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We will study rigorously the notion of mixed
states and their density matrices. We will
also discuss the quantum-mechanical conse-

quences of possible variations of Planck’s constant h.
This review has been written having in mind two read-
erships: mathematical physicists and quantum physi-
cists. The mathematical rigor is maximal, but the lan-
guage and notation we use throughout should be fa-
miliar to physicists.
Quanta 2018; 7: 74–110.

1 Preface

1.1 Quantum harmonic analysis

When writing a review on the density matrix you have
several options. You can use the standard approach found
in physics graduate textbooks, but then you cannot go
very far, not only because the important mathematical
tools are lacking, but also because the arguments are of-
ten flawed and incorrect: most of them strictly speaking
only apply when the underlying Hilbert space is finite-
dimensional (I am thinking here, among other things,
about trace taking procedures for obtaining the averages
of observables which are most of the time mathematically
undefendable in infinite dimension in the absence of ex-
tra conditions on these observables). Then, at the other
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extreme, you can use the C∗-algebraic approach. This is
certainly the most beautiful, elegant, and intellectually
satisfying way to introduce the mixed states of quantum
mechanics and their density matrices; after having listed
some definitions and properties from the theory of oper-
ator algebras the Gelfand–Naimark–Segal construction
then allows the passage from this abstract theory to the
usual Hilbert-space picture of quantum mechanics. Un-
fortunately, this approach requires lots of preparatory
work to become accessible, and it is often difficult for
the uninitiated to grasp the physical meaning of the tools
that are used. I have chosen here a third way, which has
the advantage of being both mathematically rigorous and
intuitive. It consists in using functional analysis together
with tools from harmonic analysis on phase space, espe-
cially Weyl–Wigner–Moyal theory (which is one way to
quantize classical observables). We will call this way of
doing things the quantum harmonic analysis approach.
One of its advantages is that it fully justifies from a mathe-
matical viewpoint the introduction of the Wigner function
of a density matrix, which otherwise appears as an ad hoc
object pulled out of thin air. There is another major ad-
vantage to this approach: it highlights the sensitivity of
the theory of density matrices on the choice of the value
of Planck’s constant, and this is precisely one of the main
themes we want to address. We will mostly deal with
continuous-variable systems with an infinite-dimensional
Hilbert space described by observables with continuous
eigenspectra.
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1.2 Variability of Planck’s constant

One topic we address in this review is the sensitivity of
quantum states to possible variations of Planck’s constant.
Physically this is a very controversial question. Setting
aside for a moment the debate on whether Planck’s con-
stant can vary or not, consider the following situation: we
have an unknown quantum state, on which we perform a
quorum of measurements in order to determine its density
matrix ρ̂. Now, one should be aware of the fact that this
density matrix will not be determined directly by these
experiments; what one does is to measure by, say, a ho-
modyne quantum tomography, certain properties of that
system. Quantum homodyne tomography originates from
the observation by Vogel and Risken [1] that the prob-
ability distributions determined by homodyne detection
are just the Radon transforms of the Wigner function of
the density matrix, and that the latter allows us to infer
the density matrix using the Weyl correspondence. The
method works as follows: suppose now that we have been
able to determine a statistical function ρ(x, p) of the po-
sition and momentum variables (called quadratures in
this context), yielding the properties of the quantum sys-
tem under investigation. If we now identify this function
ρ(x, p) with the Wigner distribution

ρ(x, p) =
(

1
2π~

)n
∫

e−
i
~ py〈x + 1

2y|̂ρ|x −
1
2y〉d

ny (1)

of the corresponding density matrix, this relation can be
inverted and yields ρ̂; mathematically speaking ρ̂ is just,
up to a factor, the Weyl operator corresponding to the
classical observable ρ(x, p), which can be written for
instance as

ρ̂ψ(x) =

∫
ρ(x0, p0)e

2i
~ p0(x−x0)ψ(2x0 − x)dn p0dnx0. (2)

Now, two essential observations. The first is that when
using this procedure we assume quite explicitly that we
are using the Weyl–Wigner–Moyal formalism: we iden-
tify the function ρ(x, p) with the Wigner function, and
quantize it thereafter using the Weyl transform. This is
very good, of course, but one should keep in mind that
there are other possible representations in quantum me-
chanics; a physically very interesting one is for instance
the Born–Jordan quantization scheme [2, 3]. We will not
investigate the implications of such a choice in this re-
view, but we want here to emphasize another problem.
Even if we place ourselves in the Weyl–Wigner–Moyal
framework we are tacitly assuming that ~ = h/2π has a
fixed value in time and space. If it happens that Planck’s
constant h has another value, h′, at another location or
at another time, formulas (1) and (2) would have to be

replaced with the different expressions

ρ′(x, p) =
(

1
2π~′

)n
∫

e−
i
~′

py〈x + 1
2y|̂ρ

′|x − 1
2y〉d

ny (3)

and

ρ̂′ψ(x) =

∫
ρ(x0, p0)e

2i
~′

p0(x−x0)ψ(2x0−x)dn p0dnx0. (4)

1.3 Notation

Let σ be the standard symplectic form on phase space
R2n ≡ Rn

x × R
n
p: by definition it is the mapping which to

the pairs of vectors z = (x, p) and z′ = (x′, p′) associates
the number

σ(z, z′) =
∑

j

p jx′j − p′jx j = px′ − p′x. (5)

The symplectic form can be conveniently written in ma-
trix form as

σ(z, z′) = (z′)T Jz , J =

(
0n×n In×n

−In×n 0n×n

)
(6)

(z and z′ being here viewed as column vectors; J is the
standard symplectic matrix).

The inner product of two vectors ψ, φ ∈ L2(Rn) is given
by

〈ψ|φ〉 =

∫
ψ∗(x)φ(x)dnx (7)

with dnx = dx1 · · · dxn. The associated norm is

‖ψ‖ =
√
〈ψ|ψ〉. (8)

In addition to the usual ~-dependent (unitary) Fourier
transform

Fψ(p) =
(

1
2π~

)n
∫

e−
i
~ pxψ(x)dnx (9)

on Rn we will use the symplectic Fourier transform on
R2n: it is the transformation Fσ which takes a square
integrable function (or more generally a tempered distri-
bution) a on phase space R2n to the function (or tempered
distribution)

Fσa(z) =
(

1
2π~

)n
∫

e−
i
}σ(z,z′)a(z′)d2nz′. (10)

That Fσ is just an elementary modification of the ~-
Fourier transform on R2n given by

Fa(z) =
(

1
2π~

)n
∫

e−
i
} zz′a(z′)d2nz′ (11)

is easy to see: since σ(z, z′) = (z′)T Jz = Jz · z′ (J the
standard symplectic matrix) we have Fσa(z) = Fa(Jz).
The symplectic Fourier transform is that it is its own in-
verse: F2

σ = FσFσ is the identity (i.e. the symplectic
Fourier transform is involutive) and it satisfies the modi-
fied Plancherel identity∫

a(z)b(z)d2nz =

∫
Fσa(z)Fσb(−z)d2z. (12)

Quanta | DOI: 10.12743/quanta.v7i1.74 September 2018 | Volume 7 | Issue 1 | Page 75

http://dx.doi.org/10.12743/quanta.v7i1.74


2 Introduction

We begin by recalling informally the basic definitions
from the theory of quantum states; since the content of
this section is common knowledge we do not provide any
particular references (we are following here the terminol-
ogy and the exposition in Peres [4] with some modifica-
tions). The formalism of density operators and matrices
was introduced by John von Neumann [5] in 1927 and
independently, by Lev Landau and Felix Bloch in 1927
and 1946 respectively. Ugo Fano was one of the first to
put the theory of the density matrix in a rigorous form in
his review paper [6].

2.1 Quantum states and observables

2.1.1 Pure and mixed states; maximal tests

A quantum system is said to be in a pure state if we have
complete knowledge about that system, meaning we know
exactly which state it is in. Pure states can be prepared us-
ing maximal tests [4, §2-3]: suppose we are dealing with
a quantum system and let N be the maximum number of
different outcomes that can be obtained in a test of that
system. If such a test has exactly N different outcomes,
it is called a maximal test. The quantum system under
consideration is in a pure state if it is prepared in such
a way that it certainly yields a predictable outcome in
that maximal test, the outcomes in any other test having
well-defined probabilities which do not depend on the
procedure used for the preparation. A pure state can thus
be identified by specifying the complete experiment that
characterizes it uniquely (Fano [6]). One usually writes
a pure state using Dirac’s ket notation |ψ〉; for all practi-
cal purposes it is convenient to use the wavefunction ψ
defined by ψ(x) = 〈x|ψ〉; it is a normalized element of
a certain Hilbert spaceH , which is usually identified in
the case of continuous variables with L2(Rn) (the square
integrable functions). When doing this the state is iden-
tified with the linear span of the function ψ, that is the
ray Cψ = {λψ : λ ∈ C}. It is very important to note that
the pure state |ψ〉 can be identified with the orthogonal
projection ρ̂ψ ofH on the subspace Cψ. This projection,
which is of rank one, is denoted by |ψ〉〈ψ| in quantum
mechanics; it is analytically given by the formula

ρ̂ψφ = |ψ〉〈ψ|φ〉 (13)

where 〈ψ|φ〉 is identified with the inner product in H .
Most tests are however not maximal, and most prepara-
tions do not produce pure states, so we only have partial
knowledge of the quantum system under consideration.
The information on such a system is less than a maxi-
mum, with reference to the lack of a complete experiment

with a uniquely predetermined outcome. The state of the
system is nevertheless fully identified by any data ade-
quate to predict the statistical results of all conceivable
observations on the system [6]. When this is the case
we say that the system is in a mixed state. Mixed states
are classical probabilistic mixtures of pure states; how-
ever, different distributions of pure states can generate
physically indistinguishable mixed states (this possibility
will be discussed later). A quantum mixed state can be
viewed as the datum of a set of pairs {(ψ j, α j)} where ψ j

is a (normalized square integrable) pure state and α j a
classical probability; these probabilities sum up to one:∑

j α j = 1. A caveat: one should not confuse the mixed
state {(ψ j, α j)} with the superposition ψ =

∑
j α jψ j which

is a pure state!

2.1.2 The density matrix

From a mathematical point of view the quantum state can
be advantageously described by a self-adjoint operator on
a Hilbert space; this operator is called the density matrix
of the quantum system; in the pure state case this operator
is just the orthogonal projection (13) on a subspace of the
Hilbert space, while the density matrix of a mixed state is

ρ̂ =
∑

j

α jρ̂ j =
∑

j

α j|ψ j〉〈ψ j| (14)

where we have set ρ̂ j = ρ̂ψ j . It should be kept in mind
that the density matrix describes a preparation procedure
for an ensemble of quantum systems whose statistical
properties correspond to the given preparation procedure
(this important aspect will be discussed in more detail
below).

Theorem 1. (i) The density operators on a Hilbert space
H form a convex subset Dens(H) of the space B(H) of
bounded operators onH . (ii) The extreme points of this
set are the rank-one projections, which correspond to the
pure states onH .

Proof. (i) To say that the set of density matrices is convex
means that if ρ̂1 and ρ̂2 are in Dens(H) then so is λρ̂1 +

(1 − λ)̂ρ2 for all real numbers λ such that 0 ≤ λ ≤ 1.
Let {(ψ j, α j) : j ∈ K} and {(φ j, β j) : j ∈ L} be two
mixed states. Relabeling if necessary the indices we may
assume that the sets K and L are disjoint: K ∩ L = ∅. The
corresponding density matrices are

ρ̂1 =
∑
k∈K

αk|ψk〉〈ψk| , ρ̂2 =
∑
`∈L

β`|φ`〉〈φ`| (15)

and hence we have by linearity

λρ̂1 + (1 − λ)̂ρ2 =
∑

j∈K∪L

γ j|χ j〉〈χ j| (16)
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where χ j = ψ j, γ j = λα j if j ∈ K and χ j = φ j, γ j =

(1 − λ)β j if j ∈ L. That ρ̂ = λρ̂1 + (1 − λ)̂ρ2 is a mixed
state now follows from the equality∑

j∈K∪L

γ j = λ
∑
j∈K

α j + (1 − λ)
∑
j∈L

β j = 1. (17)

(ii) That a pure state really is pure, i.e. that it can never
be represented as a mixed state is easily seen using the
following algebraic argument: assume that ρ̂ψ = |ψ〉〈ψ|

can be rewritten as a sum
∑

j α j|ψ j〉〈ψ j| with α j ≥ 0 and∑
j α j = 1. In fact, discarding the terms with α j = 0

we may assume that α j > 0 for all indices j. Let now
(Cψ)⊥ be the subspace of H orthogonal the ray Cψ: it
consists of all vectors φ in H such that 〈ψ|φ〉 = 0. For
every φ ∈ (Cψ)⊥ we have 〈φ|̂ρψ|φ〉 = |〈ψ|φ〉|2 = 0 and
hence also

〈φ|̂ρψ|φ〉 =
∑

j

α j|〈φ|ψ j〉|
2 = 0; (18)

since we are assuming that α j > 0 this equality implies
that we must have 〈φ|ψ j〉 = 0 for all φ ∈ S ψ and every
ψ j, hence ψ j ∈ ((Cψ)⊥)⊥. The orthogonality relation for
subspaces being reflexive we have ((Cψ)⊥)⊥ = Cψ, which
means that each ψ j belongs to the ray Cψ, that is ψ j = λψ

for some complex number λ with |λ| = 1; the vectors ψ j

thus define the state 〈ψ|. It follows from this argument
that the pure state density matrices are the extreme points
of Dens(H). This means that if ρ̂ψ is a pure state density
matrix, then the relation ρ̂ψ = λρ̂1 + (1 − λ)̂ρ2 with λ , 0
and λ , 1 implies ρ̂ψ = ρ̂1 = ρ̂2. That this is the case
immediately follows from the argument above. �

A central problem the theory of mixed states is the
separability problem. A density matrix ρ̂ on a Hilbert
space H = HA ⊗ HB is called separable if it can be
written as a sum

ρ̂ =
∑

j

α jρ̂
A
j ⊗ ρ̂

B
j (19)

with α j ≥ 0 and
∑

j α j = 1, the ρ̂A
j (resp. ρ̂B

j ) being
density operators on HA (resp. HB). If the state is not
separable, it is called an entangled state. Peres [7] has
given a necessary condition for separability using the
notion of partial transpose and Horodecki et al. [8, 9]
have shown that this condition is also sufficient in some
cases; also see Leinaas et al. [10]. Separability implies
that the Wigner distribution must go over to a Wigner
distribution under the partial mirror reflection

(xA, xB, pA, pB) 7−→ (xA, xB, pA,−pB) (20)

that is, there must exist a Wigner distribution ρ′ such that

ρ(xA, xB, pA,−pB) = ρ′(xA, xB, pA, pB). (21)

Outside this partial result, the general case is open and
lures prominent researchers in mathematics, quantum
physics, and physical chemistry.

2.1.3 The C∗-algebraic approach

The notion of quantum state and density matrices can
be very concisely described using the language of C∗-
algebras; this approach is useful when one wants to give
a rigorous axiomatic description of the theory of quan-
tum systems. Its inception goes back to early work by
John von Neumann on operator algebras around 1930; the
modern theory of C∗-algebras was developed one decade
later by Gel’fand and Naimark. We recommend Rief-
fel’s paper [11] for a survey of quantization using this
approach. LetA be a non-commutative unital C∗-algebra
(i.e. a unital complex Banach algebra equipped with an
isometric involution A 7−→ A∗ compatible with complex
conjugation, and such that ‖A∗A‖ = ‖A‖2). If A = A∗ we
call A an observable; the set of observables is denoted by
O. If in addition the spectrum of A ∈ O consists of num-
bers λ ≥ 0 we say that A is positive (A ≥ 0). A linear map
ρ : O −→ C is positive (ρ ≥ 0) if A ≥ 0 implies ρ(A) ≥ 0;
if in addition ρ(1) = 1 then S is called a quantum state;
quantum states form the state space S(A) of A; it is a
convex cone whose extreme points are the pure states
while the other elements of S(A) are mixed states. Now,
the Gel’fand–Naimark theorem [12, 13] implies that for
every unital C∗-algebra A there exists an isomorphism
π : A 7−→ Â ofA onto a separable Hilbert spaceH such
that two of the Dirac–von Neumann axioms [14, pp. 66–
67] are satisfied: ρ ∈ S(A) if and only if there exists a
positive ρ̂ ∈ B(H) with Tr(̂ρ) = 1 and ρ(A) = Tr(̂ρÂ)
for every A ∈ A; moreover the space of observables O
is identified with the self-adjoint elements of B(H) and
the number Tr(̂ρÂ) is then the expected value of A ∈ O.
The C∗-algebraic approach is very appealing because it
helps in unifying classical and quantum states: when the
system is classical, the algebra of observables becomes
an abelian C∗-algebra and the states become ordinary
probability measures.

2.2 Taking traces: heuristics

2.2.1 The average of an observable

Let Â be an observable, i.e. a Hermitian operator defined
on some subspace DÂ ofH (the domain of Â); the average
value of Â in the pure state |ψ〉 is by definition

〈Â〉ψ = 〈ψ|Â|ψ〉 = 〈ψ|Âψ〉 = 〈Âψ|ψ〉. (22)

This relation is usually rewritten using the notion of trace
Tr of an operator, defined as the sum of the eigenvalues
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of that operator. In fact, one of the most used formulas in
quantum mechanics is, no doubt,

〈Â〉ψ = Tr(̂ρψÂ). (23)

To see this, we observe that since ρ̂ψÂ = |ψ〉〈ψ|Â and
ρ̂2
ψ = ρ̂ψ we have, by cyclicity,

Tr(̂ρψÂ) = Tr(̂ρ2
ψÂ) = Tr(̂ρψÂρ̂ψ) (24)

that is, in bra-ket notation, and using the homogeneity of
the trace,

Tr(̂ρψÂ) = Tr(|ψ〉〈ψ|Â|ψ〉〈ψ|)

= 〈ψ|Â|ψ〉Tr(|ψ〉〈ψ|)

= 〈ψ|Â|ψ〉

since Tr(|ψ〉〈ψ|) = Tr(̂ρψ) = 1 (the only eigenvalues of ρ̂ψ
are 1 and 0). Formula (23) is immediately generalized
by linearity of the trace to arbitrary mixed states, and
one finds, that the average value of the observable Â in a
mixed state with density operator (14) is

〈Â〉ρ̂ = Tr(̂ρÂ). (25)

It turns out that several mixtures can lead to the same
density matrix. Since formula (25) only involves the
density operator itself, such equivalent mixtures cannot
be distinguished by measurement of observables alone
because all observable results can be predicted from the
density matrix, without needing to know the ensemble
that was used to construct it.

2.2.2 Precautions

So far, so good. However, the manipulations made above
can—at best—be justified when the Hilbert space H is
finite dimensional because in this case the notion of trace
class operators (and their properties) involves elementary
calculations of finitely-dimensional matrices. This is al-
most always implicitly assumed in textbooks, where the
reader is invited to study ad nauseam the same elementary
examples in low dimensions. Unfortunately the defini-
tions above, and the proof of the formulas (23)–(25) are
incorrect in the general case of an infinite-dimensional
H , and formulas like (25) are not justifiable unless one
makes very restrictive hypotheses on the observable Â
because of convergence problems for the involved inte-
grals. These issues are seldom questioned and treated
sloppily in most of the physical literature (in this context
it is very instructive to read the excellent paper [15] by
Daubechies which warns of such misconceptions). The
situation is very much similar to what happens when
physicists manipulate the Feynman path integral (I am

not talking here about the rigorous theory of the Feynman
integral, as found for instance in Albeverio et al. [16] or
Nicola [17]). It is a heuristic object which has, in the
form used most of the time in physics, no mathematical
justification, but which easily allows one to get new in-
tuitions and insights (hence its usefulness). Of course,
such formal manipulations are okay when one is only
interested in qualitative statements, but they are certainly
not okay when one wants to perform exact calculations
(numerical, or theoretical).

Here is another popular (and questionable!) way of
calculating traces. Let ρ̂ be a density matrix on L2(Rn);
assume that the kernel of ρ̂ is a function K(x, y):

ρ̂ψ(x) =

∫
K(x, y)ψ(y)dny. (26)

It is customary (especially in the physical literature) to
calculate the trace of ρ̂ by integrating the kernel along the
diagonal, that is by using the formula

Tr(Â) =

∫
K(x, x)dnx (27)

which is obviously an extension to the infinite dimen-
sional case of the usual definition of the trace of a matrix
as the sum of its diagonal elements. Needless to say, this
formula does not follow directly from the definition of
a trace class operator! In fact, even when the integral in
(27) is absolutely convergent, this formula has no reason
to be true in general (the kernel of an operator is defined
uniquely only up to a set of measure zero, and in (27)
we are integrating along the diagonal, which precisely
has measure zero!). Brislawn [18] discusses formulas of
the type (27) in the context of traceable Hilbert–Schmidt
operators and gives sufficient conditions for such formu-
las to hold using Mercer’s theorem and its variants. As
shown in Barry Simon’s little monograph [19] on trace
ideals, the right condition for formula (27) to hold in the
case n = 1 is that K must be of positive type, which
means that we have∑

1≤ j,k≤N

λ jλkK(x j, xk) ≥ 0 (28)

for all integers N, all x j ∈ R and all λ j ∈ C (in partic-
ular we must thus have K ≥ 0). On the positive side,
Simon [19] notes that if a density matrix has kernel K
satisfying

∫
|K(x, x)|dnx < ∞ then we are almost sure

that formula (27) holds. Of course this vague statement
is not a charter allowing carefree calculations! Needless
to say, the derivations above are formal and one should
be extremely cautious when using the formulas thus ob-
tained. Shubin [20, §27], discusses a (not so easy to
use explicitly) step-by-step procedure for checking such
identities. We will come back to these essential points in
Section 4.4.
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2.3 Quantum Tomography

Reconstructing a quantum state (or even a classical state)
is an extremely important problem, and it is, generally
speaking, a difficult one. We will discuss here very briefly
this topic; we will mainly be giving references to past
works; such a list is of course incomplete due to the
large number of contributions, which is steadily growing.
We will mainly focus on quantum tomography, which
is a technique for characterizing a state of a quantum
system by subjecting it to a large number of quantum
measurements, each time preparing the system anew.

2.3.1 Estimating the density matrix:
generalities

Experiments performed in a laboratory on quantum sys-
tems do not lead directly and precisely to a determina-
tion of the density matrix. The problem can be formu-
lated as a statistical one: can we estimate the density
matrix using repeated measurements on quantum systems
that are identically prepared? The following strategy is
used: after having obtained measurements on these iden-
tical quantum systems we can make a statistical inference
about the probability distribution of the measurements,
and thus indirectly about the density matrix of the quan-
tum system [21]. This procedure is called quantum state
tomography, and is practically implemented using a set
of measurements of a quorum of observables, i.e., of
a minimal complete set of non-commuting observables.
See D’Ariano and his collaborators [22, 23] for various
strategies, and also Vogel and Risken [1] or Leonhardt
and Paul [24]. Bužek and his collaborators [25] show
how to reconstruct the Wigner function using the Jaynes
principle of Maximum Entropy. In that context, also see
the recent paper Thekkadath et al. [26] where a scheme
that can be used to directly measure individual density
matrix elements is given; Lvovsky and Raymer [27] give
a very interesting review in the continuous-variable case.
The volume [28] edited by Paris and Reháček contains
a selection of texts by leading experts presenting var-
ious aspects of quantum state estimation. Mancini et
al. [29] apply symplectic geometry to describe the dy-
namics of a quantum system in terms of equations for a
purely classical probability distribution; also see Man’ko
and Man’ko [30]. Ibort et al. [31] introduce what they
call the tomographic picture of quantum mechanics.

Although the Wigner function cannot be measured di-
rectly as a probability density, all its marginal distribu-
tions can. Once we know all the marginal distributions
associated with different quadratures, we can reconstruct
the Wigner function. Historically, the problem can be
traced back to Wolfgang Pauli’s question in his 1958

book:

The mathematical problem as to whether, for
given probability densities W(p) and W(x), the
wavefunction ψ (. . . ) is always uniquely deter-
mined, has still not been investigated in all its
generality. [32]

It turns out that it is not possible to determine a state by
knowing only the configuration space and the momentum
space marginal distributions. The answer is negative; here
is an elementary example (Esposito et al. [33]): consider
the two normalized wavefunctions

ψ1(x) =

(
2
π

Reα
)1/4

e−αx2

ψ2(x) =

(
2
π

Reα
)1/4

e−α
∗x2

where α is a complex number whose real part is positive:
Reα > 0 and imaginary part nonzero: Imα , 0. These
functions become

φ1(p) =

(
2
π

Reα
)1/4 1
√

2α
e−αp2

φ2(p) =

(
2
π

Reα
)1/4 1
√

2α∗
e−αp2

in the momentum representation, so that the associated
probability distributions are the same

|ψ1(x)|2 = |ψ2(x)|2 =

(
2
π

Reα
)1/2

e−2(Reα)x2

|φ1(p)|2 = |φ2(p)|2 =

(
2
π

Reα
)1/2 1

2|α|
e−2(Reα)x2

.

However the states |ψ1〉 and |ψ2〉 are different, because

|〈ψ1|ψ2〉|
2 =

Reα
|α|
, 1 (29)

so that we cannot have ψ1 = cψ2 for some complex con-
stant c such that |c| = 1.

2.3.2 The Radon transform

Let us begin with a short discussion of the classical case
followed by a motivation for the quantum case; we are
following the very clear exposition [33, §12.5] by Espos-
ito et al. Let ρ = ρ(x, p) be some function defined on the
phase space R2 (it could be a classical probability, or a
quantum quasiprobability). The Radon transform of this
function is defined formally in physics texts by

Rρ(X, µ, ν) =

"
ρ(x, p)δ(X − µx − νp)dpdx. (30)
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The function Rρ(X, µ, ν) is called a tomogram. The mean-
ing of this integral is that one integrates the function ρ
along the line ` with equation X − µx − νp = 0 where
the variable X has an arbitrary value. Now, the crucial
point is that if we know fully the function Rρ—which
depends on the three real variables X, µ, ν—then one can
reconstruct the function ρ by using the so-called inverse

Radon transform:

ρ(x, p) =
(

1
2π

)2
$

Rρ(X, µ, ν)ei(X−µx−νp)dXdµdν.

(31)
Let us verify this formula, just for the fun
of making formal calculations. Denoting
by A the triple integral above we have

A =

∫
ρ(x′, p′)

{" [∫
ei(X−µx−νp)δ(X − µx′ − νp′)dX

]
dµdν

}
dp′dx′

=

∫
ρ(x′, p′)

{" [
ei(µ(x−x)+ν(p−p′))

∫
δ(X − µx′ − νp′)dX

]
dµdν

}
dp′dx′

=

∫
ρ(x′, p′)

{"
ei(µ(x−x)+ν(p−p′))dµdν

}
dp′dx′ = (2π)2

∫
ρ(x′, p′)δ(x − x′)δ(p − p′)dp′dx′

and hence A = (2π)2ρ(x, p), so we are done.
In the quantum case one proceeds as follows: noting

that δ(X−µx−νp) can be rewritten as the Fourier integral

δ(X − µx − νp) =
1

2π~

∫ ∞

−∞

e
i
~ k(X−µx−νp)dk (32)

and hence (30) as

Rρ(X, µ, ν) =
1

2π~

"
ρ(x, p)

(∫ ∞

−∞

e
i
~ k(X−µx−νp)dk

)
dpdx

(33)
one defines the quantum Radon transform by analogy
with (30) by the formula

Rρ(X, µ, ν) =
1

2π~
Tr

(̂
ρ

∫ ∞

−∞

e
i
~ k(X̂−µx̂−ν p̂)dk

)
. (34)

Doing this one has of course to give a precise meaning
to the exponential e

i
~ k(X̂−µx̂−ν p̂), and one then inverts the

formula above, which yields in analogy with (31)

ρ̂ =
1

2π~

∫
Rρ(X, µ, ν)e

i
~ (X̂−µx̂−ν p̂)dXdµdν. (35)

Of course these manipulations are heuristic and com-
pletely formal and do not have any mathematical sense
unless one defines rigorously the involved operators.

2.3.3 Quantum holography

Quantum holography is the process of discovering fea-
tures of an unknown quantum state from the knowledge
of its phase. It has important practical applications in
communication systems such as optical channels, pre-
cision measurement devices such as atomic clocks, and

quantum computation. The starting point is the observa-
tion that a pure quantum state ψ = Reiϕ/~ is described by
two real quantities, its modulus R, and its phase ϕ. The
full recognition of the importance of the phase can be
traced back to M. Berry [34], and to Y. Aharonov and
D. Bohm [35]. Berry showed that the total phase of a
quantum state is composed of two essentially distinct
parts: a dynamical phase, related to the system dynamics,
and a geometrical phase, which mirrors the geometry
of the underlying Hilbert space. This situation is quite
similar to the revolution brought by optical holography,
which makes possible the full recording of the light-field
information by the knowledge of the field’s phase, and
for which Dennis Gabor was awarded the Nobel prize in
1971 [36].

We will consider the following problem: let (Ût) be
a quantum isotopy (i.e. a C1 path t 7−→ Ût of unitary
operators on L2(Rn) such that Û0 = Id) and ρ̂ a mixed
quantum state. We want to calculate in a rigorous way
the Pancharatnam–Sjöqvist relative phase shift [37, 38]

ϕ(t) = Arg Tr(Ûtρ̂) (36)

for all t such that Tr(Ûtρ̂) , 0; when ρ̂ represents a pure
state ψ then (36) reduces to the formula

ϕ(t) = Arg(Ûtψ|ψ)L2 , (37)

which was originally proposed by Pancharatnam [37] in
1956. This question is extremely important because, as
Nicacio shows in [39], one can reconstruct a Gaussian
state ρ̂ from the knowledge of the phase ϕ(t) (this is a
variant of the phase retrieval problem considered in time-
frequency analysis and quantum optics).
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We have proved with F. Nicacio in [40], that when
(Ût) consists of metaplectic operators Ŝ t then if that
S t = πMp(Ŝ t) has no eigenvalue equal to one the Wigner
distribution ρ is Gaussian distribution

ρ(z) = (π~)−n
√

det Σe−
1
~Σz·z (38)

with covariance matrix Σ then

Tr(Ŝ tρ̂) =
iν(Ŝ t)

√
| det(S t − I)|

det−1/2( 1
2 F−1 + iM(S T

t )).

(39)
so that the relative phase shift is given by the formula

φ(t) =
π

2
ν(Ŝ t) + Arg det−1/2( 1

2 F−1 + iM(S T
t )). (40)

In the two formulas above ν(Ŝ t) is the Conley–Zehnder
index of the path t′ 7−→ Ŝ t′ , 0 ≤ t′ ≤ t (it is a variant of
the Maslov index [41–43]); see Section 5). The proofs of
these formulas relies on the fact that Ŝ tρ̂ is of trace class
and that we have

Tr(Ŝ tρ̂) =
(

1
2π~

)n
∫

st,σ(z)ρσ(z)d2nz (41)

where st is the Weyl symbol of Ŝ t; the subscript σ in st,σ

and ρσ stands for the symplectic Fourier transforms (10)
of st and ρ.

3 Mathematical Theory of the
Density Matrix

To give a precise definition of the trace formulas above,
we need to work a little bit and use some operator theory
(the theory of Hilbert–Schmidt and trace class operators
suffices at this point). We will use several times the gen-
eralized Bessel equality∑

j

〈ψ|ψ j〉〈φ|ψ j〉
∗ = 〈ψ|φ〉 (42)

valid for every orthonormal basis of a Hilbert space
H . It is an immediate consequence of the equality∑

j |ψ j〉〈ψ j| = I.

3.1 Trace class operators

3.1.1 General algebraic definition

Let us now define the notion of density operator in terms
of the so important notion of trace class operators. The
starting point is to notice that formula (14) implies that a
density operator has, to begin with, three basic properties:

(1) It is a bounded operator on H ; in particular ρ̂ is
well-defined for all ψ ∈ H ;

(2) It is a self-adjoint operator: ρ̂† = ρ̂;

(3) It is a positive operator: 〈ψ|̂ρ|ψ〉 ≥ 0 for all ψ ∈ H .

The boundedness of ρ̂ follows from the observation
that

‖̂ρψ‖ ≤
∑

j

α j‖̂ρ jψ‖ ≤
∑

j

α j‖ψ‖ = ‖ψ‖ (43)

where ‖ψ‖ =
√
〈ψ|ψ〉; that ‖̂ρ jψ‖ ≤ ‖ψ‖ follows from the

Cauchy–Schwarz inequality since ρ̂ jψ = |ψ j〉〈ψ j|ψ〉. The
self-adjointness of ρ̂ is clear, since it is a linear combina-
tion of the self-adjoint operators ρ̂ j = |ψ j〉〈ψ j|. Finally,
the positivity of ρ̂ is clear since we have

〈ψ|̂ρ|ψ〉 =
∑

j

α j〈ψ|ψ j〉〈ψ j|ψ〉 =
∑

j

α j|〈ψ|ψ j〉|
2 ≥ 0

(44)
(notice that (3) =⇒ (2) when H is a complex Hilbert
space). There remains the trace issue. As we mentioned
above, physicists define the trace of an operator ρ̂ as the
sum of its diagonal elements, and this definition only
makes sense without further restrictions when dimH <

∞. The way to do things correctly consists in using the
mathematical definition of trace class operators; the latter
is very general (and hence very useful) because it involves
arbitrary bases of H . The definition goes as follows: a
bounded operator ρ̂ on a Hilbert space H (we do not
assume self-adjointness or positivity at this point) is of
trace class if there exist two orthonormal bases (φ j) and
(χ j) ofH (indexed by the same set) such that∑

j

|〈̂ρφ j|χ j〉| < ∞. (45)

Notice that this definition immediately implies that ρ̂ is
of trace class if and only if its adjoint ρ̂† is. Now, a
crucial property is that if condition (45) holds for one pair
of orthonormal bases, then it also holds for all pairs of
orthonormal bases, and that if (ψ j) and (φ j) are two such
pairs then ∑

i

〈ψ j |̂ρψ j〉 =
∑

i

〈φ j |̂ρφ j〉 (46)

each series being absolutely convergent. The proof of this
result is not difficult; it consists in expanding each base
using the vectors of the other; we refer to de Gosson [44,
Chapter 12] and Shubin [20, Appendix 3] for complete
proofs. This being done, we define the trace of ρ̂ by the
formula

Tr(̂ρ) =
∑

k

〈ψk |̂ρψk〉 (47)

where (ψ j) is any orthonormal basis ofH ; that the result
does not depend on the choice of such a basis follows
from the identity (46). We leave to the reader to verify
that as a consequence of this definition the sum of two
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trace class operators is again a trace class operator, and
that the trace of their sum is the sum of the traces. Also,
Tr(λρ̂) = λTr(̂ρ) for every complex number λ, hence
density matrices form a convex cone. Also notice that it
immediately follows from definition (47) that

Tr(̂ρ†) = Tr(̂ρ)∗ (48)

hence the trace is real if ρ̂ is self-adjoint.

3.1.2 Invariance under unitary conjugation

The following invariance of the trace under unitary conju-
gation is well known:

Theorem 2. Let ρ̂ be a density matrix on the Hilbert
spaceH and Û a unitary operator onH . Then Û†ρ̂Û is
also a positive trace class operator and we have

Tr(Û†ρ̂Û) = Tr(Â). (49)

Proof. It is clear that Û†ρ̂Û is a positive, bounded, and
self-adjoint operator. The operator ρ̂ is of trace class if
and only if

∑
j〈ψ j |̂ρ|ψ j〉 < ∞ for one (and hence every)

orthonormal basis (ψ j) j of H . Since 〈ψ j|Û†ρ̂Û |ψ j〉 =

〈Ûψ j |̂ρÛψ j〉 and the basis (Ûψ j) j also is orthonormal,
the operator Û†ρ̂Û is of trace class. The trace formula
(49) follows from the orthonormal basis independence of
the trace formula (47). �

We have not yet related our definition of trace to that
used in the previous section. Let us show that these
definitions do coincide. Let

ρ̂ =
∑

j

α j|ψ j〉〈ψ j| (50)

be a density matrix in the sense of (14); the vectors ψ j

being normalized we have

〈ψk |̂ρ|ψk〉 =
∑

j

α j|〈ψ j|ψk〉|
2 = αk (51)

and hence, using definition (47) of the trace,

Tr(̂ρ) =
∑

k

αk = 1. (52)

3.1.3 The spectral theorem

An especially useful expansion of a density operator is
obtained using elementary functional analysis (the spec-
tral resolution theorem). Recall that each eigenvalue of a
selfadjoint compact operator (except possibly zero) has
finite multiplicity (see any book on elementary functional
analysis, e.g. Blanchard and Brüning [45]).

Theorem 3. A bounded linear self-adjoint operator ρ̂ on
a complex Hilbert space H is of trace class if and only
if there exists a sequence of real numbers λ j ≥ 0 and an
orthonormal basis (ψ j) ofH such that for all ψ ∈ H

ρ̂ψ =
∑

j

λ j〈ψ j|ψ〉ψ j (53)

that is ρ̂ =
∑

j λ jρ̂ j where ρ̂ j is the orthogonal projection
on the ray Cψ j. In particular, ρ̂ is a density matrix if and
only if λ j ≥ 0 for every j and

∑
j λ j = 1; the vector ψ j is

the eigenvector corresponding to the eigenvalue λ j.

Proof. This is a classical result from the theory of com-
pact self-adjoint operators on a Hilbert space; see any
introductory book on functional analysis, for instance
Blanchard and Brüning [45]. That ψ j is an eigenvector
corresponding to λ j is clear: since 〈ψk|ψ j〉 = δk j we have

ρ̂ψ j =
∑

k

λk〈ψk|ψ j〉ψk = λ jψ j. (54)

�

An immediate consequence of Theorem 3 is that if ρ̂
is a density matrix, then Tr(̂ρ2) ≤ 1 with equality if and
only if ρ̂ represents a pure state: we have

ρ̂2 =

(∑
j
λ jρ̂ j

)2
=

∑
j,k
λ jλkρ̂ jρ̂k =

∑
j
λ2

j ρ̂ j (55)

the second equality because ρ̂ jρ̂k = 0 if j , k since ψ j and
ψk are then orthogonal, and ρ̂2

j = ρ̂ j. Since λ2
j ≤ λ j ≤ 1

we have
Tr(̂ρ2) =

∑
j
λ2

j ≤ 1. (56)

The equality
∑

j λ
2
j = 1 can only occur if all the coeffi-

cients λ j are equal to zero, except one which is equal to
one. Thus Tr(̂ρ2) = 1 if and only if ρ̂ represents a pure
state. The number Tr(̂ρ2) is therefore called the purity of
the quantum state represented by the density matrix ρ̂; it
is often denoted by µ(̂ρ). Another way of measuring the
purity of a state is to use the von Neumann entropy S (̂ρ).
By definition:

S (̂ρ) = −
∑

j

λ j ln λ j (57)

(with the convention 0 ln 0 = 0). One often uses the
suggestive notation

S (̂ρ) = −Tr(̂ρ ln ρ̂) (58)

but one should then not forget that the right-hand side
of this equality is defined by (57), and not the other way
around! Notice that the von Neumann entropy S (̂ρ) is
zero if and only if ρ̂ is a pure state. This is because the
equality Tr(̂ρ ln ρ̂) = 0 is equivalent to λ j = 1 for all
j = 1, 2, . . . .
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3.1.4 Functional properties

Perhaps the most directly useful property of trace class
operators (and hence of density matrices) is Theorem 4
below; it says that if we compose a trace class operator
with any bounded operator we obtain again a trace class
operator.

We denote by L1(H) the set of all trace class opera-
tors on the Hilbert spaceH and by B(H) the algebra of
bounded linear operators on H . The following impor-
tant result justifies the trace formula (25) for bounded
observables:

Theorem 4. The set L1(H) of all trace class operators
on H is both a vector subspace of B(H) and a two-
sided ideal in B(H): if ρ̂ ∈ L1(H) and Â ∈ B(H) then
ρ̂Â ∈ L1(H) and Âρ̂ ∈ L1(H) and we have

Tr(̂ρÂ) = Tr(Âρ̂). (59)

Formula (59) applies in particular when ρ̂ is a density
matrix and Â a bounded quantum observable onH .

Proof. That L1(H) is a vector space is clear using for-
mula (45): if

∑
j |〈̂ρ1φ j|χ j〉| < ∞ and

∑
j |〈̂ρ2φ j|χ j〉| < ∞

then we have, using the triangle inequality,∑
j

|〈(̂ρ1+ρ̂2)φ j|χ j〉| ≤
∑

j

|〈̂ρ1φ j|χ j〉|+
∑

j

|〈̂ρ2φ j|χ j〉| < ∞

(60)
so that ρ̂1 + ρ̂2 ∈ L1(H); that λρ̂ ∈ L1(H) if ρ̂ ∈ L1(H)
and λ ∈ C is clear. Let us show that Âρ̂ ∈ L1(H) if
ρ̂ ∈ L1(H) and Â is a bounded operator on H . Recall
that the boundedness of Â is equivalent to the existence
of a number C ≥ 0 such that ‖Âψ‖ ≤ C‖ψ‖ for all ψ ∈ H .
Let now (ψ j) and (φ j) be two orthonormal bases of H ;
writing 〈Âρ̂ψ j|φ j〉 = 〈̂ρψ j|Â†φ j〉 and applying Bessel’s
equality (42) to 〈̂ρψ j|Â†φ j〉 we get

〈Âρ̂ψ j|φ j〉 =
∑

k

〈̂ρψ j|φk〉〈Â†φ j|ψk〉
∗; (61)

using the Cauchy–Schwarz inequality we have, since
‖Â†φ j‖ ≤ C,

|〈Â†φ j|ψk〉
∗| ≤ ‖Â†φ j‖ ‖ψk‖ ≤ C (62)

and hence

|〈Âρ̂ψ j|φ j〉| ≤
∑

k

|〈̂ρψ j|φk〉〈Â†φ j|ψk〉
∗| ≤ C

∑
k

|〈̂ρψ j|φk〉|.

(63)
Summing this inequality with respect to the index j yields,
since ρ̂ is of trace class

|
∑

j

〈Âρ̂ψ j|φ j〉| ≤ C
∑

j,k

|〈̂ρψ j|φk〉| < ∞ (64)

hence Âρ̂ is of trace class as claimed. That ρ̂Â also is of
trace class is immediate noting that we can write ρ̂Â =

(Â†ρ̂†)†. There remains to prove the trace equality (59).
Choosing (ψ j) = (φ j) the Bessel equality (61) becomes

〈Âρ̂ψ j|ψ j〉 =
∑

k

〈̂ρψ j|ψk〉〈Â†ψ j|ψk〉
∗ (65)

and, similarly,

〈̂ρÂψ j|ψ j〉 =
∑

k

〈Âψ j|ψk〉〈̂ρ
†ψ j|ψk〉

∗

=
∑

k

〈̂ρψk|ψ j〉〈Â†ψk|ψ j〉
∗. (66)

Summing this equality over j we get

Tr(̂ρÂ) =
∑

j

〈Âρ̂ψ j|ψ j〉 =
∑

j,k

〈̂ρψ j|ψk〉〈Â†ψ j|ψk〉
∗ (67)

Tr(Âρ̂) =
∑

j

〈̂ρÂψ j|ψ j〉 =
∑

j,k

〈̂ρψk|ψ j〉〈Â†ψk|ψ j〉
∗ (68)

hence Tr(̂ρÂ) = Tr(Âρ̂) since the sums of both right-hand
sides are identical. �

3.2 Hilbert–Schmidt operators

We are following here de Gosson [44, §12.1] and Shubin
[20, Appendix 3].

3.2.1 The trace norm

An operator Â on a Hilbert spaceH is called a Hilbert–
Schmidt operator if there exists an orthonormal basis (ψ j)
ofH such that∑

j

〈Âψ j|Âψ j〉 =
∑

j

‖Âψ j‖
2 < ∞. (69)

In particular such an operator is bounded on H . As in
the case of trace class operators one shows that if this
property holds for one orthonormal basis then it holds
for all, and that the number

∑
j ‖Âψ j‖

2 is independent of
the choice of such a basis: Let in fact (φ j) be a second
orthonormal basis, and write Âψ j =

∑
k〈φ j|Âψ j〉φk. Then,

using the Bessel equality (42)∑
j

‖Âψ j‖
2 =

∑
j,k

|〈φ j|Âψ j〉|
2 =

∑
j,k

|〈Â†φ j|ψ j|
2 (70)

that is, using again (42),∑
j

‖Âψ j‖
2 =

∑
k

‖Â†φk‖
2 < ∞. (71)

Observe that this equality shows that if we take (ψ j) j =

(φ j) j then
∑

k ‖Â†ψk‖
2
H
< ∞ hence the adjoint Â† of a
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Hilbert–Schmidt operator is also a Hilbert–Schmidt oper-
ator; we may thus replace Â by Â† in the inequality above,
which yields

∑
k ‖Â†φk‖

2 < ∞ as claimed.
Hilbert–Schmidt operators form a vector space L2(H)

and
‖Â‖HS =

(∑
j‖Âψ j‖

2
)1/2

(72)

defines a norm on this space ; this norm is associated with
the scalar product

〈Â|B̂〉HS = Tr(Â†B̂) =
∑

j〈Âψ j|B̂ψ j〉. (73)

If Â and B̂ are Hilbert–Schmidt operators then λÂ
is trivially a Hilbert–Schmidt operator and ‖λÂ‖HS =

|λ| ‖Â‖HS for every λ ∈ C; on the other hand, by the trian-
gle inequality,∑

j

‖(Â + B̂)ψ j‖
2 ≤

∑
j

‖Âψ j‖
2 +

∑
j

‖B̂ψ j‖
2 < ∞ (74)

for every orthonormal basis (ψ j) hence Â + B̂ is also a
Hilbert–Schmidt operator and we have

‖Â + B̂‖2HS ≤ ‖Â‖
2
HS + ‖B̂‖2HS ≤ (‖Â‖HS + ‖B̂‖HS)2 (75)

and hence

‖Â + B̂‖HS ≤ ‖Â‖HS + ‖B̂‖HS. (76)

Finally, ‖Â‖HS = 0 is equivalent to Âψ j = 0 for every
index j that is to Â = 0.

The space L2(H) is complete for that norm, and hence
a Banach space (it is actually even a Hilbert space when
equipped with the scalar product (73). In addition L2(H)
is closed under multiplication (and hence an algebra).

It turns out that the space L2(H) is a two-sided deal in
the algebra of B(H) of bounded operators: if Â ∈ L2(H)
and B̂ ∈ B(H) then ÂB̂ ∈ L2(H) and B̂Â ∈ L2(H). Let
us show that B̂Â ∈ L2(H). We have, denoting by ‖B̂‖ the
operator norm of B̂,

‖B̂Â‖2HS =
∑

j
‖B̂Âψ j‖

2 ≤ ‖B̂‖
(∑

j
‖Âψ j‖

2
)
< ∞.

(77)
Applying the same argument to ÂB̂ = (B̂†Â†)† shows that
we have ÂB̂ ∈ L2(H) as well.

3.2.2 Hilbert–Schmidt and trace class

An essential property is that every trace class operator is
the product of two Hilbert–Schmidt operators (and hence
itself a Hilbert–Schmidt operator). Let us glorify this
important statement as a theorem:

Theorem 5. (i) A bounded operator Â on H is of trace
class if and only if it is the product of two Hilbert–
Schmidt operators: L1(H) = (L2(H))2. (ii) A trace
class operator Â onH is itself a Hilbert–Schmidt opera-
tor: L1(H) ⊂ L2(H).

Proof. In what follows (ψ j) is an orthonormal basis in
H . (i) Assume that Â = B̂Ĉ where B̂ and Ĉ are both
Hilbert–Schmidt operators. We have, using respectively
the triangle and the Cauchy–Schwarz inequalities,

|
∑

j

〈ψ j|Âψ j〉| ≤
∑

j

|〈B̂†ψ j|Ĉψ j〉| ≤
∑

j

‖B̂†ψ j‖ ‖Ĉψ j‖;

(78)
in view of the trivial inequality∑

j

‖B̂†ψ j‖ ‖Ĉψ j‖ ≤
1
2

(∑
j‖B̂
†ψ j‖

2 + ‖Ĉψ j‖
2
)

(79)

we get, since B̂ and Ĉ are both Hilbert–Schmidt operators,

|
∑

j

〈ψ j|Âψ j〉| ≤
1
2

(∑
j‖B̂
†ψ j‖

2 + ‖Ĉψ j‖
2
)
< ∞ (80)

proving that Â is indeed of trace class. Assume, con-
versely, that Â ∈ L1(H). In view of the polar decom-
position theorem there exists a unitary operator Û onH
such that Â = Û(Â†Â)1/2. Setting B̂ = Û(Â†Â)1/4 and
Ĉ = (Â†Â)1/4 we have Â = B̂Ĉ; let us show that Ĉ and B̂
are Hilbert–Schmidt operators. We have∑

j

|〈Ĉψ j|Ĉψ j〉| =
∑

j

|〈Ĉ†Ĉψ j|ψ j〉|

=
∑

j

|〈(Â†Â)1/2ψ j|ψ j〉| < ∞

because (Â†Â)1/2 = Û†Â is of trace class (Theorem 4),
hence Ĉ ∈ L2(H). It follows that B̂ = ÛĈ ∈ L2(H) as
well. (ii) We have seen that every trace class operator is
a product Â = B̂Ĉ of two Hilbert–Schmidt operators. In
view of the algebra property (i) of L2(H) the operator Â
is itself Hilbert–Schmidt operator. �

3.2.3 The case of L2(Rn)

Let us now specialize to the case where H = L2(Rn).
In this case Hilbert–Schmidt operators are exactly those
operators that have a square integrable kernel; as a conse-
quence a density matrix also has square integrable kernel.

Theorem 6. Let Â be a bounded operator on L2(Rn). (i)
It is a Hilbert–Schmidt operator if and only if there exists
a function K ∈ L2(Rn × Rn) such that

Âψ(x) =

∫
K(x, y)ψ(y)dny. (81)

(ii) Every trace class operator (and hence every density
matrix ) on L2(Rn) can be represented by (81) with kernel
K ∈ L2(Rn × Rn).
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Proof. (i) The condition is necessary. Let (ψ j) be an
orthonormal basis in L2(Rn). Let Â ∈ L2(L2(Rn)); we
have Âψi =

∑
j〈ψ j|Âψi〉ψ j and hence

Âψ =
∑

i

〈ψi|ψ〉Âψi =
∑
i, j

〈ψi|ψ〉〈ψ j|Âψi〉ψ j (82)

which we can rewrite, using the definition

〈ψi|ψ〉 =

∫
ψ∗i (y)ψ(y)dny (83)

of the inner product as

Âψ(x) =
∑
i, j

〈ψi|ψ〉〈ψ j|Âψi〉ψ j(x)

=
∑
i, j

〈ψi|ψ〉〈ψ j|Âψi〉ψ j(x)

=
∑
i, j

〈ψ j|Âψi〉

∫
ψ j(x)ψ∗i (y)ψ(y)dny.

This is now (81) with

K(x, y) =
∑
i, j

〈ψ j|Âψi〉ψ j(x)ψ∗i (y). (84)

Let us show that K ∈ L2(Rn × Rn). Remarking that the
tensor products (ψ j ⊗ ψ

∗
i ) form an orthonormal basis in

L2(Rn × Rn) we have∫
|K(x, y)|2dnxdny ≤

∑
i, j

|〈ψ j|Âψi〉|
2; (85)

applying the Bessel equality (42) to |〈ψ j|Âψi〉|
2 we get∑

i, j

|〈ψ j|Âψi〉|
2 =

∑
i

|〈Âψi|Âψi〉|
2 < ∞ (86)

since Â is a Hilbert–Schmidt operator. It follows that
K ∈ L2(Rn × Rn) as claimed. The condition is sufficient.
Assume that the kernel K of Â ∈ B(L2(Rn)) belongs
to L2(Rn × Rn). Since (ψ j ⊗ ψ

∗
i ) is an orthonormal ba-

sis in L2(Rn × Rn) we can find numbers ci j such that∑
i, j |ci j|

2 < ∞ and

K(x, y) =
∑
i, j

ci jψ j(x) ⊗ ψ∗i (y). (87)

Define now the operator Â by the equality (81); we have

Âψ(x) =
∑
i, j

ci jψ j(x)
∫

ψ∗i (y)ψ(y)dny

=
∑
i, j

ci j〈ψi|ψ〉ψ j(x)

and hence, since the basis (ψ j) j is orthonormal,

Âψk(x) =
∑
i, j

ci j〈ψi|ψk〉ψ j(x) =
∑

j

ck jψ j(x) (88)

so that ∑
k‖Âψk‖

2 =
∑

j,k
|ck j|

2 < ∞ (89)

and Â is thus a Hilbert–Schmidt operator. (ii) In view
of property the algebra property (see (i) in Theorem 5) a
trace class operator is a fortiori a Hilbert–Schmidt opera-
tor. The claim follows in view of the statement (i). �

4 The Phase Space Picture

From now on we assume that the Hilbert space H is
L2(Rn), the space of complex-valued square integrable
functions on Rn (we are thus dealing with quantum sys-
tems with n degrees of freedom).

4.1 The Weyl correspondence

4.1.1 Weyl operators and symbols

Let us first explain what we mean by a Weyl symbol.
Recall that a function K(x, y) defined on Rn × Rn is the
kernel of an operator Â if we have

Âψ(x) =

∫
K(x, y)ψ(y)dny (90)

for all ψ ∈ L2(Rn). A deep theorem from functional
analysis (Schwartz’s kernel theorem) tells us that every
continuous linear operator from spaces of test functions
to the tempered distributions (In this context, we use the
word distribution in the sense of L. Schwartz’s general-
ized functions) can be represented in this way, the integral
in (90) being possibly replaced by a distributional bracket.
By definition, the Weyl symbol of the operator Â is the
function

a(x, p) =

∫
e−

i
~ pyK(x + 1

2y, x −
1
2y)dny; (91)

this formula is easily inverted using an inverse Fourier
transform in p, yielding the expression of the kernel in
terms of the symbol:

K(x, p) =
(

1
2π~

)n
∫

e
i
~ p(x−y)a( 1

2 (x + y), p)dn p. (92)

These two formulas uniquely define the kernel and the
symbol in terms of each other, and imply the Weyl cor-
respondence (or transform), which expresses unambigu-
ously the operator Â in terms of the symbol a:

Âψ(x) =
(

1
2π~

)n
"

e
i
~ p(x−y)a( 1

2 (x + y), p)ψ(y)dnydn p;

(93)
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one often writes Â = OpW(a), and this notation is unam-
biguous because the symbol of Â is uniquely determined
by (91). Formula (93) can be rewritten in several different
ways; one common expression is

Âψ(x) =
(

1
π~

)n
"

a(x0, p0)Π̂(x0, p0)ψ(x)dnx0dn p0

(94)
where Π̂(x0, p0) is the reflection (or parity) operator [42,
44, 46]

Π̂(x0, p0)ψ(x) = e
2i
~ p0(x−x0)ψ(2x0 − x). (95)

The usefulness of the Weyl correspondence in quantum
mechanics comes from the fact that it associates to real
symbols self-adjoint operators. In fact, more generally:

Â = OpW(a) =⇒ Â† = OpW(a∗). (96)

We refer to de Gosson [42, 44, 46] for detailed discus-
sions of the Weyl correspondence from the point of view
outlined above; Littlejohn’s well-cited paper [47] con-
tains a very nice review of the topic with applications to
semiclassical approximations.

4.1.2 Twisted products and convolutions

Composing Weyl operators leads in a natural way to
the notion of twisted product, which is essential in
the theory of deformation quantization: assume that
the two operators Â = OpW(a) and B̂ = OpW(b) can
be composed, and set ÂB̂ = Ĉ = OpW(c). Then the
Weyl symbol c is given by the expression c = a×b where

(a × b)(z) =
(

1
4π~

)2n
"

e
i

2~σ(z′,z′′)a(z + 1
2 z′)b(z − 1

2 z′′)d2nz′d2nz′′. (97)

Setting u = z + 1
2 z′ and v = z − 1

2 z′′ we have we have
d2nz′d2nz′′ = 42nd2nud2nv so this formula can be rewritten

(a × b)(z) =
(

1
π~

)n
"

e
2i
~ ∂σ(u,z,v)a(u)b(v)d2nud2nv (98)

where ∂σ(u, z, v) is the coboundary of σ(u, v) viewed as a
1-chain:

∂σ(u, z, v) = σ(u, z) − σ(u, v) + σ(z, v). (99)

For detailed proofs of these properties see de Gosson [44,
Chapter 10]. The function

c = a × b (100)

is called the twisted product of a and b (It was defined by
J. von Neumann following the work of Weyl). Thus, by
definition,

OpW(a × b) = OpW(a) OpW(b). (101)

To the twisted product is associated the twisted convo-
lution a#b of two symbols; it is defined by

a#b = Fσ(Fσa × Fσb) (102)

or, equivalently, by

Fσ(a#b) = Fσa × Fσb (103)

where Fσ is the symplectic Fourier transform. The equiv-
alence of both definitions is due to the fact that the sym-
plectic Fourier transform is its own inverse. Explicitly
(de Gosson, [46, § 11.1]):

a#b(z) =
(

1
2π~

)n
∫

e
i

2~σ(z,z′)aσ(z − z′)bσ(z′)d2z′; (104)

an equivalent statement is to say that the twisted symbol
cσ of the product Ĉ = ÂB̂ is given by

cσ(z) =
(

1
2π~

)n
∫

e
i

2~σ(z,z′)aσ(z − z′)bσ(z′)d2nz′. (105)

4.2 The Wigner function of a density matrix

The essential point to understand now is that the Wigner
function ρ = Wρ̂(x, p) we are going to define below is (up
to an unimportant constant factor) the Weyl symbol of the
operator ρ̂: the Wigner function is thus a dequantization
of ρ̂, that is a phase space function obtained from this
operator.(It is perhaps a little bit daring to speak about
dequantization in this context since the Wigner functon is
not really a classical object.) Also notice that it is the first
time Planck’s constant appears in a quite explicit way;
we could have a priori replaced ~ with any other real
parameter η: this change wouldn’t have consequence for
the involved mathematics (but it would of course change
the physics!). We will come back to this essential point
later, but

4.2.1 Definition of the Wigner function of a
density matrix

To a density matrix ρ̂ on L2(Rn) one associates in standard
texts its Wigner function (also called Wigner distribution).
It is the function Wρ̂ of the variables x = (x1, . . . , xn)
and of the conjugate momenta p = (p1, . . . , pn) usually
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defined in physics texts by

Wρ̂(x, p) =
(

1
π~

)n
∫

e−
2i
~ px′〈x + x′ |̂ρ|x − x′〉dnx′ (106)

where |x〉 is an eigenstate of the operator x̂ = (x̂1, . . . , x̂n)
(where x̂ j = multiplication by x j). Performing the change
of variables x 7−→ y = 2x′ we can rewrite this definition
in the equivalent form

Wρ̂(x, p) =
(

1
2π~

)n
∫

e−
i
~ py〈x + 1

2y|̂ρ|x −
1
2y〉d

ny; (107)

this has some practical advantages when one uses the
Wigner–Weyl–Moyal formalism. In spite of their formal
elegance, formulas (106), (107) are at first sight some-
what obscure and need to be clarified, especially if one
wants to work analytically with them. Assume first that ρ̂
represents a pure state: ρ̂ = ρ̂ψ = |ψ〉〈ψ|where ψ ∈ L2(Rn)
is normalized. We get, using the relations ψ(x) = 〈x|ψ〉
and ψ∗(x) = 〈ψ|x〉,

〈x + x′ |̂ρ|x − x′〉 = 〈x + x′|ψ〉〈ψ|x − x′〉

= ψ(x + x′)ψ∗(x − x′)

and hence Wρ̂ψ(x, p) = Wψ(x, p) where

Wψ(x, p) =
(

1
π~

)n
∫

e−
2i
~ px′ψ(x + x′)ψ∗(x − x′)dnx′

(108)
is the usual Wigner function (or Wigner distribution,
or Wigner transform) of ψ ∈ L2(Rn) (see Wigner
[48], Hillery et al. [49]; for the mathematical theory
[42, 44, 46]); equivalently

Wψ(x, p) =
(

1
2π~

)n
∫

e−
i
~ pyψ(x + 1

2y)ψ∗(x − 1
2y)dny.

(109)
In the general case, where ρ̂ =

∑
j α j|ψ j〉〈ψ j| is a convex

sum of operators of the type above one immediately gets,
by linearity, the expression

Wρ̂(x, p) =
∑

j

α jWψ j(x, p). (110)

A very important result we will prove later on (Theo-
rem 9), but use immediately, is the following:

The Wigner function of a mixed state is square
integrable: Wρ̂ ∈ L2(R2n).

One also often uses the cross-Wigner transform of a
pair of square integrable functions. It is given by

W(ψ, φ)(x, p) =
(

1
2π~

)n
∫

e−
i
~ pyψ(x + 1

2y)φ∗(x − 1
2y)dny.

(111)

It naturally appears as an interference term when calculat-
ing the Wigner function of a sum; in fact, using definition
(109) one immediately checks that

W(ψ + φ) = Wψ + Wφ + 2 Re W(ψ, φ). (112)

Notice that W(ψ, φ) is in general a complex number and
that

W(ψ, φ)∗ = W(φ, ψ). (113)

The cross-Wigner function has many applications; in par-
ticular it allows to reformulate the notion of weak-value
as an interference between the past and the future in the
time-symmetric approach to quantum mechanics; see
Section 4.2.3 below.

4.2.2 The Weyl symbol of a density matrix

In the case of density matrices we have:

Theorem 7. Let ρ̂ be a density matrix on L2(Rn):

ρ̂ =
∑

j

α j|ψ j〉〈ψ j| with α j ≥ 0 and
∑

j

α j = 1. (114)

The Weyl symbol of ρ̂ is a = (2π~)nρ where

ρ(x, p) = Wρ̂(x, p) =
∑

j

α jWψ j(x, p) (115)

is the Wigner function of ρ̂.

Proof. The action of the projection ρ̂ j = |ψ j〉〈ψ j| on a
vector ψ ∈ L2(Rn) is given by

ρ̂ jψ(x) = 〈ψ j|ψ〉ψ j(x) =

∫
ψ∗j(y)ψ(y)ψ j(x)dny (116)

hence the kernel of ρ̂ j is the function

K j(x, y) = ψ j(x)ψ∗j(y). (117)

It follows, using formula (91), that the Weyl symbol of
ρ̂ j is

a j(x, p) =

∫
e−

i
~ pyψ j(x + 1

2y)ψ∗j(x − 1
2y)dny

= (2π~)nWψ j(x, p).

Formula (115) follows by linearity. �

4.2.3 Statistical interpretation of the Wigner
function

The importance of the Wigner function of a density matrix
comes from the fact that we can use it as a substitute for
an ordinary probability density for calculating averages
(it is precisely for this purpose Wigner introduced his
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eponymous transform in [48]). For all ψ ∈ L2(Rn) such
that ψ ∈ L1(Rn) and Fψ ∈ L1(Rn) (The conditions ψ ∈
L1(Rn) and Fψ ∈ L1(Rn) are necessary to ensure the
convergence of the x and p integrals. The condition ψ ∈
L2(Rn) is not sufficient for the marginal properties to hold
(see e.g. Daubechies [15])) the marginal properties are∫

Wψ(x, p)dn p = |ψ(x)|2 (118)∫
Wψ(x, p)dnx = |Fψ(p)|2 (119)

and hence, in particular,"
Wψ(x, p)dn pdnx = 1 if ‖ψ‖ = 1. (120)

In the second equality (119)

Fψ(p) =
(

1
2π~

)n/2
∫

e−
i
~ pxψ(x)dnx (121)

is the ~-Fourier transform of ψ. One should be aware of
the fact that while Wψ is always real (and hence so is
ρ = Wρ̂) as can be easily checked by taking the complex
conjugates of both sides of the equality (109), it takes
negative values for all ψwhich are not Gaussian functions.
(This is the celebrated Hudson theorem [50]; also see
Janssen [51] for the multidimensional case.) A caveat:
this result is only true for the Wigner function Wψ of
a single function ψ; the case of a general distribution
ρ =

∑
j α jWψ j is much subtler, and will be discussed

later.
Let us introduce the following terminology: we call

an observable Â a good observable for the density matrix

ρ̂ if its Weyl symbol a (i.e. the corresponding classical
observable) satisfies aρ ∈ L1(R2n), that is∫

|a(z)ρ(z)|d2nz < ∞ (122)

(ρ the Wigner function of ρ̂; we are using the shorthand
notation z = (x, p), d2nz = dnxdn p). We assume in addi-
tion that a is real so that Â is Hermitian. Notice that good-
ness is guaranteed if the symbol a is square integrable,
because the Cauchy–Schwarz inequality then implies that(∫

|a(z)ρ(z)|d2nz
)2

≤

∫
ρ(z)2d2nz

∫
|a(z)|2d2nz < ∞

(123)
since ρ is square integrable (as mentioned above, see
Theorem 9).

Theorem 8. Let ρ̂ be a density matrix on L2(Rn) and ρ
its Wigner function. The average value of every good
observable Â with respect to ρ̂ is then finite and given by
the formula

〈Â〉ρ̂ =

∫
a(z)ρ(z)d2nz. (124)

Proof. By linearity it suffices to consider the case where
ρ̂ = |ψ〉〈ψ| so that ρ = Wψ; this reduces the proof of
formula (124) to that of the simpler equality

〈Â〉ψ =

∫
a(x, p)Wψ(x, p)dnxdn p. (125)

Replacing in the equality above Wψ(x, p)
by its integral expression (109) yields

〈Â〉ψ =
(

1
2π~

)n
"

a(x, p)
(∫

e−
i
~ pyψ(x + 1

2y)ψ∗(x − 1
2y)dny

)
dnxdn p. (126)

Since we assume that the goodness assumption (122) is satisfied, we can use Fubini’s theorem and rewrite this
equality as a double integral:

〈Â〉ψ =
(

1
2π~

)n
"

a(x, p)e−
i
~ pyψ(x + 1

2y)ψ∗(x − 1
2y)dnydnxdn p. (127)

Let us perform the change of variables x′ = x + 1
2y and y′ = x− 1

2y; we have x = 1
2 (x′ + y′) and y = x′ − y′ and hence,

using definition (93) of the Weyl operator Â,

〈Â〉ψ =
(

1
2π~

)n
"

e−
i
~ p(x′−y′)a( 1

2 (x′ + y′), p)ψ(x′)ψ∗(y′)dny′dnx′dn p

=
(

1
2π~

)n
∫ ("

e−
i
~ p(x′−y′)a( 1

2 (x′ + y′), p)ψ∗(y′)dny′dn p
)
ψ(x′)dnx′
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and hence

〈Â〉ψ =

∫
Âψ∗(x′)ψ(x′)dnx′ = 〈Âψ|ψ〉 (128)

which we set out to prove. �

We remark that the identity (125) can be extended to the
cross-Wigner function (111); in fact, adapting the proof
of (125) one sees that if ψ and φ are square integrable,
then

〈ψ|Âφ〉 =

∫
a(x, p)W(ψ, φ)(x, p)dnxdn p. (129)

A related notion is that of weak value, at the origin of
time symmetric quantum mechanics. In time symmetric
quantum mechanics, the state of a system is represented
by a two-state vector 〈φ| |ψ〉 where the state 〈φ| evolves
backwards from the future and the state |ψ〉 evolves for-
wards from the past. By definition, if 〈φ|ψ〉 , 0, the
complex number

〈Â〉φ,ψ =
〈φ|Â|ψ〉
〈φ|ψ〉

(130)

is the weak value of Â. One proves (de Gosson and de
Gosson [52, 53]) using (129) that

〈Â〉φ,ψ =
1
〈φ|ψ〉

"
a(x, p)W(ψ, φ)(x, p)dn pdnx (131)

This relation allows to build time symmetric quantum
mechanics entirely within the Weyl–Wigner formalism.

4.3 The displacement operator and the
ambiguity function

In this subsection we review a few properties of the
Wigner function which are perhaps not all so well-known
in quantum mechanics; these properties are important
because they give an insight into some of the subtleties
of the Weyl–Wigner–Moyal transform. We also define a
related transform, the ambiguity function.

4.3.1 Redefinition of the Wigner function

Recall that the reflection operator (95) is explicitly given
by the formula

Π̂(x0, p0)ψ(x) = e
2i
~ p0(x−x0)ψ(2x0 − x). (132)

It can be used to define the Wigner function in a very
concise way. In fact: for every ψ ∈ L2(Rn) we have

Wψ(x0, p0) =
(

1
π~

)n
〈ψ|Π̂(x0, p0)ψ〉. (133)

This is easy to verify: we have, by definition (95) of
Π̂(x0, p0),

〈ψ|Π̂(x0, p0)ψ〉 =

∫
e

2i
~ p0(x−x0)ψ(2x0 − x)ψ∗(x)dnx;

(134)
setting y = 2(x0−x) we have x = x0−

1
2y, 2x0−x = x0+ 1

2y,
and dnx = 2−ndny hence

〈ψ|Π̂(x0, p0)ψ〉 = 2−n
∫

e−
i
~ p0yψ(x0 + 1

2y)ψ∗(x0−
1
2y)dny

(135)
which proves (133), taking definition (109) of the Wigner
function into account. Formula (133) shows quite explic-
itly that, up to the factor (π~)−n, the Wigner function is
the probability amplitude for the state |ψ〉 to be in the
state |Π̂(x0, p0)ψ〉; this was actually already observed by
Grossmann [54] and Royer [55] in the mid 1970s.

4.3.2 The Moyal identity

An important equality satisfied by the Wigner function is
Moyal’s identity (It is sometimes also called the orthogo-
nality relation for the Wigner function)∫

Wψ(z)Wφ(z)d2nz =
(

1
2π}

)n
|〈ψ|φ〉|2 (136)

(see [44, 46] for a proof); it is valid for all square-
integrable functions ψ and φ on Rn. In particular:∫

Wψ(z)2d2nz =
(

1
2π}

)n
‖ψ‖4. (137)

This formula implies the following interesting fact which
is not immediately obvious: consider the spectral decom-
position (53) of a density operator in Theorem 3:

ρ̂ψ =
∑

j

λ j〈ψ j|ψ〉ψ j (138)

here the λ j are the eigenvalues of ρ̂ and the corresponding
eigenvectors ψ j form an orthonormal basis ofH . When
H = L2(Rn) the corresponding Wigner function is there-
fore

ρ̂ψ =
∑

j

λ jWψ j. (139)

It follows from Moyal’s identity (136) that the Wψ j form
an orthonormal system of vectors in the Hilbert space
L2(R2n) (but not a basis as is easily seen by dimension
count).

As a consequence of the Moyal identity we prove the
fact, mentioned in Section 4.2.1, that the Wigner function
of a density matrix is square integrable.

Theorem 9. Let {(ψ j, α j)} be a mixed state (ψ j ∈ L2(Rn),
α j ≥ 0,

∑
j α j = 1). The Wigner function ρ = Wρ̂ is

square integrable: ρ ∈ L2(R2n).
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Proof. Since L2(R2n) is a vector space it is sufficient to
consider the pure case, that is to prove that Wψ ∈ L2(R2n)
if ψ ∈ L2(R2n). But this immediately follows from
Moyal’s identity (137). �

The Moyal identity can be extended to the cross-
Wigner function (111); recall that for ψ, φ ∈ L2(Rn) it
is defined by

W(ψ, φ)(x, p) =
(

1
2π~

)n
∫

e−
i
~ pyψ(x + 1

2y)φ∗(x − 1
2y)dny.

(140)
In fact, for all ψ, ψ′, φ, φ′ ∈ L2(Rn) we have∫

W(ψ, ψ′)∗(z)W(φ, φ′)(z)d2nz =
(

1
2π}

)n
〈ψ|φ〉〈ψ′|φ′〉∗

(141)
(see for instance de Gosson [44, 46]). Denoting by 〈〈·|·〉〉
the inner product on L2(R2n) this identity can be written
in the form

〈〈W(ψ, ψ′)|W(φ, φ′)〉〉 =
(

1
2π}

)n
〈ψ|φ〉〈ψ′|φ′〉∗ (142)

In particular∫
|W(ψ, ψ′)(z)|2d2nz =

(
1

2π}

)n
‖ψ‖2 ‖ψ′‖2. (143)

An important remark: one can prove [44, 46], us-
ing this generalized Moyal identity, that if vectors ψ j

form an orthonormal basis of L2(Rn) then the vectors
(2π})n/2W(ψ j, ψk) form an orthonormal basis of the space
L2(R2n) (that these vectors are orthonormal is clear from
(142)).

4.3.3 The ambiguity function

A transform closely related to the Wigner function and
well-known from signal analysis (especially radar theory)
is the ambiguity function Ambψ (it is also called the
auto-correlation function). It can be introduced in several
equivalent ways; we begin by defining it explicitly by a
formula: for ψ ∈ L2(Rn)

Ambψ(x, p) =
(

1
2π~

)n
∫

e−
i
~ pyψ(y + 1

2 x)ψ∗(y − 1
2 x)dny.

(144)
Comparing with the definition

Wψ(x, p) =
(
.1

2π~

)n
∫

e−
i
~ pyψ(x + 1

2y)ψ∗(x − 1
2y)dny

(145)
of the Wigner function one cannot help being surprised
by the similarity of both definitions. In fact, it is easy to
show by performing an elementary change of variables
that if ψ is an even function (that is ψ(−x) = ψ(x) for all
x ∈ Rn) then Wψ and Ambψ are related by

Ambψ(x, p) = 2−nWψ( 1
2 x, 1

2 p). (146)

There are two complementary natural ways to define
the ambiguity function. The first is to observe that the
Wigner function and the ambiguity function are symplec-
tic Fourier transforms of each other:

Ambψ = FσWψ and Wψ = Fσ Ambψ; (147)

they are of course equivalent since F−1
σ = Fσ. For a

proof, see de Gosson [44, 46]. There is still another way
to define the ambiguity function. Let D̂(z0) = D̂(x0, p0)
be the Weyl displacement operator (it is also called the
Glauber–Sudarshan displacement operator, or the Heisen-
berg operator, or the Heisenberg–Weyl operator). It is
defined by

D̂(z0)ψ(x) = e
i
~ (p0 x− 1

2 p0 x0)ψ(x − x0). (148)

This operator is the time-one propagator for the
Schrödinger equation associated with the classical transla-
tion Hamiltonian σ(z, z0) = x0 p−p0x (see the discussions
in de Gosson [2,42,44] and Littlejohn [47]); this observa-
tion motivates the notation

D̂(z0) = e−
i
~σ(̂z,z0) = e−

i
~ (x0 p̂−p0 x̂) (149)

often found in the literature. We are using here the coordi-
nate expression of the displacement operator; we leave it
to the reader as an exercise to check that D̂(z0) coincides
with the operator

D(α) = exp
[ i
~

(αa† − α∗a)
]

(150)

commonly used in quantum optics (a and a† are the an-
nihilation and creation operators; see Potoček [56] for a
discussion of these notational issues). The displacement
operator is related to the reflection operator Π̂(z0) by the
simple formula

Π̂(z0) = D̂(z0)ΠD̂(z0)† (151)

where Π is the parity operator Πψ(x) = ψ(−x). That
the operators D̂(z0) correspond to translations in phase
space quantum mechanics is illustrated by the following
important relation satisfied by the Wigner transform:

W(D̂(z0)ψ)(z) = Wψ(z − z0) (152)

(it is easily proven by a direct computation, see de Gosson
[42, 44, 46], Littlejohn [47]). Using the displacement
operator, the ambiguity function is given by

Ambψ(z0) =
(

1
2π~

)n
〈D̂(z0)ψ|ψ〉; (153)

one verifies by a direct calculation using (148) that one
recovers the first analytical definition (144).
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The displacement operators play a very important role,
not only in quantum mechanics, but also in related dis-
ciplines such as harmonic analysis, signal theory, and
time-frequency analysis. They can be viewed as a rep-
resentation of the canonical commutation relations (the
Schrödinger representation of the Heisenberg group); this
is related to the fact these operators satisfy

D̂(z0)D̂(z1) = e
i
}σ(z0,z1)D̂(z1)D̂(z0) (154)

and also

D̂(z0 + z1) = e−
i

2}σ(z0,z1)D̂(z0)D̂(z1). (155)

The second formula shows that the displacement opera-
tors form a projective representation of the phase space
translation group. In addition to being used to define the
ambiguity function, the displacement operators allow one
to define Weyl operators in terms of their twisted symbol
(sometimes also called covariant symbol), which is by
definition the symplectic Fourier transform

aσ(z) = Fσa(z) (156)

of the ordinary symbol a. Let in fact Â = OpW(a), that is

Â =
(

1
π~

)n
∫

a(z0)Π̂(z0)d2nz0 (157)

(formula 94). Using the displacement operator D̂(z0) in
place of the reflection operator Π̂(z0) we have

Â =
(

1
2π~

)n
∫

aσ(z0)D̂(z0)d2nz0 (158)

(see [42,44,46,47]). This formula has many applications;
it is essential in the study of the positivity properties of
trace class operators as we will see in a moment. Notice
that formula (158) is Weyl’s original definition [57] in
disguise: making the change of variables z0 7−→ −Jz0 in
this formula one gets, noting that aσ(−Jz0) = Fa(z0) and
D̂(−Jz0) = e−

i
~ (x0 x̂+p0 p̂)e−

i
~ (x0 p̂−p0 x̂)

Â =
(

1
2π~

)n
"

Fa(x, p)e
i
~ (xx̂+pp̂)dn pdnx (159)

which is the formula originally proposed by Weyl [57],
in analogy with the Fourier inversion formula (see the
discussion in de Gosson [2, 46]).

4.4 Calculating traces: rigorous theory

4.4.1 Kernels and symbols

It is tempting to redefine the trace of a Weyl operator
Â = OpW(a) by the formula

Tr(Â) =
(

1
2π~

)n
∫

a(z)d2nz. (160)

But doing this one should not forget that even if the op-
erator Â is of trace class, formula (160) need not give
the actual trace. First, the integral in the right-hand side
might not be convergent; secondly even if it is we have to
prove that it really yields the right result. We will discuss
the validity of formula (160) and of other similar formulas
below, but let us first prove some intermediary results.

We begin by discussing the Weyl symbols of Hilbert–
Schmidt and trace class operators.

Theorem 10. Let Â = OpW(a) be a Hilbert–Schmidt
operator. Then a ∈ L2(R2n) and we have∫

|a(z)|2d2nz = (2π~)n/2
"

K(x, y)dnxdny. (161)

Conversely, every Weyl operator with symbol a ∈ L2(R2n)
is a Hilbert–Schmidt operator.

Proof. In view of Theorem 6 we have K ∈ L2(Rn × Rn).
Let us prove formula (161) when K ∈ S(Rn × Rn); it will
then hold by continuity for arbitrary K ∈ L2(Rn × Rn) in
view of the density of S(Rn ×Rn) in L2(Rn ×Rn). In view
of formula (91) relating the kernel and the symbol of a
Weyl operator we have∫

|a(x, p)|2dp = (2π~)n
∫
|K(x + 1

2y, x −
1
2y)|2dny.

(162)
Integrating this equality with respect to the x variables
we get, using Fubini’s theorem∫
|a(z)|2d2nz = (2π~)n

∫ (∫
|K(x + 1

2y, x −
1
2y)|2dny

)
dnx

= (2π~)n
"
|K(x + 1

2y, x −
1
2y)|2dnxdny.

Set now x′ = x + 1
2y and y′ = x− 1

2y; we have dnx′dny′ =

dnxdny and hence∫
|a(z)|2d2nz = (2π~)n

"
|K(x′, y′)|2dnx′dny′ (163)

which we set out to prove. The converse is obvious since
the condition a ∈ L2(R2n) is equivalent to K ∈ L2(Rn×Rn)
in view of the inequality above. �

4.4.2 Rigorous results

We now specialize our discussion to the caseH = L2(Rn).
Recall that we showed in Section 3.2 that the formula

〈Â|B̂〉HS = Tr(Â†B̂) (164)

defines an inner product on the ideal L2(H) of Hilbert–
Schmidt operators inH the associated trace norm being
defined by

‖Â‖HS = Tr(Â†Â)1/2 (165)

Let us state and prove the following result:
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Theorem 11. Let Â = OpW(a) and B̂ = OpW(a) be
Hilbert–Schmidt operators: Â, B̂ ∈ L2(H). (i) The trace
class operator ÂB̂ has trace

Tr(ÂB̂) =
(

1
2π~

)n
∫

a(z)b(z)d2nz; (166)

(ii) The Hilbert–Schmidt inner product is given by the
convergent integral

〈Â|B̂〉HS =
(

1
2π~

)n
∫

a∗(z)b(z)d2nz (167)

and hence ‖Â‖2HS = Tr(Â†Â) is given by

‖Â‖2HS =
(

1
2π~

)n
∫
|a(z)|2d2nz. (168)

Proof. (i) We first observe that in view of Theorem 10
we have a ∈ L2(Rn) and b ∈ L2(Rn) hence the integrals
in (166) and (167) are absolutely convergent. Let (ψ j) be
an orthonormal basis of L2(Rn); by definition of the trace
we have

Tr(ÂB̂) =
∑

j

〈ψ j|ÂB̂ψ j〉 =
∑

j

〈Â†ψ j|B̂ψ j〉. (169)

Expanding B̂ψ j and Â†ψ j in the basis (ψ j) we get

B̂ψ j =
∑

k

〈ψk|B̂ψ j〉ψk , Â†ψ j =
∑
`

〈Âψ`|ψ j〉ψ` (170)

and hence, using the Bessel equality (42),

〈Â†ψ j|B̂ψ j〉 =
∑

k

〈Â†ψ j|ψk〉〈B̂ψ j|ψk〉
∗ (171)

In view of formula (129), we have

〈Â†ψ j|ψk〉 =

∫
a(z)W(ψ j, ψk)(z)d2nz (172)

〈B̂ψ j|ψk〉 =

∫
b∗(z)W(ψ j, ψk)(z)d2nz (173)

where W(ψ j, ψk) is the cross-Wigner transform (111) of
ψ j, ψk; denoting by 〈〈·|·〉〉 the inner product on L2(R2n)
these equalities can be rewritten

〈Â†ψ j|ψk〉 = 〈〈a∗|W(ψ j, ψk)〉〉 (174)

〈B̂ψ j|ψk〉 = 〈〈b|W(ψ j, ψk)〉〉 (175)

and hence it follows from the extended Moyal identity
(141) that

Tr(ÂB̂) =
∑

j,k

〈〈a∗|W(ψ j, ψk)〉〉〈〈b|W(ψ j, ψk)〉〉∗. (176)

Since (ψ j) is an orthonormal basis the vectors
(2π~)n/2W(ψ j, ψk) also form an orthonormal basis (see

the remark following formula (143)), hence the Bessel
identity (42) allows us to write the equality above as

Tr(ÂB̂) =
(

1
2π~

)n
〈〈a∗|b〉〉 (177)

which is formula (166). (ii) It immediately follows from
formula (166) using (164) and (165), recalling that if
Â = OpW(a) then Â† = OpW(a∗). �

Part (i) of the result above allows us—at last!—to ex-
press the trace of a Weyl operator in terms of its symbol
provided that the latter is absolutely integrable:

Corollary 12. Let Â = OpW(a) be a trace class operator.
If in addition we have a ∈ L1(Rn) then

Tr(Â) =
(

1
2π~

)n
∫

a(z)d2nz. (178)

Proof. (Cf. Du and Wong [58, Theorem 2.4].) It is
equivalent to prove that the symplectic Fourier transform
aσ = Fσa satisfies

Tr(Â) = aσ(0). (179)

Writing Â = B̂Ĉ where B̂ and Ĉ are Hilbert–Schmidt
operators we have

Tr(Â) =
(

1
2π~

)n
∫

b(z)c(z)d2nz (180)

hence it suffices to show that

aσ(0) =
(

1
2π~

)n
∫

b(z)c(z)d2nz. (181)

We have, in view of formula (105) giving the twisted
symbol of the product of two Weyl operators

aσ(z) =
(

1
2π~

)n
∫

e
i

2~σ(z,z′)bσ(z − z′)cσ(z′)d2nz′ (182)

and hence, using the Plancherel identity (12) for Fσ,

aσ(0) =
(

1
2π~

)n
∫

bσ(−z′)cσ(z′)d2nz′

=
(

1
2π~

)n
∫

b(z)c(z)d2nz (183)

which proves the formula (179). �

The following result is very much in the spirit of the C∗-
algebraic approach outlined in Section 2.1.3 (cf. Gracia-
Bondı́a and Várilly [59, 60]). Let us denote the Weyl
transform by OpW: it thus associates to every symbol
a ∈ S′(Rn) the Weyl operator Â = OpW(a).

Theorem 13. The restriction of OpW to the Hilbert space
L2(Rn) is an isomorphism of L2(Rn) onto the algebra
L2(L2(Rn)) of Hilbert–Schmidt operators on L2(Rn).

Proof. In view of Theorem 10, a bounded operator Â on
L2(Rn) is Hilbert–Schmidt if and only if its Weyl symbol
a is in L2(Rn). The Weyl correspondence being linear and
one-to-one the statement follows. �
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5 Metaplectic Group and
Symplectic Covariance

For a complete study of the metaplectic group in quantum
mechanics see our book [61]; on a slightly more general
and technical level see [42,44]. An excellent introduction
to the symplectic group is given in Arvind et al. [62], also
see Garcı́a-Bullé et al. [63].

5.1 The metaplectic representation

5.1.1 The generators of Sp(n)

Recall that the symplectic form on phase space R2n can
be defined by σ(z, z′) = (z′)T Jz where

J =

(
0n×n In×n

−In×n 0n×n

)
(184)

is the standard symplectic matrix (we use the notation
z = (x, p), z′ = (x′, p′)). By definition, the symplectic
group Sp(n) consists of all real 2n × 2n matrices S such
that σ(S z, S z′) = σ(z, z′) for all vectors z, z′; such a ma-
trix is called a symplectic matrix. Rewriting this condition
as (S z′)T JS z = (z′)T Jz we thus have S ∈ Sp(n) if and
only if S T JS = J. It is an easy exercise to show that if
S is symplectic then S −1 and S T are symplectic as well,
hence this defining relation is equivalent to S JS T = J.
The symplectic group plays an essential role in classi-
cal mechanics in its Hamiltonian formulation; its role in
quantum mechanics is no less important, in association
with its double covering, the metaplectic group Mp(n)
which we briefly describe now.

There are several ways to introduce the metaplectic
group. We begin by giving a definition using the notion
of free symplectic matrix and its generating function (we
are following here our presentation in [42, 44]). Let

S =

(
A B
C D

)
(185)

be a symplectic matrix, where the blocks A, B,C,D are
n×n matrices. It is easy to show that the relations S JS T =

S T JS = J are equivalent to the two groups of conditions

ATC, BT D are symmetric, and AT D −CT B = I (186)

ABT , CDT are symmetric, and ADT − BCT = I (187)

One says that the block-matrix (185) is a free symplectic
matrix if B is invertible, i.e. det B , 0. To a free sym-
plectic matrix is associated a generating function: it is the
quadratic form

A(x, x′) =
1
2

DB−1x · x−B−1x · x′+
1
2

B−1Ax′ · x′. (188)

The terminology comes from the fact that the knowledge
ofA(x, x′) uniquely determines the free symplectic ma-
trix S : we have(

x
p

)
=

(
A B
C D

) (
x′

p′

)
⇐⇒

{
p = ∇xA(x, x′)

p′ = −∇x′A(x, x′)
(189)

as can be verified by a direct calculation. The interest
of the notion of free symplectic matrix comes from the
fact that such matrices generate the symplectic group
Sp(n). More precisely every S ∈ Sp(n) can be written
as a product S = SASA′ (we place the corresponding
generating functionsA andA′ as subscripts).

Defining, for symmetric P and invertible L, the sym-
plectic matrices V−P and ML by

V−P =

(
I 0
P I

)
, ML =

(
L−1 0
0 LT

)
(190)

a straightforward calculations shows that the free sym-
plectic matrix SA can be factored as

SA = V−DB−1 MB−1 JV−B−1A. (191)

This implies that the symplectic group Sp(n) is generated
by the set of all matrices V−P and ML together with J. It
is easy to deduce from this that the determinant of a sym-
plectic matrix always is equal to one since we obviously
have det V−P = det ML = det J.

5.1.2 Generalized Fourier transforms

Now, to every free symplectic matrix SA we associate
two operators ŜA,m by the formula

ŜA,mψ(x) =
(

1
2π~

) n
2 im−

n
2
√
| det B−1|

∫
e

i
~A(x,x′)ψ(x′)dnx′

(192)
where m corresponds to a choice of argument for det B−1:
m = 0 mod 2 if det B−1 > 0 and m = 1 mod 2 if
det B−1 < 0. It is not difficult to prove that the gener-
alized Fourier transforms ŜA,m are unitary operators on
L2(Rn). These operators generate a group: the metaplec-
tic group Mp(n). One shows that, as for the symplectic
group, every Ŝ ∈ Mp(n) can be written (non uniquely) as
a product ŜA,mŜA′,m′ . This group is a double covering of
Sp(n), the covering projection being simply defined by

πMp : Mp(n) −→ Sp(n) , πMp(ŜA,m) = SA. (193)

Here are three examples of free symplectic matrices and
of their metaplectic counterparts; these can be used to
give an alternative definition of the metaplectic group:

• The standard symplectic matrix J has as generat-
ing function A(x, x′) = −x · x′ and hence the two
corresponding metaplectic operators are ±Ĵ with

Ĵψ(x) =
(

1
2π~i

)n/2
∫

e−
i
~ x·x′ψ(x′)dnx′; (194)
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observe that Ĵ = i−n/2F where F is the usual Fourier
transform;

• The symplectic shear V−P =

(
I 0
P I

)
(P = PT ) is not

free, but

U−P = JV−PJ−1 =

(
I −P
0 I

)
(195)

is if det P , 0. In this case we have

A(x, x′) = −
1
2

P−1x · x + P−1x · x′ (196)

and the corresponding metaplectic operators are
hence ±Û−P with

Û−P =
(

1
2π~

) n
2 i

n
2 | det P|−1e−

i
2~P−1 x·x

×

∫
e

i
~P−1 x·x′ψ(x′)dnx′. (197)

• The symplectic rescaling matrix ML =

(
L−1 0
0 LT

)
is

not free but the product

MLJ =

(
0 L−1

LT 0

)
(198)

is and hasA(x, x′) = Lx · x′ as generating function;
the corresponding metaplectic operator are M̂L,m Ĵ
where

M̂L,mψ(x) = im
√
| det L|ψ(Lx) (199)

the integer m (the Maslov index) corresponding to a
choice of arg det L.

It turns out that an easy calculation shows that, simi-
larly to the factorization (191) of free symplectic matrices,
the quadratic Fourier transform (192) can be written

ŜA,m = V̂−B−1AM̂B−1,m ĴV̂−DB−1 (200)

where M̂L,m and Ĵ are defined as above and

V̂−Pψ(x) = e
i

2~Px2
ψ(x) (201)

when P = PT . It follows that the elementary opera-
tors V̂−P, M̂L,m and Ĵ generate Mp(n) (these operators are
used in many texts to define the metaplectic group; our
approach using (192) has some advantages since among
other things it makes immediately clear that metaplectic
operators are generalized Fourier transforms).

The factorization Ŝ = ŜA,mŜA′,m′ of a metaplectic
operator is by no means unique; for instance we can write
the identity operator I as ŜA,mŜ −1

A,m = ŜA,mŜA∗,m∗ for
every quadratic Fourier transform ŜA,m. There is however
an invariant attached to Ŝ : the Maslov index. Denoting
by Inert R the index of inertia (= the number of negative
eigenvalues) of the real symmetric matrix R we have:

Proposition 14. Let Ŝ = ŜA,mŜA′,m′ = ŜA′′,m′′ ŜA′′′ ,m′′′ .
We have

m+m′−Inert(P′+Q) ≡ m′′+m′′′−Inert(P′′′+Q′′) mod 4.
(202)

Proof. See Leray [64], de Gosson [42, 65]. �

It follows from formula (202) that the class modulo 4
of the integer m + m′ − Inert(P′ + Q) does not depend
on the way we write Ŝ ∈ Mp(n) as a product ŜA,mŜA′,m′
of quadratic Fourier transforms; this class is denoted by
m(Ŝ ) and called the Maslov index of Ŝ . The mapping

m : Mp(n) ∈ Ŝ −→ m(Ŝ ) ∈ Z4 (203)

is called the Maslov index on Mp(n). We have m(ŜA,m) =

m, mod 4 [64, 65]. The theory of the Maslov index has
been further developed by Arnol’d, Leray, and by the
author.

5.1.3 Weyl symbol and Conley–Zehnder index
of a metaplectic operator

We will call symplectic isotopy a C1 mapping Σ : t 7−→
S t ∈ Sp(n) such that S 0 = Id. If t is restricted to a
bounded interval [0,T ] we call S 0 the origin and S T the
endpoint of the symplectic isotopy.

We define the following subset of Sp(n):

Sp0(n) = {S ∈ Sp(n) : det(S − I) , 0}. (204)

To S ∈ Sp0(n) we associate the family of operators
R̂ν(S ) defined, for ν ∈ R, by

R̂ν(S ) =
(

1
2π~

)n
iν

√
| det(S − I)|

∫
T̂ (S z0)T̂ (−z0)d2nz0.

(205)
One verifies that for all S ∈ Sp0(n) and ν ∈ R the opera-
tors R̂ν(S ) satisfy the intertwining formula

T̂ (S z0) = R̂ν(S )T̂ (z0)R̂ν(S )−1. (206)

It follows, using the irreducibility of the Schrödinger
representation of the Heisenberg group [66], that there
exists a constant c(S , ν) ∈ C such that R̂ν(S ) = c(S , ν)Ŝ
where πMp(Ŝ ) = S . It is moreover easy to check that the
operators are R̂ν(S ) unitary, hence |c(S , ν)| = 1.

To the Maslov index m is associated another integer in-
dex which plays an essential role in quantum holography:

Definition 15. Let Σ = (S t)t∈I be a symplectic isotopy in
Sp(n) with endpoint S < Sp0(n) such that S = SA for
some generating function A. Let ŜA,m ∈ Mp(n) cover
SA. The integer

ν(Σ) = m − InertAxx (207)

is called the Conley–Zehnder index of Σ.
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Here Axx is the Hessian matrix (= matrix of sec-
ond derivatives) of the quadratic form x 7−→ A(x, x);
InertAxx is the index of inertia (=number of negative
eigenvalues) ofAxx.

The following result connects the integer ν in (205) to
the Conley–Zehnder index when R̂ν(S ) ∈ Mp(n):

Proposition 16. Let Σ = (S t)t∈I be symplectic isotopy in
Sp(n) leading from the identity to S = SA < Sp0(n). Let
Σ̂ = (Ŝ t)t∈I be the metaplectic isotopy covering Σ and
Ŝ = ŜA,m ∈ Mp(n) be its endpoint. We have Ŝ = R̂

ν(̂Σ)(S )

where ν(̂Σ) = ν(Σ) mod 4. That is:

ŜA,m = R̂m−InertAxx(S ) (208)

Proof. See [41–43]. �

The statement above has the following consequences
when the endpoint of the symplectic isotopy Σ is a free
symplectic matrix SA.

This allows us to give a rigorous explicit formula for
the twisted Weyl symbol of ŜA,m:

Corollary 17. The twisted Weyl symbol of ŜA,m with
SA < Sp0(n) is given by

(sA)σ(z) =
im−InertAxx

√
| det(SA − I)|

exp
( i
2~

MAz · z
)

(209)

where MA is the symplectic Cayley transform of SA.

Proof. See de Gosson [41, 42]. �

Proposition 16 and formula (209) suggest that the
Conley–Zehnder index is related to a choice of argument
of the square root of the determinant of S − I. This is
indeed the case:

Proposition 18. Let ŜA,m ∈ Mp(n) have projection SA <
Sp0(n). We have

ν(ŜA,m) = n +
1
π

arg det(SA − I) mod 2. (210)

that is

ν(ŜA,m) =

{
n mod 2 if SA ∈ Sp+(n)

n + 2 mod 2 if SA ∈ Sp−(n)
. (211)

The projection SA = πMp(ŜA,m) is a free symplec-
tic matrix, and a straightforward calculation yields the
factorization

SA − I =

(
0 B
I D − I

) (
C − (D − I)B−1(A − I) 0

B−1(A − I) I

)
.

(212)

Since SA ∈ Sp(n) we have C − DB−1A = −(BT )−1 and
hence

C − (D − I)B−1(A − I) = B−1A + DB−1 − (BT )−1 = Axx

(213)
so that

SA − I =

(
0 B
I D − I

) (
Axx 0

B−1(A − I) I

)
. (214)

It follows that

det(SA − I) = (−1)n det B detAxx (215)

and hence

arg det(SA − I) = nπ + arg det B + arg detAxx mod 2π.
(216)

Noticing that arg detAxx = π InertAxx and that this is

arg det(SA − I) = nπ + arg det B + π InertAxx mod 2π.
(217)

We have arg det(B) = mπ and hence

arg det(SA − I) = (n + m − InertAxx)π mod 2π (218)

that is

arg det(SA − I) = (n + ν(ŜA,m))π mod 2π (219)

which yields (210).

5.2 Symplectic covariance properties

5.2.1 A conjugation property for the
displacement and reflection operators

Everything here stems from the following observation:
let Ŝ ∈ Mp(n) have projection S ∈ Sp(n) (the symplectic
matrix S is thus covered by the two metaplectic operators
±Ŝ ). Then for every phase space point z0 = (x0, p0) the
displacement operators D̂(S z0) and D̂(z0) are related by
the conjugation formula

D̂(S z0) = Ŝ D̂(z0)Ŝ † (220)

(recall that Ŝ † = Ŝ −1 since metaplectic operators are
unitary). This formula is most easily proven using the
generators of Sp(n) and the corresponding generators of
Mp(n); for a complete proof see for instance de Gosson
[44, §8.1.3], also [47]. It easily follows from (220) that
the reflection operator (95) satisfies a similar relation:

Π̂(S z0) = Ŝ Π̂(z0)Ŝ †. (221)

In fact, recalling (formula (151)) that Π̂(z0) =

D̂(z0)ΠD̂(z0)† we have

Π̂(S z0) = D̂(S z0)ΠD̂(S z0)† = Ŝ D̂(z0)(Ŝ †ΠŜ )D̂(z0)†Ŝ †;
(222)
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to get (221) we have to show that Ŝ †ΠŜ = Π since we
will then have

Π̂(S z0) = Ŝ D̂(z0)ΠD̂(z0)†Ŝ † = Ŝ Π̂(z0)Ŝ †. (223)

It suffices for that purpose to show that Ŝ †
A,mΠŜA,m = Π

since the generalized Fourier transforms ŜA,m generate
the metaplectic group. Now, ΠŜA,mψ(x) = ŜA,mψ(−x)
hence, by (192),

ΠŜA,mψ(x) =
(

1
2π~

) n
2 im−

n
2
√
| det B−1|

×

∫
e

i
~A(−x,x′)ψ(x′)dnx′. (224)

Noting that A(−x, x′) = A(x,−x′) (cf. formula (188))
we get, making the change of variables x′ 7−→ −x′,

ΠŜA,mψ(x) =
(

1
2π~

) n
2 im−

n
2
√
| det B−1|

×

∫
e

i
~A(x,x′)ψ(−x′)dnx′ (225)

that is ΠŜA,m = ŜA,mΠ; it follows that we have

Ŝ †
A,mΠŜA,m = Ŝ †

A,mŜA,mΠ = Π. (226)

5.2.2 Symplectic covariance

Collecting the facts above we have:

Theorem 19. Let z = (x, p) be a point in the phase
space R2n and Ŝ a metaplectic operator with projection
πMp(Ŝ ) = S in Sp(n). (i) We have

Wψ(S z) = W(Ŝ −1ψ)(z),

Ambψ(S z) = Amb(Ŝ −1ψ)(z). (227)

(ii) For every symbol a we have

OpW(a ◦ S −1) = Ŝ OpW(a)Ŝ † (228)

where a ◦ S −1(z) = a(S −1z).

Proof. (i) To prove the first identity (227) we recall (for-
mula (133)) that

Wψ(z) =
(

1
π~

)n
〈ψ|Π̂(z)ψ〉 (229)

and hence, using (221) and the unitarity of metaplectic
operators,

Wψ(S z) =
(

1
π~

)n
〈ψ|Ŝ Π̂(z)Ŝ †ψ〉 =

(
1
π~

)n
〈Ŝ †ψ|Π̂(z)Ŝ †ψ〉

(230)
which is precisely (227). The proof of the second identity
(227) is similar using the definition (153) of the ambiguity

function together with property (220). (ii) Recall (formula
(94)) that the Weyl operator Â = OpW(a) can be written

Â =
(

1
π~

)n
∫

a(z)Π̂(z)d2nz (231)

and hence, using (221),

Ŝ ÂŜ −1 =
(

1
π~

)n
∫

a(z)Ŝ Π̂(z)Ŝ −1d2nz

=
(

1
π~

)n
∫

a(z)Π̂(S z)d2nz;

performing the change of variables z′ = S z we have, since
det S = 1,

Ŝ ÂŜ −1 =
(

1
π~

)n
∫

a(S −1z)Π̂(z)d2nz = OpW(a ◦ S −1)

(232)
as claimed. �

Applying the machinery above to the density matrix
we get:

Corollary 20. Let {(ψ j, α j)} be a mixed state with den-
sity matrix ρ̂ and Wigner function ρ. Let Ŝ ∈ Mp(n).
The mixed state {(Ŝψ j, α j)} has density matrix Ŝ ρ̂Ŝ † and
Wigner function ρ(S −1z), where S = πMp(Ŝ ).

Proof. The Wigner distribution of {(Ŝψ j, α j)} is∑
j

α jW(Ŝψ j)(z) =
∑

j

α jWψ j(S −1z) (233)

because of the first formula (227). It follows that the Weyl
symbol of the density matrix corresponding to {(Ŝψ j, α j)}
is a(S −1z) where a = (2π~)nρ is the Weyl symbol of ρ̂;
that Ŝ ρ̂Ŝ † is the density matrix of {(Ŝψ j, α j)} follows
from formula (228). �

Note that the fact that Ŝ ρ̂Ŝ † is the density matrix of
{(Ŝψ j, α j)} can also be proven directly using the definition
(14) of the density matrix in term of projectors.

6 Variable Planck Constant

We now address a controversial theme of this review,
namely the mathematical consequences of possible
changes in the value of Planck’s constant h.

6.1 A consequence of Moyal’s identity

We begin by a few straightforward observations involving
the Moyal identity discussed in Section 4.3.2. Let η be
a real parameter; we assume for the moment that η >

0. This parameter will play the role of a variable ~ =

h/2π. For any square integrable ψ we define the η-Wigner
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transform (or distribution) of ψ by replacing ~ by η in the
usual definition:

Wηψ(x, p) =
(

1
2πη

)n
∫

e−
i
η pyψ(x + 1

2y)ψ∗(x − 1
2y)dny.

(234)
Of course W~ψ = Wψ (the usual Wigner transform). The
mathematical properties of Wηψ are of course the same as
those of Wψ, replacing ~ everywhere with η. In particular,
replacing the ~-Fourier transform (121) with the η-Fourier
transform

Fηψ(p) =
(

1
2πη

)n/2
∫

e−
i
η pxψ(x)dnx (235)

the marginal properties (119) become∫
Wηψ(x, p)dn p = |ψ(x)|2,∫

Wηψ(x, p)dnx = |Fηψ(p)|2 (236)

(ψ ∈ L1(Rn) ∩ L2(Rn)).
The Moyal identity yields∫

Wηψ(z)Wηφ(z)d2nz =
(

1
2πη

)n
|〈ψ|φ〉|2 (237)

which is valid for all square integrable functions ψ and φ
(see de Gosson [46]). In particular∫

Wηψ(z)2d2nz =
(

1
2πη

)n
‖φ‖4. (238)

Let us now address the following question: for a given
ψ, can we find φ such that Wηφ = Wψ for η , ~? The
answer is “no”! More generally:

Theorem 21. (i) A pure state |ψ〉 does not remain a pure
state if we vary ~: let Wψ be the Wigner function of |ψ〉.
There does not exist any state |φ〉 such that Wηφ = Wψ if
η , ~. (ii) Assume that |ψ〉 becomes a mixed state when ~
is replaced with η. Then we must have η ≤ ~.

Proof. (i) We have ψ, φ ∈ L2(Rn). Assume that Wηφ =

Wψ; then∫
Wηφ(x, p)dn p =

∫
Wψ(x, p)dn p (239)

hence, using the marginal properties (119), |φ(x)|2 =

|ψ(x)|2 so that φ and ψ have same norm: ‖φ‖ = ‖ψ‖.
On the other hand, using the Moyal identity (238), the
equality Wψ = Wηφ implies that∫

Wψ(z)2d2nz =
(

1
2π~

)n
‖ψ‖4∫

Wηφ(z)d2nz =
(

1
2πη

)n
‖φ‖4

hence η = ~. (ii) Assume that there exists a sequence
(φ j) of (normalized) functions in L2(Rn) and a sequence
of positive constants α j summing up to one such that
Wψ =

∑
j α jWηφ j. Proceeding as above we get, using

again the marginal properties,

‖ψ‖2 =
∑

j

α j‖φ j‖
2. (240)

On the other hand, squaring Wψ we get

(Wψ)2 =
∑

j,k

α jαkWηφ jWηφk (241)

hence, integrating and using respectively the Moyal iden-
tity for (Wψ)2 and Wηφ jWηφk, and the Cauchy–Schwarz
inequality we get(

1
2π~

)n
‖ψ‖4 =

(
1

2πη

)n ∑
j,k

α jαk|〈φ j|φk〉|
2

≤
(

1
2πη

)n ∑
j,k

α jαk‖φ j‖
2‖φk‖

2

=
(

1
2πη

)n (∑
jα j‖φ j‖

2
)2

=
(

1
2πη

)n
‖ψ‖4

which implies, using (240), that
(

1
2π~

)n
≤

(
1

2πη

)n
, that is

η ≤ ~ as claimed. �

A caveat: property (ii) in the theorem above does not
say that a pure state automatically becomes a mixed state
if we decrease Planck’s constant. It merely says that if a
pure state becomes mixed, it can only happen if Planck’s
constant has decreased. We will see later that this is
related to the uncertainty principle.

6.2 The Quantum Bochner Theorem

6.2.1 Bochner’s theorem

We begin by recalling Bochner’s theorem about the
Fourier transform of a probability density. That theorem
says that a (complex valued) function f on Rm, continu-
ous at the origin and such that f (0) = 1 is the character-
istic function of a probability density on Rm if and only
if it is of positive type, that is, if for all choices of points
z1, . . . , zN ∈ R

m the N × N matrix

F(N) = ( f (z j − zk))1≤ j,k≤N (242)

is positive semidefinite (that is, the eigenvalues of F(N)
are all ≥ 0).

Let us introduce two modifications of the symplectic
Fourier transform Fσ. First we allow the latter to depend
on an arbitrary parameter η , 0 and set

Fσ,ηa(z) = aσ,η(z) =
(

1
2πη

)n
∫

e−
i
ησ(z,z′)a(z′)d2nz′.

(243)
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It coincides with Fσ when η = ~. We next define the
reduced symplectic Fourier transform F^ is by

a^(z) = F^a(z) =

∫
e−iσ(z,z′)a(z′)d2nz′. (244)

Obviously F^a and Fσ,ηa = aσ,η are related by the simple
formula

a^(z) = (2πη)naσ,η(ηz). (245)

With this notation Bochner’s theorem on Fourier trans-
forms of probability measures can be restated in the fol-
lowing way: a real function ρ on R2n is a probability
density if and only if its reduced symplectic Fourier trans-
form ρ^ is continuous, ρ^(0) = 1, and for all choices of
z1, . . . , zN ∈ R

2n the N × N matrix Λ whose entries are
the complex numbers ρ^(z j − zk) is positive semidefinite:

Λ = (ρ^(z j − zk))1≤ j,k≤N ≥ 0 (246)

(A matrix is said to be positive semidefinite if all its
eigenvalues are ≥ 0).

When condition (246) is satisfied one says that the
reduced symplectic Fourier transform ρ^ is of positive
type.

6.2.2 The notion of η-positivity

The notion of η-positivity, due to Kastler [67], generalizes
Bochner’s notion: let a ∈ S′(R2n) and η a real number;
we say that a^ is of η-positive type if for every integer N
the N × N matrix Λ(N) with entries

Λ jk = e−
iη
2 σ(z j,zk)a^(z j − zk) (247)

is positive semidefinite (which we write ≥ 0 for short) for
all choices of (z1, z2, . . . , zN) ∈ (R2n)N :

Λ(N) = (Λ jk)1≤ j,k≤N ≥ 0. (248)

The condition (248) is equivalent to the polynomial
inequalities∑

1≤ j,k≤N

λ jλ
∗
ke−

iη
2 σ(z j,zk)a^(z j − zk) ≥ 0 (249)

for all N ∈ N, λ j, λk ∈ C, and z j, zk ∈ R
2n. If a is of

η-positive type then it is also of of (−η)-positive type as
is immediately seen by taking the complex conjugate of
the left-hand side of (249).

When η , 0 we can rewrite conditions (248)–(249) us-
ing the symplectic η-Fourier transform: replacing (z j, zk)
with η−1(zk, z j) and noting that σ(zk, z j) = −σ(z j, zk) the
conditions (248) are equivalent to

Λ′(N) = (Λ′jk(z j, zk))1≤ j,k≤N ≥ 0 (250)

where

Λ′jk(z j, zk) = e
i

2ησ(z j,zk)aσ,η(z j − zk). (251)

The polynomial conditions (249) become in this case∑
1≤ j,k≤N

λ jλ
∗
ke

i
2ησ(z j,zk)aσ,η(z j − zk) ≥ 0 (252)

6.2.3 KLM condition and the quantum Bochner
theorem

We are now going to prove an essential result (the quan-
tum Bochner theorem) originally due to Kastler [67], and
Loupias and Miracle-Sole [68,69]; also see Parthasarathy
[70, 71] and Parthasarathy and Schmidt [72] for different
points of view. The proof we will give is simpler than
that in [67–69], which uses the theory of C∗-algebras; our
proof is partially based on the discussions in [73–75]. For
this we will need a technical result from linear algebra
(Schur’s Lemma), which says that the entrywise prod-
uct of two positive semidefinite matrices is also positive
semidefinite:

Lemma 22 (Schur). Let A = (A jk)1≤ j,k≤N and B =

(B jk)1≤ j,k≤N be two symmetric matrices with the same
finite dimension N. Defining the Hadamard product of
these matrices by

A ◦ B = (A jkB jk)1≤ j,k≤N (253)

then if A and B both are positive semidefinite, then so is
A ◦ B.

For a proof of this result see for instance Bapat [76].

Theorem 23 (Quantum Bochner). Let ρ̂ be a self-
adjoint trace class operator on L2(Rn):

ρ̂ψ =
∑

j

α j〈ψ j|ψ〉ψ j. (254)

Let ρ =
∑

j α jWψ j be the Wigner function of ρ̂. We
have ρ̂ ≥ 0 if and only if the two following conditions
hold: (i) The reduced symplectic Fourier transform ρ^ is
continuous and ρ^(0) = 1; (ii) ρ^ is of η-positive type.

Proof. Let us first show that the conditions (i)–(ii) are
necessary. Assume that ρ̂ ≥ 0; then

ρ =
∑

j

α jWηψ j (255)

for a family of normalized functions ψ j ∈ L2(Rn), the
coefficients α j being ≥ 0 and summing up to one. It is
thus sufficient to show that the Wigner transform Wηψ

of an arbitrary ψ ∈ L2(Rn) is of η-positive type. This
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amounts to showing that for all (z1, . . . , zN) ∈ (R2n)N and
all (λ1, . . . , λN) ∈ CN we have

IN(ψ) =
∑

1≤ j,k≤N

λ jλ
∗
ke−

i
2ησ(z j,zk)Fσ,ηWηψ(z j − zk) ≥ 0

(256)
for every complex vector (λ1, . . . , λN) ∈ CN and every se-
quence (z1, . . . , zN) ∈ (R2n)N (see condition (252)). Since
the η-Wigner function Wηψ and the η-ambiguity Ambη
function are obtained from each other by the symplectic
η-Fourier transform

Fσ,ηa(z) =
(

1
2πη

)n
∫

e−
i
ησ(z,z′)a(z′)d2nz′ (257)

we have

IN(ψ) =
∑

1≤ j,k≤N

λ jλ
∗
ke−

i
2ησ(z j,zk) Ambη ψ(z j − zk). (258)

Let us prove that

IN(ψ) =
(

1
2πη

)n
‖
∑

1≤ j≤Nλ jD̂η(z j)ψ‖2; (259)

the inequality (256) will follow. Taking into account the
fact that D̂η(−zk)† = D̂η(zk) and using the relation (155)
which becomes here

D̂η(z0)D̂η(z1) = e
i

2ησ(z0,z1)
D̂η(z0 + z1) (260)

we have, expanding the square in
the right-hand side of (259),

‖
∑

1≤ j≤N

λ jD̂η(z j)ψ‖2 =
∑
1≤ j,
k≤N

λ jλ
∗
k〈D̂η(zk)ψ|D̂η(z j)ψ〉 =

∑
1≤ j,
k≤N

λ jλ
∗
k〈D̂η(−z j)D̂η(zk)ψ|ψ〉 =

∑
1≤ j,
k≤N

λ jλ
∗
ke
−

i
2ησ(z j,zk)

〈D̂η(zk−z j)ψ|ψ〉;

in view of formula (153), which becomes here

Ambη ψ(z) =
(

1
2πη

)n
〈D̂η(z)ψ|ψ〉 (261)

we thus have

‖
∑

1≤ j≤N

λ jD̂η(z j)ψ‖2 = (2πη)n
∑
1≤ j,
k≤N

λ jλ
∗
ke
−

i
2ησ(z j,zk)

Ambη ψ(z j − zk) (262)

proving the equality (259).

Let us now show that, conversely, the conditions (i) and
(ii) are sufficient, i.e. that they imply that (̂ρψ|ψ)L2 ≥ 0
for all ψ ∈ L2(Rn); equivalently (see formula (124) in
Theorem 8) ∫

ρ(z)Wηψ(z)d2nz ≥ 0 (263)

for ψ ∈ L2(Rn). Let us set, as above,

Λ′jk = e
i

2ησ(z j,zk)aσ,η(z j − zk) (264)

where z j and zk are arbitrary elements of R2n. To say
that aσ,η is of η-positive type means that the matrix Λ′ =

(Λ′jk)1≤ j,k≤N is positive semidefinite; choosing zk = 0 and
setting z j = z this means that every matrix (aσ,η(z))1≤ j,k≤N

is positive semidefinite. Setting

Γ jk = e
i

2ησ(z j,zk)Fσ,ηWηψ(z j − zk)

= e
i

2ησ(z j,zk) Ambη ψ(z j − zk)

the matrix Γ(N) = (Γ jk)1≤ j,k≤N is positive semidefinite.
Let us now write

M jk = Ambη ψ(z j − zk)ρσ,η(z j − zk); (265)

we claim that the matrix M(N) = (M jk)1≤ j,k≤N is positive
semidefinite. In fact, M is the Hadamard product of the
positive semidefinite matrices M′(N) = (M′jk)1≤ j,k≤N and
M′′(N) = (M′′jk)1≤ j,k≤N where

M′jk = e
i

2ησ(z j,zk) Ambη ψ(z j − zk)

M′′jk = e−
i

2ησ(z j,zk)ρσ,η(z j − zk)

and Schur’s Lemma 22 implies that M(N) is also positive
semidefinite. It follows from Bochner’s theorem that the
function b defined by

bσ,η(z) = Ambη ψ(z)ρσ,η(−z) = Fσ,ηWψ(z)ρσ,η(−z)
(266)

is a probability density; in particular we must have b(0) ≥
0. Integrating the equality above with respect to z we get,
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using the Plancherel formula (12)∫
Fσ,ηa(z)Fσ,ηb(−z)d2nz =

∫
a(z)b(z)d2nz (267)

for the symplectic η-Fourier transform

(2πη)nb(0) =

∫
Ambη ψ(z)ρσ,η(−z)d2nz

=

∫
Wηψ(z)ρ(z)d2nz

hence the inequality (263) since b(0) ≥ 0. �

6.3 Application to quantum states

6.3.1 The covariance matrix

Let ρ(z) be a real function on phase space R2n. We assume
that this function is integrable and that∫

ρ(z)d2nz = 1. (268)

and the marginal identities (119) hold:∫
ρ(x, p)dn p = |ψ(x)|2, (269)∫
ρ(x, p)dnx = |Fψ(p)|2. (270)

We will in addition assume that ρ decreases sufficiently
fast at infinity: ∫

(1 + |z|2)|ρ(z)|d2nz < ∞. (271)

Setting zα = xα if 1 ≤ α ≤ n and zα = pα−n if n + 1 ≤
α ≤ 2n, the covariances and variances of the variables
z = (x, p) associated with ρ are the numbers

∆(zα, zβ) =

∫
(zα − 〈zα〉)(zβ −

〈
zβ

〉
)ρ(z)d2nz (272)

and

(∆zα)2 = ∆(zα, zα) =

∫
(zα − 〈zα〉)2ρ(z)d2nz. (273)

In the formulas (272) and (273) above 〈zα〉 is the average
with respect to ρ of zα; more generally one defines for an
integer k ≥ 0 the moments

〈zk
α〉 =

∫
zk
αρ(z)d2nz. (274)

Notice that our condition (271) guarantees the existence
of both 〈zα〉 and 〈z2

α〉 as follows from the trivial inequali-
ties ∣∣∣∣∣∫ zαρ(z)d2nz

∣∣∣∣∣ ≤ ∫
(1 + |z|2)|ρ(z)|d2nz < ∞ (275)∣∣∣∣∣∫ zαzβρ(z)d2nz

∣∣∣∣∣ ≤ ∫
(1 + |z|2)|ρ(z)|d2nz < ∞. (276)

It follows that the quantities (272) and (273) are well-
defined in view of condition (271). Since the integral of ρ
is equal to one, formulae (272) and (273) can be rewritten
as

∆(zα, zβ) = 〈zαzβ〉 − 〈zα〉〈zβ〉 (277)

(∆zα)2 = ∆(zα, zα) = 〈z2
α〉 − 〈zα〉

2. (278)

We will call the symmetric 2n × 2n matrix

Σ =
(
∆(zα, zβ)

)
1≤α,β≤2n

(279)

the covariance matrix associated with ρ. For instance,
when n = 1

Σ =

(
∆x2 ∆(x, p)

∆(p, x) ∆p2

)
(280)

with

∆x2 = 〈x2〉 − 〈x〉2 , ∆p2 = 〈p2〉 − 〈p〉2

∆(x, p) = 〈xp〉 − 〈x〉〈p〉.

Here is an example: let ρ(z) be given by the formula

ρ(z) = (2π)−n
√

det Σ−1e−
1
2 Σ−1z2

(281)

where Σ is a symmetric positive definite real 2n × 2n ma-
trix. A straightforward calculation involving Gaussian in-
tegrals shows that Σ is precisely the associated covariance
matrix. We will see later that ρ(z) is the Wigner function
of a quantum state if Σ satisfies a certain condition related
to the uncertainty principle. However, ρ(z) can always be
viewed as a classical probability distribution.

6.3.2 Two lemmas

We are going to state two preliminary results which will
be used for the proof of Theorem 26 below characterizing
the covariance matrix of a quantum state. We will not
prove these results here, and refer to the original sources.
That we need so much preparatory material is indicative
of the difficulty of the topic we address.

We begin with the well-known Williamson’s symplec-
tic diagonalization theorem. Let us first recall the follow-
ing terminology [42, 44]: suppose that Σ is a symmetric
positive definite real 2n × 2n matrix. Then the matrix
ΣJ has the same eigenvalues as the antisymmetric matrix
Σ1/2JΣ1/2 (It is antisymmetric because its transpose is
Σ1/2JT Σ1/2 = −Σ1/2JΣ1/2 since JT = −J) and they are
therefore of the type ±iλ1, . . . ,±iλn where λ j > 0. These
numbers λ j are called the symplectic eigenvalues of the
matrix Σ (or sometimes also the Williamson invariants of
Σ). Williamson’s diagonalization result generalizes to the
multidimensional case the elementary observation that
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every 2 × 2 real symmetric matrix Σ =

(
a b
b c

)
with a > 0

and ac − b2 > 0 can be written Σ = S T DS where

S =

(√
a/d b/

√
ad

0
√

d/a

)
, D =

(
d 0
0 d

)
(282)

and d =
√

ac − b2.

Lemma 24 (Williamson). Let Σ be a symmetric positive
definite real 2n × 2n matrix. There exists S ∈ Sp(n) such
that Σ = S T DS where D is the diagonal matrix

D =

(
Λ 0
0 Λ

)
(283)

with Λ = diag(λ1, . . . , λn), the positive numbers λ j being
the symplectic eigenvalues of M.

Proof. See for instance [42,44] and the references therein.
�

For this we will need, in addition to Williamson’s sym-
plectic diagonalization result, the following technical re-
sult:

Lemma 25 (Narcowich). Let f (z) be a twice differen-
tiable function defined on phase space. If f is of η-positive
type then

− f ′′(0) +
iη
2

J ≥ 0 (284)

where f ′′(0) is the matrix of second derivatives (the Hes-
sian matrix) of f (z) at z = 0.

Proof. See Narcowich [77, Lemma 2.1]. �

6.3.3 A necessary (but not sufficient) condition
for a state to be quantum

We are going to prove an essential result, which goes
back to Narcowich [77]. It says that the covariance
matrix of a quantum state must satisfy a certain condi-
tion which implies—but is stronger than—the Robertson–
Schrödinger uncertainty principle.

We recall that it is assumed that the Wigner function ρ
satisfies the condition∫

(1 + |z|2)|ρ(z)|d2nz < ∞. (285)

This implies, among other things, that the Fourier trans-
form (and hence also the symplectic Fourier transform)
of ρ is twice continuously differentiable. In fact, writing

Fρ(z) =
(

1
2π~

)n
∫

e−
i
~ zz′ρ(z′)d2nz′ (286)

we have

∂zαFρ = −
i
~

F[zαρ] , ∂zα∂zβFρ =

(
−

i
~

)2
F[zαzβρ]

(287)
and hence

|∂zαFρ(z)| ≤
1
~

∣∣∣∣∣∫ zαρ(z)d2nz
∣∣∣∣∣ < ∞

|∂zα∂zβFρ(z)| ≤
(
1
~

)2 ∣∣∣∣∣∫ zαzβρ(z)d2nz
∣∣∣∣∣ < ∞

in view of the inequalities (275), (276).

Theorem 26. Suppose that the phase space function ρ
with associated covariance matrix Σ is the η-Wigner trans-
form of a density matrix ρ̂. (i) We have

Σ +
iη
2

J ≥ 0. (288)

(i.e. the Hermitian matrix Σ+
iη
2 J is positive semidefinite);

this condition is equivalent to the inequality

|η| ≤ 2λmin (289)

where λmin is the smallest symplectic eigenvalue of Σ. (ii)
If (288) and (289) hold, then they hold for every η′ < η.

Proof. (i) That Σ +
iη
2 J is Hermitian is clear: since the

adjoint of J is −J we have

(Σ +
iη
2 J)† = Σ† + ( iη

2 J)† = Σ +
iη
2 J. (290)

We next remark that Σ = Σ0 where Σ0 is the covariance
matrix of ρ0(z) = ρ(z + 〈z〉ρ): we have 〈z〉0 = 0 and hence

∆(x j, xk)0 =

∫
x jxkρ0(z)d2nz = ∆(x j, xk)ρ; (291)

similarly ∆(x j, pk)0 = ∆(x j, pk)ρ and ∆(p j, pk)0 =

∆(p j, pk)ρ. It is thus sufficient to prove the result for
the density operator ρ̂0. We are going to use Lemma
25 with f (z) = Fσρ0(z) = ρ0,σ(z). Observing that the
(symplectic) Fourier transform ρ0,σ is twice continuously
differentiable in view of the argument preceding the state-
ment of the theorem, we have

~2ρ′′0,σ(0) = (2π~)−n
(
−Σ0,pp Σ0,xp

Σ0,px −Σ0,xx

)
(292)

and hence
η2ρ′′0,σ(0) =

(
1

2πη

)n
JΣ0J. (293)

Since ρ̂ is a density matrix we have

M = −2η−1JΣJ + iJ ≥ 0; (294)

the condition M ≥ 0 being equivalent to JT MJ ≥ 0 the
inequality (288) follows. Let us finally show that the
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conditions (289) and (288) indeed are equivalent. Let
Σ = S T DS be a symplectic diagonalization of Σ (Lemma
24). Since S T JS = J condition (288) is equivalent to

D +
iη
2

J ≥ 0 , D =

(
Λ 0
0 Λ

)
. (295)

The characteristic polynomial of D +
iη
2 J is

P(λ) =

∣∣∣∣∣∣Λ − λIn
iη
2 In

−
iη
2 In Λ − λIn

∣∣∣∣∣∣
= det

[
(Λ − λIn)2 − 1

4η
2In

]
;

the matrix Λ being diagonal, the zeroes λ of P(λ) are the
solutions of the n equations (λ j − λ)2 − 1

4η
2 = 0 that is

λ j − λ = ± 1
2 |η|. Since λ ≥ 0 we must have λ j ≥

1
2 |η| for

all j hence (289). Property (ii) immediately follows from
(289); it can also be proved directly: setting η′ = rη with
0 < r ≤ 1 we have

Σ +
iη′

2
J = (1 − r)Σ + r(Σ +

iη
2

J) ≥ 0. (296)

�

The relation of the result above with the uncertainty
principle comes from the following observation (see Nar-
cowich [77], de Gosson [44, Chapter 13], de Gosson and
Luef [78]): the relation

Σ + 1
2 iηJ ≥ 0; (297)

(which we will call the strong uncertainty principle) im-
plies the Robertson–Schrödinger inequalities

(∆x j)2
ρ̂(∆p j)2

ρ̂ ≥ (∆(x j, p j)ρ̂)
2 + 1

4η
2 (298)

( j = 1, . . . , n) and (∆x j)2
ψ(∆pk)2

ψ ≥ 0 if j , k. It is
however essential to note that (297) and (298) are not
equivalent. Here is a counterexample in the case n = 2.
Consider the symmetric matrix

Σ =


1 −1 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

 (299)

Assume that Σ is a covariance matrix; we thus have
(∆x1)2 = (∆x2)2 = 1 and (∆p1)2 = (∆p2)2 = 1, and
also ∆(x1, p1) = ∆(x2, p2) = 0 so that the inequalities
(298) are trivially satisfied for the choice η = 1 (they
are in fact equalities). The matrix Σ + iJ is nevertheless
indefinite (its determinant is −1); Σ is not even invertible.

It is also essential to realize that condition (297) is
necessary but not sufficient for a phase space function
to be the Wigner function of a quantum state. Let us

check this on the following example due Narcowich and
O’Connell [74], further discussed in de Gosson and Luef
[79]. Consider the function f (x, p) defined for n = 1 by

f (x, p) = (1 − 1
2 ax2 − 1

2 bx2)e−(a2 x4−b2 p4) (300)

where a and b are positive constants such that ab ≥ 1
4~

2.
Now define

ρ(x, p) =
1

2π

"
e−i(xx′+pp′) f (x′, p′)dp′dx′; (301)

since f (x, p) is an even function ρ(x, p) is real; in view of
the Fourier inversion formula we have

f (x, p) =

"
e−i(xx′+pp′)ρ(x′, p′)dp′dx′ (302)

and hence "
ρ(x, p)dpdx = f (0, 0) = 1 (303)

so that ρ(x, p) is a candidate for being the Wigner func-
tion of some density matrix. Calculating the covariance
matrix Σ associated with ρ, one finds after some tedious
calculations [74, pp. 4–5] that Σ + i~

2 J ≥ 0. However, ρ
cannot be the Wigner function of a density matrix ρ̂ for
if this were the case we would have 〈p4〉ρ̂ ≥ 0; but by
definition of ρ"

p4ρ(x, p)dpdx =
∂4 f
∂x4 (0, 0) = −24a2 < 0. (304)

6.4 Gaussian Bosonic states

We focus now on the case where all involved states are
Gaussian: we say that a pure or mixed quantum state is
Gaussian if its Wigner function is of the type

ρ(z) = (2π)−n
√

det Σ−1e−
1
2 Σ−1(z−z0)·(z−z0) (305)

where Σ (the covariance matrix) is a positive definite
2n × 2n matrix satisfying a certain condition that will be
stated later (intuitively speaking Σ cannot be too small
because then ρ(z) would be too sharply peaked and thus
violate the uncertainty principle of quantum mechanics).
Gaussian states appear naturally in every quantum system
which can be described or approximated by a quadratic
Bosonic Hamiltonian (Wolf et al. [80]); because of their
peculiarities they play an exceptionally important role in
quantum mechanics and optics (see Barnett and Radmore
[81]).
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6.4.1 Definition and examples

We will define a generalized Gaussian as any complex
function on Rn of the type

ψ~M(x) =
(

1
π~

)n/4
(det X)1/4e−

1
2~M(x−x0)2

(306)

where M = X + iY is a complex symmetric 2n × 2n
invertible matrix; X and Y are real matrices such that
X = XT > 0 and Y = YT . The coefficient in front of the
exponential is chosen so that ψ~M is normalized to unity:
‖ψ~M‖ = 1.

Suppose that X = I and Y = 0; then

ψ~M(x) = φ~0(x) =
(

1
π~

)n/4
e−

1
2~ |x|

2
(307)

is the standard (or fiducial) coherent state

Let φM(x) = e−
1
2~Mx2

where M = X+iY is a symmetric
complex n × n matrix such that X = Re M > 0. The
Fourier transform

FφM(p) =
(

1
2π~

)n/2
∫

e−
i
~ pxφM(x)dnx (308)

is given by

FφM(x) = (det M)−1/2φM−1(x) (309)

where (det M)−1/2 is given by the formula

(det M)−1/2 = λ−1/2
1 · · · λ−1/2

m (310)

the numbers λ−1/2
1 , . . . , λ−1/2

n being the square roots with
positive real parts of the eigenvalues λ−1

1 , . . . , λ−1
m of M−1

(see e.g. Folland [66, Appendix A]). It follows that the
Fourier transform of ψ~M is given by the formula

Fψ~M(p) =
(

1
π~

)n/4
(det X)1/4(det M)−1/2φM−1(x). (311)

6.4.2 The Wigner transform of ψ~M

We are following here almost verbatim our discussion
in [44, §11.2.1].

Theorem 27. The Wigner transform Wψ~M is the phase
space Gaussian

Wψ~M(z) =
(

1
π~

)n
e−

1
~Gz2

(312)

where G is the symplectic symmetric matrix

G =

(
X + YX−1Y YX−1

X−1Y X−1

)
; (313)

in fact G = S T S where

S =

(
X1/2 0

X−1/2Y X−1/2

)
(314)

is a symplectic matrix.

Proof. To simplify notation we set C(X) =

(π~)n/4 (det X)1/4. By definition of the Wigner transform
we have

Wψ~M(z) =
(

1
2π~

)n
C(X)2

∫
e−

i
~ pye−

1
2~F(x,y)dny (315)

where the phase F is defined by

F(x, y) = (X + iY)(x + 1
2y)2 + (X − iY)(x − 1

2y)2

= 2Xx2 + 2iY x · y + 1
2 Xy2

so we can rewrite (315) as

Wψ~M(z) =
(

1
2π~

)n
e−

1
~Xx2

C(X)2
∫

e−
i
~ (p+Y x)ye−

1
4~Xy2

dny.

(316)
Using the Fourier transformation formula (309) above
with x replaced by p + Y x and M by 1

2 X we get∫
e−

i
~ (p+Y x)ye−

1
4~Xy2

dny =

(2π~)n/2
[
det( 1

2 X)
]−1/2

C(X)2e−
1
~X−1(p+Y x)2

.

On the other hand we have

(2π~)n/2
[
det( 1

2 X)
]−1/2

C(X)2 =
(

1
π~

)n
(317)

and hence

Wψ~M(z) =
(

1
π~

)n
e−

1
~Gz2

(318)

where

Gz2 = (X + YX−1)x2 + 2X−1Y x · p + X−1 p2 (319)

so that G is given by (313). One immediately verifies that
G = S T S where S is given by (314) and that S T JS = J
hence S ∈ Sp(n) as claimed. �

In particular, when ψ~M is the standard coherent state
(307) we recover the well-known formula

Wφ}0(z) =
(

1
π~

)n
e−

1
~ |z|

2
. (320)

6.4.3 A necessary and sufficient condition

We are going to discuss the following question: For which
values of η can the Gaussian function ρ be the η-Wigner
function of a density operator? Narcowich [82] was the
first to address this question using techniques from har-
monic analysis using the approach in Kastler’s paper [67];
we give here a new and simpler proof using the multidi-
mensional generalization of Hardy’s uncertainty princi-
ple.
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Let us begin with what is usually called in the literature
Hardy’s uncertainty principle. In what follows we denote
by Fηψ the η-Fourier transform given, for ψ ∈ L2(Rn), by

Fηψ(p) =
(

1
2πη

)n
∫

e−
i
η pxψ(x)dnx. (321)

An old result (1933) due to Hardy [83] quantifies the
folk theorem following which a function and its Fourier
transform cannot be simultaneously arbitrarily sharply
peaked. In fact Hardy proved that if ψ ∈ L2(R) satisfies

|ψ(x)| ≤ Ce
−

1
2η ax2

and |Fηψ(p)| ≤ Ce
−

1
2η bx2

(322)

then we must have ab ≤ 1. In particular, if ab = 1 then
ψ(x) = Ne−ax2/2η for some constant N (we are thus here
in the presence of a particular quantum tomography result,
which says that it suffices, in the Gaussian case, to know
the position and momentum probabilities to determines
the state). We will use the following generalization to the
multidimensional case of Hardy’s result:

Lemma 28 (Hardy). Let A and B be two real positive
definite matrices and ψ ∈ L2(Rn), ψ , 0. Assume that

|ψ(x)| ≤ Ce−
1
2 Ax2

and |Fηψ(p)| ≤ Ce−
1
2 Bp2

(323)

for a constant C > 0. Then: (i) The eigenvalues λ j,
j = 1, . . . , n, of the matrix AB are all ≤ 1/η2; (ii) If
λ j = 1/η2 for all j, then ψ(x) = ke−

1
2 Ax2

for some complex
constant k.

Proof. See de Gosson and Luef [78, 84], de Gosson [44].
�

We will also need the following positivity result:

Lemma 29. If R is a symmetric positive semidefinite
2n × 2n matrix, then

P(N) =
(
Rz j · zk

)
1≤ j,k≤N

(324)

is a symmetric positive semidefinite N × N matrix for all
z1, . . . , zN ∈ R

2n.

Proof. There exists a matrix L such that R = L∗L
(Cholesky decomposition). Denoting by 〈z|z′〉 = z · z′

the inner product on C2n we have, since the z j are real
vectors,

L∗z j · zk = 〈L∗z j|zk〉 = 〈z j|Lzk〉 = z j · (Lzk)∗ (325)

hence Rz j · zk = Lz j · (Lzk)∗. It follows that

∑
1≤ j,k≤N

λ jλ
∗
kRz j · zk =

∑
1≤ j≤N

λ jLz j

 ∑
1≤ j≤N

λ jLz j


∗

≥ 0

(326)
hence our claim. �

We now have the tools needed to give a complete char-
acterization of Gaussian η-Wigner functions. Recall from
Theorem 26 that a necessary condition for a matrix Σ

to be the covariance matrix of a quantum state is that it
satisfies the condition Σ +

iη
2 J ≥ 0. It turns out that in the

Gaussian case this condition is also sufficient:

Theorem 30. The Gaussian function

ρ(z) = (2π)−n
√

det Σ−1e−
1
2 Σ−1z2

(327)

is the η-Wigner transform of a positive trace class opera-
tor if and only if it satisfies

|η| ≤ 2λmin (328)

where λmin is the smallest symplectic eigenvalue of Σ;
equivalently

Σ +
iη
2

J ≥ 0. (329)

Proof. Let us give a direct proof of the necessity of
condition (328) for the Gaussian (327) to be the η-
Wigner transform of a positive trace class operator. Let
ρ̂ = (2πη)n OpW

η (ρ) and set a(z) = (2πη)nρ(z). Let Ŝ
∈ Mp(n); the operator ρ̂ is of trace class if and only if
Ŝ ρ̂Ŝ −1 is, in which case Tr(̂ρ) = Tr(Ŝ ρ̂Ŝ −1). Choose
Ŝ with projection S ∈ Sp(n) such that Σ = S T DS is a
symplectic diagonalization of Σ. This choice reduces the
proof to the case Σ = D, that is to

ρ(z) = (2π)−n(det Λ−1)e−
1
2 (Λ−1 x2+Λ−1 p2). (330)

Suppose now that ρ̂ is of trace class; then there exist
functions ψ j ∈ L2(Rn) (1 ≤ j ≤ n) such that

ρ(z) =
∑

j

α jWηψ j(z) (331)

where the α j > 0 sum up to one. Integrating with respect
to the p and x variables, respectively, the marginal con-
ditions satisfied by the η-Wigner transform and formula
(330) imply that we have∑

j

α j|ψ j(x)|2 = (2π)−n/2(det Λ)1/2e−
1
2 Λ−1 x2

∑
j

α j|Fηψ j(p)|2 = (2π)−n/2(det Λ)1/2e−
1
2 Λ−1 p2

.

In particular, since α j ≥ 0 for every j = 1, 2, . . . , n,

|ψ j(x)| ≤ C je−
1
4 Λ−1 x2

, |Fηψ j(p)| ≤ C je−
1
4 Λ−1 p2

(332)

here C j = (2π)−n/4(det Λ)1/4/α1/2
j . Applying Hardy’s

Lemma 28 with A = B = 1
2ηΛ

−1 we must have |η| ≤
2λ j for all j = 1, . . . , n which is condition (328); this
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establishes the sufficiency statement. Let us finally show
that, conversely, the condition (329) is sufficient. It is
again no restriction to assume that Σ is the diagonal matrix

D =

(
Λ 0
0 Λ

)
; the symplectic Fourier transform of ρ is

easily calculated and one finds that ρ^(z) = e−
1
4 Dz2

. Let
Λ(N) be the N × N matrix with entries

Λ jk = e−
iη
2 σ(z j,zk)ρ^(z j − zk); (333)

a simple algebraic calculation shows that we have

Λ jk = e−
1
4 Dz2

j e
1
2 (D+iηJ)z j·zk e−

1
4 Dz2

k (334)

and hence
Λ(N) = ∆(N)Γ(N)∆

∗
(N) (335)

where ∆(N) = diag(e−
1
4 Dz2

1 , . . . , e−
1
4 Dz2

N ) and Γ(N) =

(Γ jk)1≤ j,k≤N with Γ jk = e
1
2 (D+iηJ)z j·zk . The matrix Λ(N)

is thus positive semidefinite if and only if Γ(N) is, but this
is the case in view of Lemma 29. �

Setting 2λmin = } and writing Σ in the block-matrix

form
(
Σxx Σxp

Σpx Σpp

)
where Σxx = (∆(x j, xk))1≤ j,k≤n, Σxp =

(∆(x j, pk))1≤ j,k≤n and so on, one shows [78] that (329) im-
plies the generalized uncertainty relations (the Robertson–
Schrödinger inequalities; see de Gosson and Luef [78]
for a detailed discussion of these inequalities)

∆x2
j∆p2

j ≥ ∆(x j, pk)2 + 1
4~

2 (336)

where, for ≤ j ≤ n, the ∆x2
j = ∆(x j, x j), ∆p2

j = ∆(p j, p j)
are viewed as variances and the ∆(x j, pk) as covariances.
We have given a detailed discussion of the Robertson–
Schrödinger inequalities in de Gosson and Luef [78] from
the symplectic point of view.

7 Some Speculations

7.1 The fine structure constant

Dirac [85] already speculated in 1937 that physical con-
stants such as the gravitational constant or the fine struc-
ture constant might be subject to change over time. This
question has since been a very active area of research
(see the recent reviews [86, 87]). Some scientists have
suggested that the fine structure constant, α ≈ 1/137,
might not be constant, but could vary over time and space.
This dimensionless constant, introduced by Sommerfeld
in 1916, measures the strength of interactions between
light and matter, or equivalently, how strong electrical and
magnetic forces are. It can be expressed as a combination

of three constants: the electron charge, the speed of light,
and Planck’s constant h:

α =
1

4πε0

e2

~c
. (337)

The quest for testing the non-constancy of α is ongoing.
The Oklo natural nuclear reactor is known to give limits
on the variation of the fine structure constant over the pe-
riod since the reactor was running (≈ 1.8 billion years). In
1999, a team of astronomers using a telescope in Hawaii
reported that measurements of light absorbed by very dis-
tant galaxy-like objects in space called quasars—which
are so far away that we see them today as they looked
billions of years ago—suggest that the value of the fine
structure constant was once slightly different from what
it is today. Experiments can in principle only put an up-
per bound on the relative change per year. For the fine
structure constant, this upper bound is comparatively low,
at roughly 10−17 per year. That claim was controversial,
and still unproven. But if true, it must mean that at least
one of the three fundamental constants that constitute α
must vary. The possibility that some constants of Nature
could vary in space-time has remained a subject of fas-
cination which has motivated numerous theoretical and
experimental researches [88, 89].

7.2 Planck’s constant

Kentosh and Mohageg focused on h, and specifically on
whether h depends on where (not when) you measure
it. If h changes from place to place, so do the frequen-
cies, and thus the ticking rate, of atomic clocks. And
any dependence of h on location would translate as a tiny
timing discrepancy between different GPS clocks. The
physicist Freeman Dyson has suggested (private commu-
nication) that the increasing precision of measurements
of time could lead to non-ambiguous results. Mohageg
and his student Kentosh [90,91] have tested the constancy
of h using the freely available data from GPS. Kentosh
and Mohageg were actually motivated by the fact that h
also appears in the fine structure constant, whose possi-
ble variation is a very active area of research in experi-
mental physics. After careful analysis of the data from
seven highly stable GPS satellites, Kentosh and Mohageg
concluded that h is identical at different locations to an
accuracy of seven parts in a thousand. In other words, if
h were a one-metre measuring stick, then two sticks in
different places anywhere in the world would not differ
by more than seven millimeters.

At least as interesting is the possible time-variation of
Planck’s constant (see Mangano et al. [92]). This deserves
to be explored because if true it could shed some light on
the Early Universe, just after the Big Bang. In fact, if the
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fine structure constant has been increasing since the Big
Bang, this could perhaps be due to a decrease of Planck’s
constant. If such a variation could be experimentally
detected, then it would mean, following our discussion
of the quantum Bochner theorem, that the early Universe
was much more quantum than it is now; this would of
course have major implications in terms of entanglement.

7.3 Units

Testing the constancy of a physical parameter means go-
ing to extraordinary lengths in terms of precision mea-
surements, and is intimately related to choices of unit
systems. The physicist Michael Duff [93] remarked in
2002 (also see Duff [86, 94]) that all the fundamental
physical dimensions could be expressed using only one:
mass. Duff first noticed the obvious, namely that lengths
can be expressed as times using c, the velocity of light,
as a conversion factor. One can therefore take c = 1,
and measure lengths in seconds. The second step was
to use the relation E = hν which relates energy to a fre-
quency, that is to the inverse of a time. We can thus
measure a time using the inverse of energy. But energy
is equivalent to mass as shown by Einstein, so that time
can be measured by the inverse of mass. Thus, setting
c = h = 1 we have reduced all the fundamental dimen-
sions to one: mass. A further step consists in choosing a
reference mass such that the gravitational constant (first
measured by Cavendish in 1798) is equal to one: G = 1.
Summarizing, we have obtained a theoretical system of
units in which c = h = G = 1. Now, a very important
physical parameter is, without doubt, the fine structure
constant α = e2/2ε0hc (ε0 the dielectric constant); it is a
dimensionless number whose approximate value is 1/137.
There are other ways to define irreducible unit systems.
Already Stoney, noting that electric charge is quantized,
derived units of length, time, and mass in 1881 by normal-
izing G, c, and e to unity; Planck suggested in 1898–1899
that it would suffice to use G, c, and h to define length,
mass, and time units. His proposal led to what are called
today Planck’s length `P =

√
Gh/c3 and Planck mass and

time MP =
√

hc/G and TP =
√

Gh/c5.
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[38] Sjöqvist E, Pati AK, Ekert A, Anandan JS, Erics-
son M, Oi DKL, Vedral V. Geometric phases for
mixed states in interferometry. Physical Review
Letters 2000; 85(14): 2845–2849. arXiv:quant-
ph/0005072, doi:10.1103/PhysRevLett.85.
2845

[39] Nicacio F, Valdés-Hernández A, Majtey AP,
Toscano F. Unified framework to determine Gaus-
sian states in continuous-variable systems. Physi-
cal Review A 2017; 96(4): 042341. doi:10.1103/
PhysRevA.96.042341

[40] de Gosson MA, Nicacio F. Relative phase shifts
for metaplectic isotopies acting on mixed Gaussian
states. Journal of Mathematical Physics 2018; 59(5):
052106. arXiv:1802.07499, doi:10.1063/1.
5026586

[41] de Gosson MA. On the Weyl representation of meta-
plectic operators. Letters in Mathematical Physics
2005; 72(2): 129–142. arXiv:math/0503708,
doi:10.1007/s11005-005-4391-y

[42] de Gosson MA. Symplectic Geometry and Quan-
tum Mechanics. Operator Theory: Advances and
Applications, vol. 166, Basel: Birkhäuser, 2006.
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systèmes canoniques. II. Annales de l’Institut Henri
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