−∞

ψ̃ (k) eıkxdk (32)

where ψ̃(k) is a function that quantifies the amount of
each wave number component k = 2π

λ that gets added to
the combination.

From Fourier analysis, we also know that the spatial
wave function ψ(x) and the wave number function ψ̃(k)
are a Fourier transform pair. Therefore, we can find the
wave number function through the Fourier transform of
ψ(x) as

ψ̃ (k) =
1
√

2π

∫ ∞

−∞

ψ (x) e−ıkxdx (33)

Thus the Fourier transform relationship between ψ(x) and
ψ̃(k), where x and k are known as conjugate variables,
can help us determine the frequency or the wave number
content of any spatial wave function. In order to deter-
mine the time evolution of the wave packet function, we
need to incorporate the time term to the spatial function.
Accordingly,

ψ(x, t) =
1
√

2π

∫ ∞

−∞

ψ̃ (k) ei(kx−ωt)dk (34)

where ω = 2πν is the angular frequency.
A wave packet or a wave function is localized and there-

fore can represent a quantum particle, but just holistically,
since only the totality of the wave packet represents all the
conserved quantities of the energy-momentum eigenstate
of a particle such as mass, charge, and spin. Creation of
a similar wave function of a particle has been presented
earlier [33] from a rather exploratory view for a better
intuitive understanding.

When quantum mechanics with its hallmark wave func-
tion supervened on the atomic domain of physics and com-
menced explaining its mysterious workings with uncanny
consistency, it appeared totally contrary to our intuition
developed from classical physics. Even a century later,
quantum mechanics still perplexes most people including
many scientists. However, there appear to be plausible
answers to the riddles of quantum mechanics based on the
discoveries of the quantum field theory of the Standard
Model, again the crown jewel of physics that was forged
through, commencing with Paul Dirac’s uncanny insight.

Following is a consolidated account of resolutions of
the perplexities of quantum mechanics, some of which
has been presented in parts by the author in previous pub-
lications [34–36]. For simplicity, here we will be dealing
solely with a single quantum particle, a multi particle
extension of which is under preparation and will be pre-
sented later. Since the depiction of the single particle

wave function presented here is based on a fully rela-
tivistic account, its reality should be extendable to multi
particle systems. Although some emergent properties
like quantum entanglement appear in a multi particle sys-
tem, the fundamental quantum realism of a single particle
wave function should shore up the reality of the multi
particle wave function, which for expediency is presented
in a rather abstract Hilbert space formalism.

6.1 Reality of the Wave Function

From the early days of quantum mechanics, physicists
have argued about the reality of the wave function. It is
surprising to find them still debating it, particularly in
light of Erwin Schrödinger’s demonstration that the mys-
teriously discrete Bohr orbitals of the hydrogen atom arise
from standing wave patterns of the wave function of the
electron. Even after almost a century, it is not uncommon
for very notable contemporary scientists to pronounce the
wave packet for a particle like an electron to be nothing
but a fictitious mathematical construct. Does not it stretch
credibility to imagine that fictitious waves can possibly
make such unmistakably robust standing waves to form
discrete orbitals of atoms?

It is also hard to fathom how anyone can doubt the
reality of a wave associated with a particle after an un-
ambiguous experimental demonstration of the electron
diffraction pattern of the de Broglie matter wave. Al-
though de Broglie himself failed to recognize the reality
of the observed wave, he correctly surmised the origin
of the wave to be a result of the relativistic effect of an
unspecified internal frequency associated with the parti-
cle. Now we know that the internal frequency relates to
the relativistic equation: ν =

m0c2

h indicating that a matter
particle is itself a wave packet as is unmistakably evident
from QFT.

Historically, the de Broglie hypothesis that a matter
particle behaves like a wave of length, λ, related to its
momentum, p, through the Planck constant, h to be λ = h

p
or equivalently p = ~k helped Schrödinger to develop his
wave equation that supercharged the brand new discipline
of quantum mechanics. Using the Lorentz invariant prop-
erty of the wave packet, the relation p = ~k can indeed be
derived irrespective of the mass of the particle [34] and
therefore need not be a mere hypothesis.

As described earlier, a quantum particle is a holistic
wave packet consisting of irregular disturbances of the
various quantum fields of the Standard Model and these
disturbances are not readily measurable. Their distinct
consequences, however, are by now well established for
explaining the Lamb shift and the anomalous magnetic
moment of the electron. These disturbances of the quan-
tum fields otherwise known as vacuum fluctuations are
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like the ‘beables’ eponymously coined by John Stuart Bell
that corresponds to something that really exists physically
but not directly observable. In Bell’s words

The beables of the theory are those elements
which might correspond to elements of reality,
to things which exist. Their existence does not
depend on ‘observation’. [37, p. 174]

Quarks and gluons are distinct examples of beables. No
one can see an isolated quark or a gluon, but few scientists
doubt their real existence.

Some graphic depiction of the vacuum fluctuations
could as well be offered soon. The 2014 Kavli Prize in
Astrophysics was awarded for pioneering contributions
to the theory of cosmic inflation. The predictions of the
simplest versions of the theory have been so successful
that most cosmologists accept that some form of inflation
truly did occur in the very early universe. Assuming the
veracity of cosmic inflation at the dawn of the universe,
the imprint of the disturbances of the quantum field could
manifestly be discernible as immensely enlarged vacuum
fluctuations in the cosmic microwave background radia-
tion anisotropy, recorded both by the WMAP and Planck
satellite [38].

Since the quantum fields manifestly comprise a real-
ity of the universe, their disturbances should be no less
real. Thus the mere straightforward immeasurability of
the disturbances of the quantum fields does not make
them fictitious, providing distinct validation for the wave
function portrayed here to be objectively real. There is
every reason to believe that the very weave of our uni-
verse supports the objective reality of the depicted wave
function, which represents a natural phenomenon and not
just a mathematical postulate.

The perplexing wave-particle duality should by now
be comprehensible. In reality, there is no such thing in
the quantum domain as a classical particle akin to a tiny
marble ball. What we call a quantum particle is actually
a wave packet consisting of real field disturbances that
in their totality behave as a particle. The idea of a parti-
cle, however, is so ingrained in our awareness that it is
unlikely to fade away anytime soon. This is especially
true since at energies higher than that corresponding to
the Compton wavelength, the exchange of momentum
is more particle-like, as in inelastic scattering. Also the
visible tracks of the high energy elementary particles in a
particle detector like a cloud chamber are particle-like.

6.2 The Uncertainty Principle

On the basis of those characteristics of the wave func-
tion that represent a quantum particle, the mysterious

uncertainty principle of quantum physics can now be un-
derstood as a perfectly natural incidence. The Fourier
transform correlations between conjugate variable pairs
of any wave packet have powerful consequences since
these variables obey the uncertainty relation

∆x∆k ≥
1
2

(35)

where∆x and ∆k relate to the standard deviations σx and
σk of the wave packet. This is a completely general prop-
erty of a wave packet with a reality of its own and is in
fact inherent in the properties of all wave-like systems.
It becomes important in quantum mechanics because of
the real wave nature of particles having the relationship
p = ~k, where p is the momentum of the particle. Sub-
stituting this in the general uncertainty relationship of a
wave packet, the intrinsic uncertainty relation in quantum
mechanics becomes

∆x∆p ≥
1
2
~ (36)

This uncertainty relationship has been conflated with a
somewhat analogous observer effect, which advocates
that measurement of certain systems cannot be made with-
out affecting the system. In fact, Heisenberg offered such
an observer effect in the quantum domain as a “physical
explanation” of quantum uncertainty, an explanation that
has since gone by the name of Heisenberg’s uncertainty
principle. What the uncertainty principle actually states,
however, is a fundamental property of quantum systems,
and is not a statement about observational indeterminacy
as was suggested by Heisenberg, indeed originally brand-
ing it the indeterminacy principle. In fact, some recent
studies [39–41] highlight important fundamental differ-
ences between uncertainties in quantum systems and the
limitation of measurement in quantum mechanics.

Einstein’s fundamental objection to the Copenhagen
view of the wave packet was its assertion that any un-
derlying reality of the uncertainties was irrelevant and
should be accepted under the veil of complementarity.
We have established that this uncertainty is indeed an es-
sential reality, governed by wave behavior, traceable in its
origin back to the wave-particle duality first envisioned
and steadfastly maintained as a reality by Einstein, alone
among his peers, for over a decade.

6.3 Born’s Rule of Probability

Perhaps the most perplexing aspect of quantum physics is
its probabilistic prediction, as formalized by Born’s rule.
From experiments on the scattering of electrons, Max
Born showed that the original suggestion of Schrödinger
that the wave packet be considered as the charge distribu-
tion of the electron could not be justified. Instead, Born
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followed Einstein in this regard as he stated in his Nobel
lecture

Again an idea of Einstein’s gave me the lead.
He had tried to make the duality of particles
(light quanta or photons) and waves compre-
hensible by interpreting the square of the opti-
cal wave amplitudes as probability density for
the occurrence of photons. This concept could
at once be carried over to the ψ-function: |ψ|2

ought to represent the probability density for
electrons (or other particles). [42]

This inference is in accord with the correct nature of the
wave function, as presented in Section 6.1. As the am-
plitudes of the wave packet consist of disturbances of
various diverse quantum fields, they could not simply
represent a distribution of charge or any other classical
property of the particle. Since the absolute square of the
amplitude is non-negative, whereas the amplitude gener-
ally contains complex numbers, |ψ|2 should represent the
probability density of a quantum particle like an electron.
This is why the amplitude of the wave function is com-
monly called the quantum probability amplitude. Since
the total probability must be one, we have to normalize
the wave function as∫ ∞

−∞

|ψ (x, t)|2 dx = 1 (37)

Born’s rule is inseparably connected to the perplexing
measurement problem. Although its exact mechanism is
intensely debated, the most popular paradigm appears to
be that of decoherence, first posited by H. Deter Zeh [43]
and extensively studied by Wojciech Zurek [44] and oth-
ers. In this model the quantum system to be measured
gets entangled with the quantum constituents of the re-
quired macroscopic detector ultimately resulting in the
selection of the measurable event.

Zurek contends [45] that the Born rule can actually be
derived from the theory of decoherence as opposed to be-
ing a mere postulate of quantum theory. There is indeed
some support for his contention [46] although why a par-
ticular probability out of many others materializes needs
to be explained [47]. Quite possibly this is not definitively
answerable because of the inherent, irreducible indeter-
minacy of the primordial quantum fluctuations that is
irrefutably carried over to the elementary particles.

The baffling ‘collapse of the wave function’, however,
has a genuine explanation based on the nature of the wave
function described in Section 6.1. The holistic feature of
the wave function requires that the entirety of the wave
function be acquired all together or not at all. This is
aided by the fact that the wave function of the particle

is also entangled with space [48]. Hence, the spread-
out wave function can instantaneously converge at the
particular location of detection.

An example from cosmic history is worth examining in
this regard. The universe about 380,000 years after the big
bang consisted primarily of hydrogen ions (protons) and
electrons, along with neutral helium atoms. An electron
would naturally be attracted to the proton, starting to
emit electromagnetic radiation due to its motion. But
a much more rapid process would take place when the
electron, while aligned in the direction of the proton,
spontaneously emits a photon with an amount of energy
that exactly matches the potential energy of the electron
and an orbital of the hydrogen atom. In this process the
wave function of the electron can directly wind up as the
wave function of the particular orbital of the hydrogen
atom without having to undergo a typical collapse to any
particular point. Such episodes would reveal that the wave
function does not necessarily always need to go through
a traditional collapse for detection.

The above episode, which indeed took place in a uni-
versal scale, could be used as a pragmatic toy model
for grasping the much discussed but yet to be resolved
measurement problem. In this case, the necessary macro-
scopic detection device consists solely of essentially an as-
sembly of the same quantum constituents, namely, atomic
hydrogen ions. Also, the quantum state to be detected
is a simple position wave function of the electron. Even
without going into all the details, one can readily compre-
hend that in addition to predicting only the probability of
detection instead of a certainty, there is also an inherent,
irreducible element of indeterminacy in the occurrence
of any particular probability since the predominant nec-
essary event of the spontaneous emission of a photon
of matching potential energy by the electron is totally
unpredictable from the Born rule.

The counter-intuitive simultaneous presence of the elec-
tron in more than one place can also be understood in
terms of the nature of the wave function. Since the wave
function is spread out in space, which can be substantial
due to dispersion, the probability of finding the particle
in multiple places will be significant. Again, in each lo-
cation the wave function has to be taken in its entirety,
only that represents all the properties of the particle, thus
giving an ostensible appearance of the electron in many
places at the same time.

As a manifest evidence of the wave-particle duality,
the famous double slit experiment, in which one quantum
particle at a time is sent through two adjacent slits and
results in a wave-like interference pattern, also has a nat-
ural explanation. The wave function consisting of linear
superposition of amplitudes gets divided into two parts at
the slits, which then interferes resulting in a typical wave
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diffraction pattern, yet detected only at a point with the
characteristic totality of the wave packet. The amplitude
of the wave packet can be split, but the square of the am-
plitude of the entire wave packet required for detection
cannot be divided. Thus, each individual electron con-
tributes one dot to an overall pattern that looks like the
two-slit interference pattern of a wave. A distinctly typi-
cal interference pattern arises when a sufficient number
of quantum particles are sent through the two slits either
one at a time or all of them together at the same time.

7 Conclusions

We have expounded how Dirac’s revolutionary equation
has been invaluable in unveiling some of the bewildering
mysteries of the atomic domain. A totally unexpected
outcome of Dirac’s equation of the electron led to the
development of the quantum field theory of the Standard
Model of particle physics, leading in turn to the deepest
revelation to date, of nature’s most profound secrets. We
have shown that the ensuing quantum field theory origi-
nating from Dirac’s pioneering contributions can assist in
demystifying many of the lingering mysteries of quantum
physics for both the professionals and the general public.

An objectively real wave function can be garnered from
the edicts of the quantum field theory revealing that there
are no solid elementary particles but only holistic wave
packets acting like particles. Amazingly, the paradigm of
the wave function presented here proffers plausible expla-
nation for the long standing inherent perplexities of the
wave-particle duality, uncertainty principle, de Broglie
wave hypothesis, the bizarre wave function collapse, de-
tecting probabilities instead of certainty.

These quantum oddities arise from our natural instinct
to understand the quantum domain in terms of our daily
classical reality. The quantum field theory reveals that the
eventual quantum reality is substantially different from
our familiar classical reality.

The quantum fields fill all space of the entire universe
for all times. The fields have infinite degrees of freedom
of creating and annihilating quantum particles locally at
each spacetime element and these degrees of freedom are
indeed always active obeying the energy-time uncertainty
relation even in the complete vacuum. The quantum ac-
tivities have the inherent special attribute that each event
is totally spontaneous and completely unpredictable as to
when it is going to take place. This is only a slow mo-
tion description of the events. In reality, there are infinite
number of these evanescent events occurring locally at
every spacetime element of the universe, the members of
the ensemble having infinitely different amplitudes and
speed.

This unique quantum activity, a feature of each one of
the quantum fields of the Standard Model, being present
everywhere, ubiquitously interact with everything in the
quantum domain including elementary particles, atoms
and molecules. The unique features such as the charac-
teristic quantum superposition as well as some inherent
unpredictability could be an inevitable result. Thus the
reality of the quantum domain is substantially different.

However, the quantum domain transitions into our fa-
miliar daily macroscopic classical domain where nature
deals with an innumerable number of particles that mask
the quantum activity with phenomena like decoherence.
Experiments confirm that the characteristic activities of
the quantum domain are revealed when a fairly macro-
scopic object containing a trillion atoms is shielded from
environmental decoherence as completely as possible.
Thus the quantum reality is markedly different, but co-
exists by transitioning into classical reality. Much of the
quantum enigmas disappear when we accept this fact of
nature.
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