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We highlight overlap as one of the simplest
inequalities in linear space that yields a
number of useful results. One obtains the

Cauchy–Schwarz inequality as a special case. More
importantly, a variant of it is seen to work desirably
in certain singular situations where the celebrated
inequality appears to be useless. The basic tenet
generates a few other interesting relations, including
the improvements over certain common uncertainty
bounds. Role of projection operators in modifying
the Cauchy–Schwarz relation is noted. Selected ap-
plications reveal the efficacy.
Quanta 2019; 8: 36–43.

1 Introduction

Inequalities are encountered in many areas of theoretical
sciences [1,2]. There exist quite a few standard routes [1]
to arrive at specific types of inequalities. Our modest aim
here is to explore how far one can extract useful results
starting from a remarkably simple idea, viz., the overlap.
To pursue, we start from the intuitively obvious inequality
for two normalized states |ψN1〉 and |ψN2〉 in a linear space
as

1 =
√
〈ψN1|ψN1〉

√
〈ψN2|ψN2〉 ≥ |〈ψN1|ψN2〉| = S (1)
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where S is the overlap. It simply means that the overlap
of any two unit-norm states is never greater than unity.
Inequality (1) is worst if 〈ψN1|ψN2〉 = 0, and it is satu-
rated (equality) when |ψN2〉 = |ψN1〉. Thus, S is a direct
measure of nonorthogonality of the two chosen states.
Sometimes, S is also interpreted as distance between two
pure states, while its square is termed as fidelity. One
may wonder that the message of (1) can be fruitfully em-
ployed to obtain the Cauchy–Schwarz inequality (CSI)
and related ones, an improved CSI (ICSI), and sometimes
a tighter CSI involving projection operators.

2 A few known results

Appropriate choices of the states in (1) may now be seen
to yield certain known results, as outlined below:

(i) Choose two arbitrary states |ψ1〉 and |ψ2〉 such that

|ψN1〉 =
|ψ1〉√
〈ψ1|ψ1〉

, |ψN2〉 =
|ψ2〉√
〈ψ2|ψ2〉

. (2)

Inequality (1) then quickly takes the familiar form of the
Schwarz inequality [2], viz.,√

〈ψ1|ψ1〉
√
〈ψ2|ψ2〉 ≥ |〈ψ1|ψ2〉| . (3)

If the states |ψ1〉 and |ψ2〉 are expanded in terms of an
orthonormal set of states {|φk〉} as

|ψ1〉 =

N∑
k=1

ak|φk〉, |ψ2〉 =

N∑
k=1

bk|φk〉, (4)

then (3) leads to Cauchy’s inequality [2]√∑
|ak|

2
√∑

|bk|
2 ≥

∣∣∣∣∑(a∗kbk)
∣∣∣∣ . (5)
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For real {ak} and {bk}, it further simplifies in terms of
average (over N) values as

(
a2 b2

) 1
2
≥

∣∣∣∣ab
∣∣∣∣ (6)

that possesses some relevance to statistics. Indeed, (3) and
(5) are equivalent, and hence (3) is often also called the
CSI. Needless to mention, the CSI (3) is usually derived
from the relation 〈ψ|ψ〉 ≥ 0 where |ψ〉 is an arbitrary
normalizable state. Also, while (1) is straightforwardly
found from (3), the extension (see (14) below) of (3) rests
solely on the spirit of (1) again.

(ii) Another choice in (1), viz.,

|ψN1〉 =
Ân|φ〉√
〈Â2n〉

, 〈Â2n〉 = 〈φ|Â2n|φ〉

|ψN2〉 =
Âm|φ〉√
〈Â2m〉

, 〈Â2m〉 = 〈φ|Â2m|φ〉 (7)

where |φ〉 is any normalized state and Â is Hermitian,
leads to √

〈Â2m〉 〈Â2n〉 ≥
∣∣∣〈Âm+n〉

∣∣∣ . (8)

This result primarily connects the various moments of a
spatial distribution for Â = x̂. However, it may also be
useful elsewhere.

(iii) The CSI is usually employed to obtain the uncer-
tainty product inequality (UPI) [3]. A direct application
of (1), however, acts with equal facility. Define |ψ1〉 and
|ψ2〉 in terms of two non-commuting Hermitian operators
Â and B̂ acting on some arbitrary normalized state |φ〉 as

|ψ1〉 = |φA〉 = (Â − 〈Â〉Î) | φ〉, 〈Â〉 = 〈φ|Â|φ〉,

|ψ2〉 = |φB〉 = (B̂ − 〈B̂〉Î) | φ〉, 〈B̂〉 = 〈φ|B̂|φ〉. (9)

Then, states |ψN1〉 and |ψN2〉 may be taken in the forms

|ψN1〉 =
|φA〉

∆A
, ∆A =

√
〈Â2〉 − 〈Â〉2,

|ψN2〉 =
|φB〉

∆B
, ∆B =

√
〈B̂2〉 − 〈B̂〉2, (10)

and the inequality (1) shows immediately

∆A ∆B ≥ |〈φA|φB〉| . (11)

3 Some additional relations

It is now imperative to search for some more relations
from (1) to justify its strength and worth further. To
achieve this end, we again proceed point-wise:

3.1 An improved Cauchy–Schwarz
inequality

An important special case in the context of CSI (3) arises
when

〈ψ1|ψ2〉 = 0 (12)

so that the right side becomes zero, rendering the cele-
brated inequality almost useless. Improvements of the
CSI along various routes are available (see, e.g., refer-
ences [4–7] and those quoted therein). Still, the specific
problem with (12) does not seem to have attracted suf-
ficient attention. Nonetheless, we have found it expedi-
ent [8] to tackle this problem by rewriting (1) as

1 =
√
〈ψN1|ψN1〉 〈ψN2|ψN2〉 ≥ |〈ψN1|θN1〉| |〈ψN2|θN2〉| .

(13)
Essentially, in inequality (13), we employ two normal-
ized given states |ψN j〉 and two similar auxiliary ones
|θN j〉, j ∈ {1, 2}. Auxiliary states are otherwise arbitrary,
only the integrals at the right of (13) should exist. Now,
following (13), we find the desired ICSI that reads as√

〈ψ1|ψ1〉
√
〈ψ2|ψ2〉 ≥ |〈ψ1|θN1〉| |〈ψ2|θN2〉| (14)

in place of (3). Note that condition (12) cannot cause
any harm now, because that vulnerable inner product is
avoided in (14). Further, (14) can reduce to (3) for the
specific choice

|θN1〉 =
|ψ2〉√
〈ψ2|ψ2〉

, |θN2〉 =
|ψ1〉√
〈ψ1|ψ1〉

. (15)

However, other possibilities do exist, and they can really
bypass (12) to yield a non-zero right side in (14). The
ICSI thus justifies its name and generality.

A point of secondary interest lies in strengthening the
CSI when the overlap S in (1) is known to be much less
than unity. Then, (3) will certainly turn out to be a poor
inequality. Our relation (14) in such a case possesses the
potential to provide better bounds.

Thirdly, while the ICSI (14) is more general than (3), it
requires import of two auxiliary states. Elsewhere [8], we
have found that this prescription too may be somewhat
relaxed in case (12) is exactly valid. This new form reads
as√
〈ψ1|ψ1〉

√
〈ψ2|ψ2〉 ≥ 2 |〈ψ1|θN〉| |〈ψ2|θN〉| ; 〈ψ1|ψ2〉 = 0.

(16)
In (16), unlike (14), just one auxiliary state is involved.

Finally, let us now have a look at the UPI (11). It may
be beset with similar trouble as outlined above under the
condition (cf. (9))

〈φA|φB〉 = 0 . (17)
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A common finite-dimensional example of (17) involves
the angular momentum operators Â = Ĵx, B̂ = Ĵy in (9),
the special state being |φ〉 = |φ( j, µ = 0)〉. An infinite-
dimensional case [8] might refer to Â = x̂2, B̂ = p̂ acting
on the ground state of the one-dimensional harmonic
oscillator. Our bypass route in tackling such cases will be
similar. For example, one obtains by using ICSI (14) the
following result

∆A ∆B ≥ |〈φA|θN1〉| |〈φB|θN2〉| (18)

in place of (11). The disaster (cf. condition (17)) is thus
avoided. This is indeed a modified UPI. Moreover, in
view of (16), one may add an extra step to arrive at a
simpler version of (18), viz.,

∆A ∆B ≥ 2 |〈ψA|θN〉| |〈ψB|θN〉| (19)

if (17) is obeyed. The embedded auxiliary states in (14)
or (18), or the single auxiliary state in (16) or (19), may
be chosen at will, so much so that saturation can occur [8]
in either case.

3.2 A refined uncertainty sum inequality

Kinship of the CSI with another inequality, viz.,√
〈ψ1|ψ1〉 +

√
〈ψ2|ψ2〉 ≥

√
〈ψ1 − ψ2|ψ1 − ψ2〉, (20)

is well-known [9]. We employ (20) with the choice (cf.
definition (9))

|ψ1〉 = |φA〉, |ψ2〉 = |φB〉 (21)

to obtain, for example, the result

∆A + ∆B ≥ ∆(A − B). (22)

On the other hand, by replacing −|ψ2〉 for |ψ2〉 in (20), the
same definition (21) yields

∆A + ∆B ≥ ∆(A + B). (23)

The left side of (22) or (23) involves an uncertainty sum
and hence we call such a relation an uncertainty sum
inequality (USI). Indeed, a direct route to (23) with poten-
tial usefulness is available in the literature [10]. Anyway,
in the present context, we combine (22) and (23) to get
another powerful relation, viz.,

∆A + ∆B ≥ max {∆(A − B), ∆(A + B)} . (24)

While inequalities like (22),(23) and (24) may be other-
wise useful, they all follow from (20). Therefore, three
weaknesses of (20) should be pointed out here:

(i) It becomes trivial when |ψ2〉 = |ψ1〉.

(ii) Unlike (3), relation (20) is not invariant with respect
to norms of |ψ1〉 and |ψ2〉.

(iii) The choice (21), coupled with condition (17), leads
one to an obvious result like

∆A + ∆B ≥
√

∆A2 + ∆B2. (25)

Notably, under this situation (e.g., (17) and (21)), the right
side of (25) also replaces the same of either of inequalities
(22) to (24). Thus, (25) essentially relates two kinds of
USI, one based on standard deviation and the other on
variance. We next notice how (1) (or (13)) can save us
from such inconsequentialities. Let us recall the way of
construction of the ICSI (14). In the present context, we
put it as√
〈ψ1|ψ1〉 +

√
〈ψ2|ψ2〉 ≥ |〈ψ1|θN1〉| + |〈ψ2|θN2〉| . (26)

This relation improves (20). None of the aforesaid weak-
nesses of (20) (see, e.g., the discussion below (24)) now
prevail. Further, using (21), an improved USI (IUSI) is
found from (26), viz.,

∆A + ∆B ≥ |〈φA|θN1〉| + |〈φB|θN2〉| , (27)

that avoids again any direct inner product between states
|φA〉 and |φB〉. It is thus stronger than (24) and can even
saturate, in contrast to (25). Only under a specific situ-
ation, when we choose |θN1〉 = |θN2〉 = |θN〉 in (27) and
express it (remembering (17)) as a linear combination of
|φA〉 and |φB〉, the best choice leads one to (25). How-
ever, more general choices exist and they do attest the
generality of IUSI (27).

3.3 Role of projection operators

Use of a suitable projection operator may sometime in-
crease the tightness of the CSI by appropriately redressing
the overlap. For simplicity, we rearrange inequality (3) in
the form

|〈ψ1|ψ2〉| ≤
√
〈ψ1|ψ1〉

√
〈ψ2|ψ2〉. (28)

To tighten this inequality, let us keep the |ψ2〉 part as such,
but incorporate an auxiliary state |ψ3〉 in the |ψ1〉 part of
(28) that is known to naturally satisfy 〈ψ2|ψ3〉 = 0. Such
a choice renders the left side unaltered, though form (28)
changes to

|〈ψ1 + αψ3|ψ2〉| = |〈ψ1|ψ2〉| ,

|〈ψ1|ψ2〉| ≤
√
〈ψ1 + αψ3|ψ1 + αψ3〉

√
〈ψ2|ψ2〉. (29)

Thus, value of the right side changes. A little algebra
shows that the tightest situation, i.e., minimum value for
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the right side in (29), is attained at an optimum α to yield
from (29)

|〈ψ1|ψ2〉| ≤

√
〈ψ1|ψ1〉 −

|〈ψ1|ψ3〉|
2

〈ψ3|ψ3〉

√
〈ψ2|ψ2〉. (30)

It implies, we can reorganize (29) in the tightest situation
as

|〈ψ1|ψ2〉| ≤

√
〈(Î − P̂3)ψ1|(Î − P̂3)ψ1〉

√
〈ψ2|ψ2〉. (31)

In (31), P̂3 refers to the projector for |ψ3〉 and is defined
by

P̂3 = |ψN3〉〈ψN3|; |ψN3〉 =
|ψ3〉√
〈ψ3|ψ3〉

. (32)

Thus, (28) admits modification to (31) when a state |ψ3〉

is known a priori to be manifestly orthogonal to |ψ2〉. In
our form (14) or (16), on the contrary, the only restriction
would be |θN2〉, |θN〉 , |ψ3〉. Of course, when the whole
of |ψ1〉 is orthogonal to |ψ2〉, the left side in (31) needs to
be rectified, and there appears our prescription, the ICSI
(14) or (16), as a remedy.

In the context of UPI (recall (9)), this projector issue is
nicely met in the standard route. By construction, we have
〈φB|φ〉 = 0, and so we choose |φA〉 such that 〈φA|φ〉 = 0.
Indeed, this is in-built in the definition. Had we chosen
instead, e.g., |φ′A〉 = Â|φ〉, we would have been led to
a weaker inequality (as in (28)), keeping aside the fact
that this option does not involve the standard deviation of
operator Â. However, by following (31), one regains the
usual form, as found in (9). Therefore, while applying
(1), we shall continue with the above wisdom in studies
on the complementary Eckart bound [11, 12] and survival
probability [13–17] to follow.

4 Results and applications

Let us quickly turn to certain results that will demonstrate
the advantage of the present endeavor.

4.1 CSI vs. ICSI

We take the following states for a first-hand experience:

|ψN1〉 = 1√
1+x2

(
x
1

)
, |ψN2〉 =

(
1
0

)
,

|θN1〉 = 1√
2

(
1
1

)
, |θN2〉 = 1√

1+x2

(
1
x

)
. (33)

One obtains the results shown in Figure 1 for varying
x-values. Here, the left side is fixed at unity. The right
sides stand for lower bounds to the same. In Figure 1,
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Figure 1: Plots of the right sides of inequalities (3), (14) and
(16) using the quantum states given in (33).

we exhibit respectively the CSI (3) [black: 1], the ICSI
(14) [red: 2], (14) with exchanging |θN1〉 and |θN2〉 in
(33) [blue: 3], (14) with both auxiliary states taken as
|θN1〉 [magenta: 4] and finally, (14) with both auxiliary
states taken as |θN2〉 [dark cyan: 5]. Note that the CSI
performs nicely for large |x|. But, overlap is small in
regions around x = 0 (S = 0 at x = 0), and that is
the primary focus of the present study. We witness here
varying performances of the choices (cf. (33)) based on
(14). Particularly interesting ones are curves 2 and 4.
Both fare well around the x = 0 region. Curves 3 and
5 also perform better than curve 1 within |x| = 1. The
advantage of using auxiliary states in (14) should now be
clear. While none of the curves reach the exact value, we
happily note that (16) applies at x = 0, and curve 4 shows
its ability to saturate at this point.

Our next example concerns two lowest normalized
energy eigenstates of the particle-in-a-box problem in
(0, π) for which the overlap is zero, and hence the CSI
(3) [1 ≥ 0] is of no use. In this situation, we see how
the ICSI (16) performs, aided by just one auxiliary state
|θN〉 taken in functional form as N x2(π − x), and zero
otherwise, where N stands for the normalization constant.
Our recipe betters the bound from 1 ≥ 0 to 1 ≥ 0.6553.
The tightness achieved is again noteworthy.

In both the above cases, however, auxiliary states of our
choice are employed. One may wonder whether better-
ment can be accomplished at all by using only the parent
states (e.g., |ψN1〉, |ψN2〉). To explore, we proceed by
choosing different linear combinations of these parent
states, viz.,

|θN1〉 = N1 (c1 |ψN1〉 + c2 |ψN2〉) ,

|θN2〉 = N2 (d1 |ψN2〉 + d2 |ψN1〉) . (34)
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Figure 2: Values of the right side of inequality (14) for different
coefficients c1 and d1 in (34). Note that c2

1 + c2
2 = 1 = d2

1 + d2
2 .

Let us also take all the states as real, with real positive
combining coefficients and overlap. The prefactors N1
and N2 in (34) represent the normalization constants. Fig-
ure 2 attests that the whole accessible region at S = 0
is better in ICSI (14). Even, saturation is possible here.
Generality of the ICSI may now be appreciated.

4.2 A complementary Eckart bound

The Eckart inequality [11,12] stands as one of the earliest
measures for the goodness of an approximate normalized
eigenstate of energy |φ̄1〉 by providing a lower bound
to its overlap with the unknown exact ground stationary
state |φ1〉. Writing the energy eigenvalue equation as
Ĥ|φ j〉 = ε j |φ j〉, 〈φ j|φ j〉 = 1, and defining the average
ground-state energy as ε̄1, one finds [11, 12]

S 2
1 =

∣∣∣〈φ̄1|φ1
〉∣∣∣2 ≥ ε2 − ε̄1

ε2 − ε1
;

ε̄1 =
〈
φ̄1|Ĥ|φ̄1

〉
. (35)

Coupled with the upper bound S 1 ≤ 1, the above result
actually reflects the closeness of |φ̄1〉 with the unknown
|φ1〉. However, an improved upper bound may be obtained
by defining

|ψ1〉 =
(
Â − 〈Â〉Î

)
|φ̄n〉,

Â = |φn〉〈φn|,

〈Â〉 = 〈φ̄n|Â|φ̄n〉 = S 2
n,

∆A = S n

√
1 − S 2

n,

|ψ2〉 =
(
Ĥ − 〈Ĥ〉Î

)
|φ̄n〉,

〈Ĥ〉 = 〈φ̄n|Ĥ|φ̄n〉 = ε̄n,

∆H = ∆εn,

S n = |〈φ̄n|φn〉|, (36)

and subsequently using (1). The outcome is

S n√
1 − S 2

n

≤
∆εn

|ε̄n − εn|
. (37)

This is complementary to the standard Eckart bound.
Moreover, unlike (35), (37) applies to any n-th state, not
just the ground state, and it does not require any infor-
mation about ε2. Our preliminary checks reveal that (37)
furnishes far better bound than the primitive one, viz.,
S n ≤ 1, primarily due to the denominator at the left. For
any finite right side in (37), S n has to be less than unity.
Had we chosen |ψ1〉 = Â| φ̄n〉 in (36) instead, we would
not reach this stronger form.

4.3 Decay probability

Turning to quantum dynamics, we now consider the prob-
lem of survival probability P(t) [13–17] or, more specif-
ically, the decay probability Q(t). To proceed, we first
define a state |ψ(t)〉 whose evolution is governed by a
conservative Hamiltonian Ĥ as

|ψ(t)〉 = exp
(
−

iĤt
~

)
|ψ(0)〉; 〈ψ(0)|ψ(0)〉 = 1. (38)

Next, we identify below a specific projection operator Â
whose average in state |ψ(t)〉 yields P(t).

Â = |ψ(0)〉〈ψ(0)|; 〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 = P(t) (39)

The states in (1) are now chosen in the forms (cf. (9) and
(10))

|ψN1〉 = (Â − 〈Â〉Î)
|ψ(t)〉

√
P(t) · Q(t)

,

Q(t) = 1 − P(t);

|ψN2〉 = (Ĥ − 〈Ĥ〉Î)
|ψ(t)〉
∆E

,

∆E2 = 〈ψ(t)|
(
Ĥ − 〈Ĥ〉Î

)2
|ψ(t)〉. (40)

Putting these in (1), we find after a little algebra the
inequality

∆E
√

Q(t) ≥
∣∣∣∣〈ψ(0)|

(
Ĥ − 〈Ĥ〉Î

)
|ψ(t)〉

∣∣∣∣ . (41)

But, a direct application of the CSI (3) for the right side
of (41) leads us to a weaker bound, viz.,∣∣∣∣〈ψ(0)|

(
Ĥ − 〈Ĥ〉Î

)
|ψ(t)〉

∣∣∣∣ ≤ ∆E. (42)

Notice, the multiplying factor Q(t) [Q(t) ≤ 1] at the left
of (41) does not appear at the right side of (42), and so the
latter loses the time dependence. Indeed, this becomes
decisive in tightening the bound (41) compared to (42),
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chiefly at short times when the starting state changes little,
and hence Q(t) � 1 follows. At t = 0, however, both the
left and right sides of (41) are zero; hence, there is no
paradox. Thus, we again witness the worth of (1). Role
of the projector is also evident in the choice (40).

The next task would naturally be to put (41) to test. In
the short-time regime, one obtains from (41) a general
result of the form√

Q(t) ≥
∆Et
~

1 +
t2

(
〈Ĥ3〉 − 〈Ĥ2〉〈Ĥ〉

)2

8~2∆E4 + . . .

 . (43)

However, depending on the eigenvalue spectrum of Ĥ in
(38), two situations should now be distinguished. If the
spectrum is continuous, the state gradually decays. In
contrast, one observes decay and revival in succession
when Ĥ has a purely discrete spectrum. This quantum
recurrence [18–20] is important in various areas [21]. We
consider the efficacy of (41) in both these cases.

Concentrating first on pure decay [15], an upper bound
to the decay probability Q(t) (see Eq. (10) in Ref. [15])
may be found as√

Q(t) ≤ sin
(
∆Et
~

)
, 0 ≤ t ≤ π~

2∆E . (44)

In (41), however, we have arrived at a complementary
bound. What is more, while (44) is valid only over short
times, our present lower bound (41) does not impose any
such restriction on time. As an example, let us pay atten-
tion to a solvable problem, viz., the decay of a Gaussian
packet [9, 15] in field-free space. Implementing (41), we
observe after some algebra that the standard energy form
factor [15] finally yields√

Q(t) ≥

(
∆Et
~

)
(
1 + 2

(
∆Et
~

)2
) 3

4

. (45)

We have checked that this relation is valid over the entire
region of time. But, as already stated, inequality (41)
works better at smaller t. Thus, at a time when ∆Et

~ = 1
4 ,

one finds from (45)
√

Q(t) ≥ 0.23, whereas (44) gives
√

Q(t) ≤ 0.25. The exact result [15] yields
√

Q(t) ≈ 0.24,
justifying the tightness of either bound.

Let us next focus on quantum recurrences. A prelim-
inary check reveals that (41) is exact for any two-level
problem. This is specifically comforting in view of its
direct relevance with quantum speed limits [22–25]. To
be explicit, choosing Ĥ|φ j〉 = ~ω j|φ j〉, 〈φ j|φ j〉 = 1, for
j ∈ {1, 2, . . .}, we obtain√

Q(t) = 2r1r2

∣∣∣∣∣sin
(
ω21t

2

)∣∣∣∣∣ , ω21 = ω2 − ω1, |c j| = r j,

r2
1 + r2

2 = 1, ∆E = r1r2~ω21, 〈Ĥ〉 = ~ (r2
1ω1 + r2

2ω2)
(46)

where
|ψ(0)〉 = c1|φ1〉 + c2|φ2〉 (47)

Further simplification is achieved by putting r1 = cosϕ
in (46). One finds√

Q(t) = sin (2ϕ)
∣∣∣∣∣sin

(
ω21t

2

)∣∣∣∣∣ , ∆E = 1
2~ω21 sin (2ϕ) .

(48)
A few remarks are now in order. First, recurrences begin
with decay, and we shall consider this primary decay part
below. Secondly, (46) or (48) shows a certain symmetry
with respect to exchange of r1 and r2 for both Q(t) and
∆E, something that is lacking in the average energy 〈Ĥ〉.
It reveals, 〈Ĥ〉 is presumably not a very significant ob-
servable [26] in the current context. Thirdly, from (43)
and (44), we see that a t −

√
Q(t) plot is initially linear.

Indeed, one obtains

lim
t→0

∆Et = ~
√

Q(t). (49)

Here, t is the dynamical time. Relation (49) ties the en-
ergy uncertainty with the decay probability and time, and
applies to both decay and recurrence problems. Fourthly,
(48) shows that the ϕ = π

4 case (equiprobable) decays
most rapidly to Q(t) = 1 (the orthogonal state) at t = π

ω21
.

Calling this time as τ, we obtain τ = h
4∆E using (48). This

is the Fleming bound [14, 15] for quantum speed [22–25].
If ω1 = 0, one also finds the Margolus–Levitin bound
[26], viz., τ = h

4〈Ĥ〉
from (46) and (48). Fifthly, the maxi-

mum decay for any general, non-equiprobable situation is
given by

√
Q(t) = sin (2ϕ) , ϕ , π

4 . This is also reached
at a minimum time t = π

ω21
= τmin

g (say). On the other
hand, along the fastest decay route (equiprobable), the
result

√
Q(t) = sin (2ϕ) is achieved at a time τmin

e =
4ϕ
ω21

.
These results along with their corresponding ∆E-values
are summarized below:

General:
√

Q(t)max
g = sin (2ϕ) ,

τmin
g =

π

ω21
,

∆Eg =
ω21

2
sin (2ϕ) ;

Equiprobable:
√

Q(t)e =

√
Q(t)max

g ,

τmin
e =

4ϕ
ω21

,

∆Ee =
ω21

2
. (50)

One observes now that the relative time and the relative
energy spread obey

τrel =
τmin
g

τmin
e

=
π

4ϕ
, ∆Erel =

∆Eg

∆Ee
= sin (2ϕ) . (51)
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Figure 3: Behavior of Q(t) for qubits with varying initial states
ϕ at a chosen ω21 = 2. It shows how τmin

g � τmin
e might follow.

For small enough ϕ, (51) shows that τrel becomes exceed-
ingly large. The dependence of the relative decay time on
the initial state of a qubit should now be transparent. How-
ever, there exists a nice relation in this regime connecting
τrel and ∆Erel, viz.,

τrel ∆Erel =
π

2

[
1 + O(ϕ2)

]
, ϕ→ 0. (52)

In (52), h does not appear at the right just because each
term at the left is dimensionless.

Figure 3 displays how the maximum of Q(t) reduces
with decreasing contribution of one of the two states, de-
noted here by ϕ. A concomitant increase in the minimum
time to attain some pre-assigned value of Q(t) is also
clear. In these situations, the minimum-time bounds set
by the fastest decay route could be quite useless. One
may instead concentrate on (51) or (52). The figure clar-
ifies the critical role of the initial state, as emphasized
elsewhere [27].

In fine, we also note that the Fleming bound applies
to both pure decay and recurrence problems, but the
Margolus–Levitin bound concerns the latter situation
only.

5 Conclusions

To summarize, we sketched here how the overlap inequal-
ity (1) can be exploited to obtain the CSI (3). More
importantly, in case the CSI fails to work (e.g., under con-
dition (12)), a form of the overlap inequality (13) leads
to an ICSI (14) that applies to any arbitrary situation. A
further simplification to ICSI (16) is a positive addition.
The UPI (18) or (19) reveals the gains in suitable contexts.
For the USI case, a similar extension of (14) to (26) yields
an IUSI (27) that is more general than the prevalent form.

We explored also the worth of a projector in tightening
the CSI (cf., relations (28), (29), (30), (31) and (32)).

The ICSI (14) and (16) are applied to a few patho-
logical situations in Figures 1 and 2. These are general
linear-space problems. Auxiliary states are imported in
Figure 1 to specifically study the x→ 0 limit. However,
in Figure 2, such states are avoided. The benefit of a
projector is highlighted in certain areas of quantum me-
chanics. These studies include a complementary Eckart
bound (relation (37)), a bound to the decay probability
Q(t) (cf. (41)) and a few other characteristics (cf. (43),
(45), (49) and (52)) of it in decay and recurrence prob-
lems, particularly for qubits.
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