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We recall Dirac’s early proposals to develop a
description of quantum phenomena in terms
of a non-commutative algebra in which he

suggested a way to construct what he called quantum
trajectories. Generalising these ideas, we show how
they are related to weak values and explore their use
in the experimental construction of quantum trajecto-
ries. We discuss covering spaces which play an essen-
tial role in accounting for the wave properties of quan-
tum particles. We briefly point out how new mathe-
matical techniques take us beyond Hilbert space and
into a deeper structure which connects with the alge-
bras originally introduced by Born, Heisenberg and
Jordan. This enables us to bring out the geometric
aspects of quantum phenomena.
Quanta 2019; 8: 11–23.

Dedicated to the memory of Gerhard Grössing
(1957–2019)

1 Introduction

In a classic paper, Dirac [1] has drawn attention to the
similarity of the form of the classical dynamical equations
expressed in terms of commuting functions and the form
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of the corresponding non-commutative operator equations
appearing in the quantum domain. The latter, essentially
Heisenberg mechanics, can be represented by matrices
and therefore form part of a non-commutative algebraic
structure. This is in contrast to the Schrödinger approach
which is represented in a formal Hilbert space structure,
and leads to more familiar mathematics based on differ-
ential operators acting on continuous wave functions, the
non-commutativity being taken care of in the form of the
differential operators. These techniques, being more fa-
miliar to physicists, quickly generated results and placed
the Schrödinger picture in prime position. This has led
to the conclusion that the quantum particle appears more
wave-like than the particles of classical dynamics.

In spite of this, Dirac felt that the replacement of com-
muting functions by non-commuting variables pointed to
a deeper connection between the algebraic approach and
classical mechanics and suggested that this relationship
should be examined more closely. In making this pro-
posal he realised that techniques necessary for handling
non-commuting mathematics were not readily available.
Nevertheless Dirac made some tentative suggestions on
how to construct quantum expectation values when gen-
eral non-commuting variables were involved. With these
techniques at hand, he attempted to generalise the no-
tion of a contact transformation to the quantum situation.
Dirac thereby provided a method of constructing what
he called the “trajectories of a quantum particle” based
on a non-commutative structure and without using wave
functions explicitly.
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However these attempts were soon superseded by a
third approach, the path integral method, which was pro-
posed by Feynman [2] after he had read Dirac’s paper.
With the success of this approach, the notion of an actual
quantum trajectory was dropped, particularly as Mott [3]
had shown how the wave equation could be used to ex-
plain the trajectories seen in particle detectors like cloud
chambers. This, together with the uncertainty principle,
discouraged any further consideration of particle trajec-
tories in the quantum domain. Moreover since no oper-
ational meaning could be given to such a notion, further
discussion ceased. Thus Dirac’s idea of constructing
quantum trajectories was abandoned and even forgotten.

In the meantime, the more general debate concerning
the completeness of the quantum formalism, initiated by
Einstein, Podolsky and Rosen [4], continued unabated,
focusing on the possibility of adding hidden variables
and thereby allowing for the possibility of trajectories.
This was in spite of von Neumann’s [5] claim to have
proved that such variables could not be used to explain the
statistical properties of quantum processes without con-
tradicting experimental results. However in 1952 a paper
by Bohm [6,7] appeared claiming that by simply splitting
the Schrödinger equation into its real and imaginary parts,
a more detailed account of quantum phenomena could,
in fact, be given based on particle trajectories, an idea
that had been anticipated notably by Madelung [8] and
de Broglie [9].

Unfortunately the phrase hidden variables was used in
the title of Bohm’s paper whereas he actually introduced
no additional parameters at all into the formalism. He
had merely interpreted the existing formalism in a novel
way. He was proposing a new dynamics that did not use
the hydrodynamic model of Madelung [8]. In fact he
had simply shown that the real part of the Schrödinger
equation, under polar decomposition of the wave function,
was of a form that looked remarkably like the classical
Hamilton–Jacobi equation provided certain relations valid
in the classical domain could be extended into the quan-
tum domain. This equation, which we call the quantum
Hamilton–Jacobi equation, enabled the straightforward
calculation of what appeared to be trajectories as was
demonstrated by Philippidis et al. [10] for an ensemble
of particles constrained by certain experimental condi-
tions such as defined in, for example, the two-slit experi-
ment. Explanations of other quantum phenomena, again
in terms of these trajectories followed, giving rise to an al-
ternative understanding of these phenomena in a way that
was thought to be impossible. (See Bohm and Hiley [11]
and Holland [12].)

Thus contrary to expectation, these calculations demon-
strated that it was possible to account for the interference
phenomena in terms of collections of individual particle

trajectories, although a deeper analysis raised the ques-
tion of exactly what meaning could be given to the notion
of a quantum particle following a trajectory. Unfortu-
nately there seemed no way of experimentally determin-
ing these trajectories and so they remained a curiosity
without experimental meaning. However some did em-
brace these ideas and developed a topic called Bohmian
mechanics [13], using concepts that Bohm himself did
not enthusiastically embrace, the latter arguing that some-
thing deeper was involved [14].

An examination of the two-slit experiment shows that
the trajectories are not straight lines after they pass
through the slits even though no classical potentials exist.
The cause of these deviations could immediately be traced
to the presence of the extra term appearing in the quantum
Hamilton–Jacobi equation. At first, it was thought this
extra term was merely an additional new classical poten-
tial since without it the particles would move in straight
lines and no fringes would appear.

However a closer examination showed it to be very
different from any known classical potential. It had no
external point source; it was non-local, accounting for
the effects of quantum entanglement and it reflected the
properties of the immediate experimental arrangement,
adding support to Bohr’s notion of wholeness which he
emphasised by demanding that the experimental condi-
tions be included in the description. In many ways it
seemed to be a new form of inner energy possessed by
the particle, organising the flow lines in a novel way and
suggesting a formative cause rather than the traditional
efficient cause [11] (also see [15, 16]).

Unfortunately the inclusion of the phrase hidden vari-
ables in Bohm’s paper, led to the belief that this was an
attempt to return to a classical view of the world based on
the old notion of mechanics, in contrast to the dominant
view which was that such a return was impossible and a
much more radical outlook was required. Bohm agreed
and simply considered his proposal as a preliminary one
providing a way to open up other, deeper possibilities.

However in the rather toxic atmosphere of the time,
it was not realised that Bohm had added nothing new to
the mathematical structure and was merely exploring the
full implications of the quantum formalism in a different
way. It should not be forgotten that the striking result of
this approach was to bring out the notion of non-locality
in entangled systems. Indeed it was Bohm’s work that
prompted Bell [17] to explore the wider consequences of
this non-locality. Thus, far from returning to a classical
picture, Bohm’s work showed that the formalism con-
tained many features that were clearly not classical and
the whole approach was actually pointing to a radically
new outlook.
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Superficially, however, the Bohm approach did, at first
glance, look naive as it seemed to provide no connec-
tion with the Heisenberg approach, not only in the sense
that it seemed to violate the uncertainty principle, but it
also seemed to avoid completely the non-commutative
properties of the Heisenberg algebra. Rather than try-
ing to understand how this approach produced results
that were consistent with those deduced from the non-
commuting operators, the discussion degenerated into a
quasi-ideological battle between the two opposing views
that emerged from exactly the same mathematical struc-
ture.

However a recent paper [18] pointed out that a non-
commutative Heisenberg algebra had been further devel-
oped by von Neumann who showed how quantum phe-
nomena emerged from a non-commutative phase space.
This algebra was rediscovered by Moyal [19] who demon-
strated that this approach could be understood as a gen-
eralisation of classical statistics to a new kind of statis-
tical theory that was demanded by non-commutativity.
Carried further, this non-commutativity seemed to re-
quire two time-dependent evolution equations [18]. In the
Moyal algebra, for example, one of these is based on the
Moyal bracket and the other on the Baker bracket [20].
In the classical limit, the first of these equations becomes
the Liouville equation. While the second, based on the
Baker bracket, reduces to the classical Hamilton–Jacobi
equation. These two equations have an operator ana-
logue based on the commutator and the anti-commutator,
or Jordan product, which will be discussed in detail in
section 3.5. When these equations are projected into
the x-representation they become the quantum Liouville
equation and the quantum Hamilton–Jacobi equation re-
spectively. This immediately shows that the equations
defining the Bohm approach are projections from a non-
commutative space onto a shadow commutative phase
space. (For a detailed discussion see Hiley [18].)

There is one further connection between the Moyal
approach and the Bohm approach that is important to
point out at this stage. The so-called guidance condi-
tion, PB = ∇S , also known as the Bohm momentum,
which enables the direct calculation of the quantum tra-
jectories, turns out to be the conditional momentum

given by the Moyal joint distribution function f̂ (X̂, P̂).
Here (X̂, P̂) are the operator equivalents of the coordi-
nates of a cell in phase space, the so called quantum
blob [21] although a deeper mathematical explanation
exists [22], which we briefly introduce in section 3.2.
Furthermore as we have already pointed out, one of the
conditional time-development equations is identical to the
quantum Hamilton–Jacobi equation, becoming the clas-
sical Hamilton–Jacobi equation in the appropriate limit.
Thus the von Neumann–Moyal approach, based on a non-
commutative algebra and the Bohm model are much more
closely related than generally realised. In fact it could
be argued that the Bohm approach forms an integral part
of Heisenberg’s matrix mechanics providing an intuitive
account of the approach.

This brings us full circle to a classic paper by Dirac
[1] which calls for a further investigation of the non-
commutative Heisenberg approach. As we have already
indicated, Dirac constructed a general distribution func-
tion for n non-commuting variables, which for the special
case of two variables reduces to the Moyal distribution re-
ferred to above. Unfortunately Dirac incorrectly thought
that Moyal’s theory only dealt with operators of the form
eı(aX̂+bP̂) whereas, in fact, this term was used to define a
distribution in phase space from which expectation val-
ues of any function of (X̂, P̂) can be calculated. This
distribution is actually the Wigner function.

As has already been pointed out by one of us [23], the
cross-Wigner function can be identified with the weak
value of the momentum operator. In fact Dirac himself
had implicitly introduced a form of weak value although
he did not give it that name and saw his work as an
opportunity to “discuss trajectories for the motion of a
particle in quantum mechanics and thus make quantum
mechanics more closely resemble classical mechanics”—
his words, not ours [1].

2 Dirac’s Quantum Trajectories

Regarding 〈xt f |xt0〉 as the probability amplitude of a parti-
cle travelling from position xt0 to position xt f and travel-
ling through a set of intermediate points, we can write

〈xt f |xt0〉 =

∫
· · ·

∫
〈xt f |xn〉dxn〈xn|xn−1〉dxn−1 . . . dx2〈x2|x1〉dx1〈x1|xt0〉. (1)

where 〈xi+1|xi〉 is the propagator of the particle being at
xi at ti and arriving at xi+1 at time ti+1. Today we would

write this as

〈xi+1|xi〉 = 〈xi+1| exp[−ıĤ(ti+1 − ti)]|xi〉 (2)
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but we will continue with the abridged notation for sim-
plicity.

Thus a path is built up from a series of transitions
between pairs of neighbouring points, (xi, xi+1) and the
expectation value of an operator during each transition is
given by

〈xi+1|F̂(X̂i, X̂i+1)|xi〉 = f (xi+1, xi)〈xi+1|xi〉. (3)

Furthermore we will assume the time ε = (ti+1 − ti) to be
small so that the trajectory can be divided into infinites-
imal segments. Clearly we can now regard the element
〈xi+1|xi〉ε as a propagator, which is written in the form

〈xi+1|xi〉ε = exp(ıS ε(xi, xi+1)/~). (4)

We will not, at this stage, identify the propagators with
the Feynman propagators although clearly they are related.
We will regard S ε(xi, xi+1) as a function generating the
motion. Then, taking the momentum as an example, we
find

〈xi+1|P̂i+1|xi〉ε = −ı~
∂

∂xi+1
〈xi+1|xi〉ε

=
∂S ε(xi, xi+1)

∂xi+1
〈xi+1|xi〉ε

=

〈
xi+1

∣∣∣∣∣∂S ε(xi, xi+1)
∂xi+1

∣∣∣∣∣ xi

〉
ε

. (5)

Thus from equation (3) we find

pi+1 =
∂S ε(xi, xi+1)

∂xi+1
. (6)

Similarly we can consider

〈xi+1|P̂i|xi〉ε = ı~
∂

∂xi
〈xi+1|xi〉ε

= −
∂S ε(xi, xi+1)

∂xi
〈xi+1|xi〉ε

= −

〈
xi+1

∣∣∣∣∣∂S ε(xi, xi+1)
∂xi

∣∣∣∣∣ xi

〉
ε

(7)

so that

pi = −
∂S ε(xi, xi+1)

∂xi
. (8)

Dirac suggested that pi could be regarded as the momen-
tum at the initial point (xi, ti) of the interval while pi+1 is
the momentum at the final point (xi+1, ti+1), but clearly
these are not eigenvalues of the momentum operators, so
what are they?

2.1 The Classical Hamilton–Jacobi Theory

Let us proceed cautiously, first by recalling that the for-
mulae (6) and (8) are reminiscent of classical Hamilton–
Jacobi theory. In this theory, the function S (x, x0; t, t0)
generates a flow through a canonical transformation, or
more technically, a symplectomorphism, ft,t0 , such that

(x, p) 7−→ ft,t0(x0, p0). (9)

The word symplectomorphism is chosen to emphasise
the basic underlying symplectic group. Specifically sym-
plectomorphisms are elements of Ham(2n), the group of
Hamiltonian symplectomorphisms [24]. The flow is just
another way to write Hamilton’s equations of motion

d
dt

ft(x, p) = XH(x, p) (10)

where XH is the Hamiltonian vector field

XH =

(
∂H
∂p

,−
∂H
∂x

)
. (11)

The time dependent flow is then defined as

ft,t0(x0, p0, t0) = ft−t0(x0, p0, t0) (12)

so that equation (9) holds and defines functions t → x(t)
and t → p(t) satisfying

ẋ(t) =
∂H(x(t), p(t), t)

∂p
; (13)

ṗ(t) = −
∂H(x(t), p(t), t)

∂x
. (14)

The corresponding Hamilton–Jacobi equation is defined
as

∂S (x, x0)
∂t

+ H
(
x,
∂S (x, x0)

∂x
, t
)

= 0. (15)

Then for a free symplectomorphism (x, p) = ft,t0(x0, p0),
the following relations must be satisfied

p =
∂S (x, x0; t, t0)

∂x
;

p0 = −
∂S (x, x0; t, t0)

∂x0
. (16)
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A remarkable similarity with quantum equations (6) and
(8)? Yes, but notice that the generating function for ft,t0 is
S (x, x0; t, t0) whereas the generating function for the quan-
tum case uses the exponential of S (x, x0; t, t0), namely,
equation (4). This generates a different flow Ft,t0 , not in
the group Ham(2n) but in its covering group. In the linear
case (namely, when the Hamiltonian is quadratic), ft,t0 is
an element of the symplectic group Sp(2n), and Ft,t0 is
an element of the metaplectic group Mp(2n), the double
cover of the symplectic group. What one can show is
that there is a 1–1 correspondence between the continu-
ous curves t → ft,t0 in Sp(2n) and the continuous curves
t → Ft,t0 in Mp(2n) [25].

The reference to a covering group is not totally un-
known in physics. The notion of spin arises from a double
cover, not of the symplectic group, but of the orthogo-
nal group. In the case of spin, the spin group is just the
double cover of the orthogonal group [26]. Similarly the
metaplectic group provides a double cover for the sym-
plectic group. Properties of both covering groups produce
quantum effects that have been experimentally demon-
strated [27–29]. So clearly the notion of a covering space
plays a key role in quantum mechanics.

The relation between the symplectic group and its dou-
ble cover is provided by the projection

Π : Mp(2n) −→ Sp(2n). (17)

Thus if ft,t0 is the flow determined by the generating func-
tion S (x, x0; t, t0) then, in the linear case

ψ(x, t) = Ft,t0ψ(x0, t0) = A
∫

eıS t,t0 (x,x0;t,t0)ψ(x0, t0)d3x0

(18)
where A is a convenient normalisation factor (this formula
remains true for short times in the general case). One can
show that ψ(x, t) is a solution of the Schrödinger equation.
For a complete account we need to extend the covering
group to Ham(2n) which is the non-linear generalisation
of Sp(2n). For a more detailed discussion see de Gosson
and Hiley [25].

2.2 The Quantum Hamilton–Jacobi
Equation

Having noticed the similarity between the Dirac equations
(6) and (8) and the corresponding classical equations (16),
let us now try to exploit this similarity in a different way.
We start from equation (8), which we write in a slightly
simpler notation as

p0 = −
∂S ε

∂x0
(x, x0; t, t0). (19)

We will now regard (x, x0) as two independent variables.
It follows from the implicit function theorem that equa-
tion (19) determines a function x = xψ(t) provided

∂2S ε

∂x∂x0
, 0.

We can then write

p0 = −
∂S ε

∂x0
(xψ(t), x0, t, t0), (20)

where x0 and t0 are to be viewed as independent parame-
ters. Then let us define

pψ(t) =
∂S ε

∂x
(xψ(t), x0, t, t0). (21)

The functions xψ(t) and pψ(t) can then be shown to be
solutions of the following Hamilton equations

ẋψ(t) =
∂Hψ

∂p
(xψ(t), pψ(t), t);

ṗψ(t) = −
∂Hψ

∂x
(xψ(t), pψ(t), t) (22)

with the initial conditions xψ(t0) = x0, pψ(t0) = p0; here
we have written our Hamiltonian as Hψ because it clearly
cannot be the classical Hamiltonian as that would not
have produced any quantum behaviour so what form will
Hψ take?

The corresponding Hamilton–Jacobi equation now be-
comes

∂S
∂t

+ Hψ

(
x,
∂S
∂x
, t
)

= 0. (23)

To show that this equation is equivalent to the pair of
equations (22), first differentiate (23) with respect to x0
and find

∂2S
∂x0∂t

+
∂Hψ

∂x0
=

∂2S
∂x0∂t

+
∂Hψ

∂p
∂2S
∂x0∂x

= 0 (24)

where we have used the chain rule.
Let us find the total differential of p0 remembering we

are regarding it as a parameter independent of time so
that

dp0

dt
=

∂2S
∂x0∂t

+
∂2S
∂x∂x0

ẋ = 0. (25)

Subtracting (25) from (24), we get

∂2S
∂x∂x0

(
∂Hψ

∂p
− ẋ

)
= 0.

Since we have assumed that ∂2S
∂x∂x0

, 0 the first of Hamil-
ton’s equations emerges

ẋ =
∂Hψ

∂p
. (26)
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To obtain the second equation, we differentiate equa-
tion (23) with respect to x and find

∂2S
∂x∂t

+
∂Hψ

∂x
+
∂Hψ

∂p
∂2S
∂x2 = 0. (27)

Introducing the canonical momentum

p(t) = ∇xS (x(t), x0; t, t0)

and differentiating with respect to t we obtain

∂2S
∂x∂t

= ṗ −
∂2S
∂x2 ẋ.

Thus equation (27) can be written in the form

ṗ(t) −
∂2S
∂x2 ẋ +

∂Hψ

∂x
+
∂Hψ

∂p
∂2S
∂x2 = 0.

Taking into account Hamilton’s first, we find Hamilton’s
second equation

ṗ(t) = −
∂Hψ

∂x
. (28)

Hamilton’s equations (26) and (28) will then give us an en-
semble of trajectories from the equations (16) that Dirac
assumed could be used to construct quantum trajectories.

The question therefore remains, “What is the form
of Hψ?” The earlier work had shown that if we consider
the real part of the Schrödinger equation under polar
decomposition of the wave function ψ = R exp[ıS ], we
find the equation

∂S (x, t)
∂t

+
(∇S (x, t))2

2m
+ Qψ(x, t) + V(x) = 0. (29)

This equation is identical in form to the classical
Hamilton–Jacobi equation except that it contains an addi-
tional term, namely the quantum potential energy Qψ(x, t).
In other words this suggests that we identify

Hψ = H + Qψ

where Qψ is given by

Qψ(x, t) = −
1

2m
∇2R(x, t)

R(x, t)
. (30)

A more detailed discussion of this whole approach will
be found in de Gosson [30].

Before going on to discuss in more detail the mathemat-
ical background to this approach and its relation to Dirac’s
proposals, we must make a point of clarification. Notice
that the function S ε(x, x′) introduced in equation (4) is a
two point function, namely a propagator, while the Bohm
approach emerges from a one-point function, namely the
wave function. This may not be a problem since the prop-
agator K(x, x′; t, t′) = ψ(x, t) is the wave function, being
simply the probability amplitude to get to (x, t) no matter
what the initial point is [31]. Let us explore this relation
in more detail.

2.3 Weak Values and Bohm Trajectories

Although the quantum Hamilton–Jacobi equation has
been used to calculate trajectories [11, 12], their mean-
ing has been controversial, and at times they have even
been regarded as meaningless [32]. This is in spite of the
fact that as the quantum potential becomes negligible the
quantum trajectory deforms smoothly into a classical tra-
jectory. There are two main factors contributing to the re-
jection of the notion of a quantum trajectory. Firstly there
is the question of how we reconcile an uncertainty prin-
ciple that arises from a fundamentally non-commutative
structure. The need for such a revolutionary structure was
made quite evident in the original work of Born, Dirac,
Heisenberg and Jordan [33], yet equation (29) seems to
imply that we need not concern ourselves with such com-
plications. Unfortunately this is an illusion and although
the approach does provide a useful, but partial insight into
quantum phenomena, it is important to realise that we
need to understand how this view is compatible with the
underlying non-commutative structure. Secondly it has
not previously been possible to investigate and construct
these trajectories experimentally. With the appearance
of weak values, this situation has now changed with the
realisation that

• The weak value is not, in general, an eigenvalue of
the operator under consideration.

• Weak values are complex numbers.

• The real part of the weak value of the momentum
operator is identical to the momentum given in equa-
tion (6) where S ε is identified with the phase of the
wave function (the probability amplitude of getting
to a point (x, t)).

• It is possible to measure weak values even though
they are not eigenvalues, opening up the possibility
of experimentally investigating the precise meaning
of these trajectories.

The weak value of the momentum that is of interest in
this paper can be written as

〈x|P̂|ψ(t)〉
〈x|ψ(t)〉

= ∇xS (x, t) − ı∇ρ(x, t)/2ρ(x, t) (31)

where we have chosen the polar decomposition of the
wave function with ρ(x, t) = |ψ|2. Notice that the real part
of this weak value can be written as

<〈P̂〉wxi ,ψ
= <

[
〈x|P̂|ψ〉
〈x|ψ〉

]
=
∂S (x)
∂x

(32)

which suggests that there may be some connection with
the pi+1 appearing in equation (6). Notice also that the
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Dirac expressions emerge from a two-point propagator
S ε(x, x0, t, t0), not from the phase of a wave function.
And what about equation (8) and the imaginary part of
the weak value? Let us now look at these relations from
another angle.

2.4 Relation of Weak Values to
Non-Commutativity

Let us rewrite the expressions (6) and (8) in a different
way to open up a new investigation

pq =
〈q|
−→
P |Q〉
〈q|Q〉

and pQ =
〈Q|
←−
P |q〉
〈Q|q〉

. (33)

If we now form the sum pq + pQ, we find

[
pq + pQ

]
=

 〈q|−→P |Q〉〈q|Q〉
+
〈Q|
←−
P |q〉
〈Q|q〉

 (34)

while the difference gives

[pq − pQ] =

 〈q|−→P |Q〉〈q|Q〉
−
〈Q|
←−
P |q〉
〈Q|q〉

 . (35)

If we change the notation |q〉 → |x〉 and |Q〉 → |ψ〉 we
find

1
2

 〈x|−→P |ψ〉〈x|ψ〉
+
〈ψ|
←−
P |x〉
〈ψ|x〉

 =
∂S (x, t)
∂x

= pB(x, t) (36)

while

1
2

 〈x|−→P |ψ〉〈x|ψ〉
−
〈ψ|
←−
P |x〉
〈ψ|x〉

 = −
ı

2ρ(x, t)
∂ρ(x, t)
∂x

= −ıpo(x, t)

(37)

where we have written ψ(x, t) =
√
ρ(x, t) exp[ıS (x, t)].

Notice that both these momenta are real.
We may identify pB(x, t) with the Bohm or local mo-

mentum, while po(x, t) can be identified with what Nel-
son [34] calls the osmotic momentum. The origin of the
term osmotic has its roots in Nelson’s attempts to derive
the Schrödinger equation by considering a quantum parti-
cle undergoing a diffusive Brownian-type motion. Since
a continuous derivative is ruled out in a stochastic motion,
we have to distinguish between a forward derivative and
a backward derivative.

In a non-commutative structure, we must distinguish
between a left and a right translation, so that both mo-
menta, (36) and (37), arise by combinations of the left
and right translations of the momentum operator. This
implies that the real and imaginary parts of a weak value
result from the fact that we have, at the fundamental level,
a non-commutative structure and by forcing this into a
complex structure we have hidden some aspects of the
deeper structure.

2.5 Some preliminary comments on the
experimental situation

In a way we could claim that Dirac had essentially antici-
pated weak values, a fact that has already been pointed
out by Salek, Schubert and Wiesner [35]. It should be
noted that the weak value of the momentum is identical to
the local momentum [36], a notion that has a long history
going back to Landau [37] and London [38] in the early
discussions of the superfluid properties of liquid helium.
Because the local momentum could not be represented
by a linear operator, London concluded that it was not a
legitimate quantum observable as its value could not be
measured in the standard way.

However that all changed when Wiseman [39] argued
that the local momentum, being a weak value, could be
measured in a process that Aharonov, Albert and Vaid-
man [40] called a weak measurement. The ideas lying
behind the weak measurement were considerably clarified
by Duck, Stevenson and Sudarshan [41]. Not only was the
principle of a weak value and its measurement found to
be correct, but an actual experiment carried out by Kocsis
et al. [42] demonstrated how the local momentum could
be measured in the interference region of a two-slit set up
using a very weak electromagnetic source produced by a
quantum dot. By measuring the weak value of the trans-
verse local momentum at various positions in the region
of interference, they were able to construct momentum
flow lines, which resembled the Bohm trajectories calcu-
lated by Philippidis et al. [10] and therefore the flow lines
were interpreted as “photon trajectories” [42].

Unfortunately this identification is not as straightfor-
ward as it seems at first sight. The trajectories constructed
by Philippidis et al. were based on the Schrödinger equa-
tion, whereas photons must be described by a quantised
Maxwell field. Again what appears to be a straightfor-
ward generalisation of the notion of trajectories for atoms
to those of photons is not possible for reasons pointed out
by Bohm, Hiley and Kaloyerou [43, 44]. Nevertheless
the experimental determination of weak values has been
demonstrated and experiments are in progress to measure
weak values using atoms which, if successful, will open
up a new debate in this area [45]. Let us therefore return
to a discussion of the deeper mathematical structure lying
behind these investigations.
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3 The Non-commutative Phase
Space

3.1 Connection Between Commutative and
Non-commutative Phase Space

Even a glance at equation (29) shows that when the
quantum potential energy Qψ is negligible and S identi-
fied with the classical action, we recapture the classical
Hamilton–Jacobi equation. In other words, we change a
non-commutative structure into a commutative structure.
In terms of the argument that it is the covering group that
determines the behaviour of quantum phenomena, the
action is the second term in the expansion of exp[ıS ] (4).
For a detailed discussion of the relationship between the
classical action and the phase of the wave function see
de Gosson [30].

Can we see, in a simple geometric way, how the space
and its cover are related in a manner that helps with the
understanding of the problem we are facing here without
going into technical details? For the purposes of this pa-
per formality is secondary, as a formal discussion already
exists elsewhere [46].

To this end let us start by considering two points in a

configuration space. Here we will simply write the co-
ordinates of a single point as (x, t). Let us introduce a
characteristic operator ρ = |ψ〉〈ψ|, which in our configu-
ration space we write as

ρ(x′, x, t) = ψ∗(x′, t)ψ(x, t).

In p-space we write

φ(p, t) =
1

2π

∫
ψ(x, t)e−ıpxdx

so that

ρ(x′, x, t) =

"
φ∗(p′, t)e−ıp

′x′φ(p, t)eıxpdpdp′.

Let us now change coordinates and use

X =
x′ + x

2
,

η = x′ − x,

P =
p′ + p

2
,

ξ = p′ − p.

Then

ρ(X, η, t) =
1

2π

∫ ∫
φ∗(P −

ξ

2
, t)φ(P +

ξ

2
, t)eıXξeıηPdξdP

which we can write as

ρ(X, η, t) =
1

2π

∫
F(X, P, t)eıηPdP.

Taking the inverse Fourier transform of ρ(X, η, t) will then
provide us with a characteristic function of a process now
unfolding in a phase space, where (X, P) are the coordi-
nates, not of a particle, but of a region in configuration
space characterised by a mean coordinate, X, and dif-
ference coordinate, η, and a mean momentum P and a
difference ξ. These parameters provide a measure, in
some limited sense, of the size of the region to which the
energy of movement that is called a particle is confined.

3.2 Tangent Groupoids

It might seem that the introduction of a pair of points
in configuration space is arbitrary. However a deeper
analysis of the underlying non-commutative structure and
its relation to the emergence of classical phase space
has helped to clarify the geometric structure underlying
quantum phenomena. Recently developed mathematical

techniques (Connes [47] and Landsman [46]) based on
asymptotic morphisms between C∗-algebras show the
deep relations between the Moyal algebra, an algebra of a
non-commutative phase space, and the Poisson algebra of
classical phase space. One of the key ingredients of this
approach is the tangent groupoid, a technique unfamiliar
to the physics community so we will discuss this approach
in a subsequent paper. We introduce these ideas here
merely to indicate that there is a much richer structure
underlying quantum phenomena that is just beginning
to be revealed with the exploration of weak values. For
preliminary details see Lopreore and Wyatt [48], Goldfarb
et al. [49], Jozsa [50], Hiley [51], Dressel and Jordan [52],
Shomroni et al. [53] and de Gosson et al. [54].

3.3 Return to Dirac

We now consider the Dirac proposal of finding quantum
trajectories. Notice first that the two points, (x, x′), chosen
were conjugate points. The corresponding operators of
the mean variables (X, P) then satisfy the commutator
[X, P] = 0, namely, this pair of operators are commutative
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and therefore can have simultaneous eigenvalues which
means a trajectory based on those operators can be well
defined.

To carry the comparison further we have to note that
Dirac also includes a pair of times (t, t′), whereas we have
one time. In section 3.5 we will show how to generalise
this approach to consider pairs of space-time points. A
more general and detailed discussion will be found in
Hiley [55, 56].

Replacing the notion of a particle by a region of active
energy may, at first sight seem quite bizarre, but remem-
ber we are faced with a non-commutative phase space
and this must of necessity include novel features. One
of these is that the ordinary inner product must be re-
placed by a more general, non-commutative product that
is translation and symplectic equivariant, associative, and
non-local. There already exists a product with these prop-
erties, namely, the well known Moyal star product [57] to
which we have already referred. A more detailed discus-
sion of the relationship between the Moyal structure and
the algebraic approach can be found in Hiley [18].

A further consequence of this relationship follows by
performing a Fourier transformation on the characteristic
operator to show it can be written in the form

F(X, P, t) =
1

2π

∫
ψ∗(X −

η

2
, t)e−ıηPψ(X +

η

2
, t)dη.

This will be immediately recognised as the Wigner func-
tion, a density matrix introduced for a different problem
than the one we are discussing here [58]. For us it is the
propagator of the time evolution of the process. There is
no necessity to regard this function as a probability distri-
bution as is done in quasi-classical quantum mechanics.
We regard this as providing a weighting function for each
operator under consideration and therefore no problem
arises when it takes on negative values.

3.4 Connection with the Orthogonal
Clifford Algebra

In section 2.1 we pointed out that quantum phenomena
could be accounted for by going to the covering group of
the symplectic group. This brings out the close geometric
relation between the classical and the quantum behaviour.
As we have already remarked a similar situation arises
in the more familiar case of spin. Here the spin group,
SU(2), is the covering group of the rotation group, SO(3).
To analyse this structure, we have to go to the Clifford
algebra, which, in this case, is a non-commutative alge-
bra. All physicists are familiar with the anti-commutative
structure of the Pauli σ matrices and the Dirac γ matrices
but their use as geometric entities is novel.

These matrices are merely the representations of the
generators of the respective Clifford algebras. The advan-
tage of using the Clifford algebra is that the properties of
the covering group can be obtained from the algebra itself.
Indeed the covering group is the Clifford group which
appears as a group of inner-automorphisms of the algebra
and it turns out that one can work completely from within
the algebra, with no need to represent properties in an
abstract Hilbert space so that the wave function can be dis-
pensed with. The wave function is not essential and has
merely been introduced as an algorithm for calculating
the probable outcome of a given system.

3.5 Non-commutative Time Development
Equations

In the context of a non-commutative algebra, it is impor-
tant, once again, to remember that we must distinguish
between left and right translations. If we use the ket |ψ〉 to
specify the state of the system then only left translations
are possible. Furthermore it does not capture the fact
that the wave function is a special case of a propagator
as Feynman suggests. Therefore it was proposed that to
obtain a description that allows both left and right time
translations on an equal basis, we need to make a generali-
sation of the density operator, ρψ,φ = |ψ〉〈φ|. This operator
characterises the process under investigation, and can be
used in the special case of ρψ,ψ, characterising the so-
called state of the system. This also has the advantage of
allowing a straightforward generalisation to mixed states.
We will only be concerned with pure states in this paper
when ρ2 = ρ.

We will now assume that the equation for the left time
translation is

ı
∂|ψ〉

∂t
=
−→
H |ψ〉,

while the right time translation is governed by the equa-
tion

−ı
∂〈ψ|

∂t
= 〈ψ|

←−
H.

We seem not to have gained anything new compared
with the standard approach because, surely this is simply
writing down the Schrödinger equation and its complex
conjugate equation and therefore apparently adds no new
information. However when we consider the Pauli and
Dirac equations, the left and right translations do not have
such a simple relationship [26].

To see what new information these two equations con-
tain, let us first form

ı
∂|ψ〉

∂t
〈ψ| = (

−→
H |ψ〉)〈ψ| and − ı|ψ〉

∂〈ψ|

∂t
= |ψ〉(〈ψ|

←−
H).

Quanta | DOI: 10.12743/quanta.v8i1.84 June 2019 | Volume 8 | Issue 1 | Page 19

http://dx.doi.org/10.12743/quanta.v8i1.84


If we now add and subtract these two equations we obtain
the following two equations, the first being

ı
∂ρ

∂t
= [H, ρ]− (38)

which is recognised as Heisenberg’s equation for the time
development of the density operator. In the classical
limit it becomes the Liouville equation describing the
conservation of probability. The second equation, arising
from the difference between the two equations, gives

ı

|ψ〉←→∂∂t
〈ψ|

 = [H, ρ]+ (39)

where |ψ〉←→∂∂t
〈ψ|

 =

(
∂|ψ〉

∂t

)
〈ψ| − |ψ〉

(
∂〈ψ|

∂t

)
.

It should be remarked in passing that these equations
are quite general and have been used in the case of the
Pauli and Dirac equations [26]. It should also be noticed
that in the two equations, (38) and (39), the quantum
potential does not appear. For the full generalisation the
kets and bras must be replaced by appropriate elements
of the minimal left and right ideals in their respective
algebras but we will not discuss this approach further here.
The details can be found in Hiley and Callaghan [26]
where it is shown how these elements can be represented
by matrices.

To link up with the Schrödinger equation in its usual
form, we must treat |ψ〉 as an element in the algebra,
which can be polar decomposed, Ψ̂ = R̂ exp[ıŜ ], and then
inserted into equation (39) to find

2ρ
∂Ŝ
∂t

+ [H, ρ]+ = 0.

This is just an equation for the conservation of energy
that was first introduced by Dahl [59]. However if these
equations are projected into a representation |a〉, we find
the equations

i
∂P(a)
∂t

+ 〈[ρ,H]−〉a = 0

and

2P(a)
∂S
∂t

+ 〈[ρ,H]+〉a = 0.

If we choose the x-representation, we find

∂P
∂t

+ ∇.

(
P
∇S x

m

)
= 0.

Here P(x, t) is the probability of finding the particle at
(x, t) and S x is the phase of the wave function in the
x-representation. The second equation becomes

∂S x

∂t
+

1
2m

(
∂S x

∂x

)2

+
Kx2

2
−

1
2mRx

(
∂2Rx

∂x2

)
= 0.

Here the quantum potential appears for the first time.
Thus the quantum potential emerges only when the time
development equation is projected into a specific repre-
sentation, in this case, the x-representation. Notice also
that, on polar decomposition of the wave function, the
two equations, (38) and (39), produce separately the real
and the imaginary parts of the Schrödinger equation as
two real but coupled equations.

If we were to choose to project these equations into the
p-representation, we would obtain a different quantum
potential. In fact the energy conservation equation now
becomes

∂S p

∂t
+

p2

2m
+

K
2

x2
r −

K
2Rp

∂2Rp

∂p2

 = 0.

Notice here we use xr = −∇pS p, rather than px = ∇xS x.
A more detailed discussion of the consequences of a quan-
tum potential appearing in the p-representation can be
found in Brown and Hiley [60].

In this context the appearance of two projections at
first sight seems rather strange and, for some, certainly
unwelcome. However it restores the x − p symmetry,
the perceived lack of which Heisenberg [61] originally
used as a criticism against the Bohm approach, but at the
same time it destroys the comfortable intuitive form of
the Bohm approach as the quantum process unfolding in
an a priori given space-time. This opens up more radical
approaches of the type that Bohm was already aware and
was actively investigating [62]. In this paper we will not
go into the interpretation of these results. Those interested
will find details in [63].

Before concluding there are several features of this ap-
proach that should be noted. The two time-development
equations (38) and (39) do not contain the complex wave
function but correspond, in fact, to the imaginary and
real parts respectively of the Schrödinger equation. Sec-
ondly by replacing the bras and kets by what Dirac [64]
calls standard bras and standard kets, it can be shown
that all the elements are contained within the algebra
itself. An external Hilbert space is not needed. It is impor-
tant to note this because interpretations based solely on
Hilbert space vectors miss the deeper mathematical struc-
ture which is in need of a radically new interpretation.
Thirdly, this approach does not require retro-causation
which is very much in fashion at the time of writing.
Fourthly, the Bohm approach is deeply imbedded in the
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quantum formalism and the search for potential disagree-
ments with the results of experiments predicted by the
standard approach is futile.
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