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An elaborated review with proofs of Schmidt
canonical decomposition of any bipartite state
vector is approached through general subsys-

tem basis expansion. The upgraded forms of Schmidt
decomposition in terms of correlation operator and
twin observables are presented in detail. The discus-
sion is extended to distant measurement, Einstein–
Podolsky–Rosen states and Schrödinger’s steering.
All claims and proofs are given in standard form un-
like in the previous articles of the author where all re-
sults were obtained utilizing the very rarely used anti-
linear Hilbert–Schmidt maps of one subsystem state
space into the other. For practical reasons the for-
malism of partial traces with their rules and reduced
density operators together with correlation operator
are used.
Quanta 2018; 7: 19–39.

This is an open access article distributed under the terms
of the Creative Commons Attribution License CC-BY-3.0, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1 Introduction

The aim of this extended and elaborated review is to
present a detailed exposition of Schmidt decomposition
with almost all claims proved by arguments that mostly
do not coincide with those in previous articles [1–7].

Namely, since much work has been done so far in the
Belgrade school, the present-day views are more mature,
hence they differ from the originally perceived ones and
make possible simpler proofs. This fact alone should
justify writing most of this review as if it were done for
the first time. In addition, many of our research results
have been previously presented in the formalism in which
bipartite state vectors are written as antilinear Hilbert–
Schmidt operators mapping one subsystem state space
into the other (cf [1]), which is not well known, and it
is very rarely used. Eventually, this approach has been
found replaceable by standard basis-independent treat-
ment. The basic aim is an in-depth study of the Schmidt
decomposition. Its various forms are presented with its
underlying foundations in three layers.

We assume that a completely arbitrary bipartite state
vector, i.e., that of a two-subsystem composite system,
|Ψ〉AB is given. It is an arbitrary normalized vector in the
composite-system state spaceHA ⊗HB, where the factor
spaces are finite- or infinite-dimensional complex sepa-
rable Hilbert spaces, the state spaces of the subsystems
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A and B. The statements are, as a rule, asymmetric in the
roles of the two factor spaces. But, as it is well known, for
every general asymmetric statement, also its analogous
symmetric counterpart, obtained by exchanging the roles
of subsystems A and B, is valid.

Having in mind local, i.e. subsystem measurement, we
choose arbitrarily that it is performed on subsystem B.
We call subsystem B the nearby one, and the opposite
subsystem A, which is not affected dynamically by the
local measurement, we call distant one. This is not a
synonym for far away. But the suggestion of the latter
may help to picture the lack of dynamical influence on
subsystem A.

The basic mathematical tools in the analysis are the
partial scalar product (elaborated in §8.1) and the rules of
the partial trace (presented and proved in §8.2).

Hermitian operators, i.e., observables and subsystem
density operators will be given, unless otherwise stated,
in their so-called unique spectral forms, which are defined
by lack of repetition in the eigenvalues. For instance,

O =
∑

k

okPk, k , k′ ⇒ ok , ok′ ,

where ⇒ denotes logical implication. Then Pk is said
to be the eigen-projector of O that corresponds to the
eigenvalue ok, and its range R(Pk) is the corresponding
eigen-subspace. We consider only Hermitian operators
that have a purely discrete spectrum. They are called
discrete operators.

Vectors that are not necessarily of norm one are written
overlined throughout. Besides, when a number multiplies
from the left a vector or an operator, the multiplication
symbol × may be put between them for clarity. One
should keep in mind the convention that if a term in a sum
has two or more factors and the first is zero, the rest need
not be defined; it is understood that the entire term is zero.
In tensor products of vectors we put only occasionally
the tensor multiplication sign ⊗ when more clarity is
required. By basis, we mean a complete orthonormal set
of elements throughout.

The reader will not find, hopefully, the abundant use of
mathematical structure (theorems, propositions, lemmata,
corollaries, remarks and definitions) annoying. They are
important for the many cross-references in the present
paper, as well as for references in future articles. Besides,
they reveal the logical status of the claim they contain.

2 Expansion in a subsystem basis

The natural framework for Schmidt (or biorthogonal) de-
composition is decomposition in a factor-space basis, or,
as we shall call it, expansion in a subsystem basis.

Theorem 1. (A) Let |Ψ〉AB ∈ HA ⊗HB be any bipartite
state vector. Let further {| n〉B : ∀n} be an arbitrary
basis in the state space HB. Then there exists a unique
expansion in the subsystem basis

|Ψ〉AB =
∑

n

|n〉A |n〉B. (1)

The expansion coefficients |n〉A have the form

∀n : |n〉A =
∑

m

(〈m|A 〈n|B|Ψ〉AB)× |m〉A, (2)

where {| m〉A : ∀m} is an arbitrary basis in HA. The
expansion coefficients |n〉A in (1) are elements inHA, and
they are not necessarily of norm one. They depend only
on |Ψ〉AB and the corresponding basis elements |n〉B, and
not on the choice of the rest of basis elements in the basis
{|n′〉B : ∀n′}.

The sums in (1) and (2), if infinite, are absolutely con-
vergent, and one has

‖ |Ψ〉AB‖
2 =

∑
n

‖|n〉A‖
2, (3)

as well as

∀n : ‖|n〉A‖
2 =

∑
m

|〈m|A 〈n|B|Ψ〉AB|
2. (4)

In case of infinity, each of the sums is an absolutely con-
vergent series as inherited from the absolutely convergent
series

|Ψ〉AB =
∑
m,n

(〈m|A 〈n|B|Ψ〉AB)× |m〉A |n〉B. (5)

Further, one can suitably write ∀n : |n〉A = ‖|n〉A‖× |n〉A
(definition of the norm-one elements {| n〉A : ∀n}), and
replace these in (1). Relation (1) then becomes

|Ψ〉AB =
∑

n

‖|n〉A‖× |n〉A |n〉B, (6)

This is an expansion in the orthonormal set of elements
{|n〉A |n〉B : ∀n} inHA ⊗HB. Actually, it is normal in both
factors, but orthogonal, in general, only in the second
one. Some norm-one elements |n〉A may not exist, when
|n〉A = 0 (depending on |Ψ〉AB).

(B) The expansion coefficients can be evaluated utiliz-
ing the partial scalar product

∀n : |n〉A = (〈n|B|Ψ〉AB)A . (7)

Proof. (A) is straightforward, but, on account of the im-
portance of the theorem (see end of the section), it is
presented as easy reading.
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Let {|m〉A : ∀m} be an arbitrary basis inHA. Then one
can perform the expansion (5). As it is well known, if the
double-sum is infinite, the series is absolutely convergent
allowing any change of order in which the terms are
written (any permutation). Hence we can group together
all terms around each |n〉B tensor factor and rewrite (5) as

|Ψ〉AB =
∑

n

∑
m

(〈m|A 〈n|B|Ψ〉AB)× |m〉A

 |n〉B. (8)

Thus one obtains (1) and (2).
In this way we have established that the claimed ex-

pansion exists. Now we show that the expansion coeffi-
cients |n〉A in (1) do not depend on the choice of the basis
{|m〉A : ∀m}. Let {|k〉A : ∀k} be any other basis inHA, and
let ∀m : |m〉A =

∑
k Um,k | k〉A be the unitary transition

matrix. Then, starting with the expansion coefficient eval-
uated in the first basis, we find out its form in the second
basis:

|n〉A =
∑

m

((〈m|A 〈n|B|Ψ〉AB)× |m〉A)

=
∑

k

∑
k′

∑
m

U∗m,kUm,k′(〈k|A 〈n|B|Ψ〉AB)× |k〉A.

Since
∑

m U∗m,kUm,k′ = δk,k′ is valid for the unitary transi-
tion matrix elements, one is further led to

|n〉A =
∑

k

(〈k|A 〈n|B|Ψ〉AB)× |k〉A. (9)

If the expansion coefficient were evaluated in the other ba-
sis, it would give the same element ofHA. The additional
claims in (A) are obvious.

(B) Proof of (7) is given in §8.1, where the partial
scalar product is defined in three and a half ways; one
of them consisting precisely in equating RHS of (2) and
RHS of (7). �

Corollary 1. If the nearby state is pure, i.e., a state vector,
e.g. | n̄〉B, then also the distant state is necessarily pure,
but it can be arbitrary (depending on |Ψ〉AB).

Proof. By assumption ρB = trA (|Ψ〉AB〈Ψ|AB) =| n̄〉B〈n̄ |B.
Choosing a nearby-subsystem basis {|n〉B : ∀n} so that it
contains |n̄〉B, one obtains 〈n|B ρB |n′〉B = δn,n̄δn′,n̄ |n̄〉B〈n̄|B.

On the other hand, expansion (1) implies

〈n|B ρB |n′〉B = 〈n|B trA (|Ψ〉AB〈Ψ|AB) |n′〉B = |n〉A 〈n′ |A.

Altogether,

|n〉A〈n′ |A = δn,n̄δn′,n̄ |n̄〉B〈n̄|B,

i.e., ∀n : |n〉A = δn,n̄|n̄〉A. Hence, |Ψ〉AB =|n̄〉A |n̄〉B. Note
that |n̄〉A is of norm one because so are |Ψ〉AB and |n̄〉B. �

As an alternative proof of Corollary 1 one may
consider the canonical Schmidt decomposition (cf
Definition 3 and relation (14) together with (15,16) be-
low). Then the claim in Corollary 1 is obvious, but the
burden of the proof lies on Theorem 3.

Definition 1. (Purification) If ρ is an arbitrary mixed
state (density operator that is not a rewritten state vector)
of a quantum system in the state space (Hilbert space)H ,
then one can isomorphically mapH onto the subsystem
state spaceHA of a bipartite quantum system the state of
which is inHA ⊗HB, and find a state vector |Ψ〉AB such
that its first-subsystem state operator (reduced density
operator) ρA is isomorphic to the initially given ρ. This
procedure is called purification.

Theorem 2. (Purifiability) Any mixed state ρ can be pu-
rified if it is written as any mixture

ρ =
∑

n

|n〉 〈n| (10)

by writing down a bipartite state vector |Ψ〉AB in the form
(1) with any basis in HB, denoted as {| n〉B : ∀n}, with
expansion coefficients |n〉 given by (3) with added index A.
The subsystem state operator (reduced density operator)
ρA is then isomorphic to ρ.

Proof. Evaluating ρA = trB |Ψ〉AB〈Ψ |AB and keeping in
mind that tr(|n〉A〈n′ |A) = 〈n′ |A|n〉A = δn,n′ , one obtains
ρA =

∑
n |n〉A〈n|A. �

To understand the importance of subsystem-basis de-
composition (1), one must realize that expansion (1) is a
crossroad. A number of different paths lead from it:

(i) Definition of the partial scalar product. Von Neu-
mann in his seminal book [8], in which he gave the math-
ematical grounding of quantum mechanics in case of
infinite-dimensional state spaces, did not encompass par-
tial scalar product and partial trace. Therefore, a careful
mathematical exposition of these concepts is given, to-
gether with the basic properties, in §8.

(ii) The expansion at issue leads to purification
(cf Theorem 2 and relation (4)).

(iii) It is the framework for Schmidt decomposition
(see §3 and further).

(iv) Remark 6 and relation (29) below open the way
for a more fruitful application of (1), particularly for
Schrödinger’s important concept of steering (cf §6.3).

(v) Expansion (1) gives a new angle on the concept of
erasure (cf Remark 23 below).

(vi) A theory of preparation in quantum experiments
can be based on (1): If the preparator is sybsystem B,
and the object on which the experiment is conducted is
subsystem A, and if |Ψ〉AB is the state after interaction,
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then |n〉B is the state of the preparator that the experimenter
sees at the end of the preparation, and simultaneously
| n〉A is then the state of the experimental object (at the
beginning of the experiment). This will be elaborated in
future work.

(vii) Expansion (1) can play a crucial role in Everett’s
relative-states interpretation of quantum mechanics: The
state |n〉A is the relative state of subsystem A with respect
to the state |n〉B of subsystem B in the composite-system
state |Ψ〉AB. A detailed discussion of this and its ramifica-
tions is left for future work.

Subsystem-basis expansion (1), and the enumerated
paths (i) and (iv)-(vii) that lead away from it were not
analyzed in previous work. This material is new in this
article.

3 Schmidt decomposition

Now we define Schmidt (or biorthogonal) decomposition.
It is well known and much used in the literature.

Definition 2. If besides the basis elements |n〉B also the
expansion coefficients |n〉A are orthogonal in expansion
(1), then one speaks of a Schmidt or biorthogonal decom-
position. It is usually written in terms of subsystem state
vectors {|n〉A : ∀n} that are not only orthogonal, but also
normalized:

|Ψ〉AB =
∑

n

αn |n〉A |n〉B, , (11)

where ∀n : αn are complex numbers, and ∀n : |n〉A and
|n〉B for the same n value are referred to as partners in a
pair of Schmidt states.

The term Schmidt decomposition can be replaced by
Schmidt expansion or Schmidt form. To avoid confusion,
we will stick to the first term throughout (as it is usually
done in the literature).

Theorem 3. Expansion (1) is a Schmidt decomposition
if and only if the second-tensor-factor-space basis {|n〉B :
∀n} is an eigenbasis of the corresponding reduced density
operator ρB = trA (|Ψ〉AB〈Ψ|AB):

∀n : ρB |n〉B = rn |n〉B, 0 ≤ rn. (12)

Proof. Let us evaluate 〈n|A|n′〉A making use of (2).

〈n|A|n′〉A = (〈Ψ|AB|n〉B)
(
〈n′ |B|Ψ〉AB

)
= 〈Ψ|AB

(
|n〉B〈n′ |B

)
|Ψ〉AB

= tr
(
(|Ψ〉AB〈Ψ|AB)(|n〉B〈n′ |B)

)
= trB

(
(trA(|Ψ〉AB〈Ψ|AB)) (|n〉B〈n′ |B)

)
= trB

(
ρB(|n〉B〈n′ |B)

)
= 〈n′ |B ρB |n〉B.

The third equality in the above derivation, where the
expectation value is rewritten as a suitable trace, is a
standard, textbook step. (Evaluating the trace in a basis in
which the relevant state vector is one of the basis elements,
the equality becomes obvious.) In the fourth equality, the
first partial-trace rule (cf §8.2) was used.

We have obtained

〈n|A|n′〉A = 〈n′ |B ρB |n〉B. (13)

It is clear from relation (13) that the vectors {|n〉A : ∀n}
are orthogonal if and only if ρB is diagonal, and this is
the case if and only if the eigenvalue relations (12) are
valid as claimed. �

Corollary 2. If one expands |Ψ〉AB in a second-subsystem
basis like in (1), then the subsystem state (reduced density
operator) ρA is given as a mixture (3). If, in addition,
the B-subsystem basis is an eigenbasis of ρB, then (3) is
simultaneously also a spectral decomposition of ρA (in
terms of its eigenvectors).

Now we turn to a special form of Schmidt decompo-
sition that is often more useful. It is called canonical
Schmidt decomposition. It is due to the fact that the non-
trivial phase factors of the non-zero coefficients αn in (11)
can be absorbed either in the basis elements in HA or
in those inHB (or partly in the former and partly in the
latter).

Definition 3. If in a Schmidt expansion (11) all αm are
non-negative real numbers, then we write the expansion
in the following way:

|Ψ〉AB =
∑

i

r
1
2
i |i〉A |i〉B, (14)

and the sum is confined to non-zero terms (one is re-
minded of all this by the replacement of the index n by i in
this notation). Relation (14) is called canonical Schmidt
decomposition. (The term canonical reminds of the form

of (14), i.e., of ∀i : r
1
2
i > 0.)

Needless to say that every |Ψ〉AB can be written in the
form of a canonical Schmidt decomposition, and it is, of
course, non-unique.

Corollary 3. Every canonical Schmidt decomposition
(14) is accompanied by the spectral forms of the reduced
density operators:

ρA =
∑

i

ri |i〉A〈i|A, (15)

ρB =
∑

i

ri |i〉B〈i|B . (16)
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Note that the same eigenvalues ri appear in (14) and in
the two spectral forms (15) and (16). Note also that (15)
is the same as (3) if the RHS of (3) is determined by (1),
and {|n〉B : ∀n} is an eigenbasis of ρB.

Proof. The Schmidt canonical decomposition (14) allows
the straightforward evaluation

ρA = trB (|Ψ〉AB〈Ψ|AB)

=
∑
i,i′

r
1
2
i r

1
2
i′ trB

(
|i〉A |i〉B〈i′ |A 〈i′ |B

)
=

∑
i,i′

r
1
2
i r

1
2
i′ (|i〉A〈i

′ |A)tr
(
|i〉B〈i′ |B

)
=

∑
i

ri |i〉A〈i|A

(the first partial-trace rule in §8.2 was used). Relation
(16) is proved symmetrically. �

Remark 1. The ranges R(ρs), s = A, B, of the reduced
density operators ρs, s = A, B are equally dimensional.
The common dimension is the number of terms in a canon-
ical Schmidt decomposition (14). It is sometimes called
the Schmidt rank of the given bipartite state vector.

We denote the range-projectors of the reduced density
operators ρs, s = A, B by Qs, s = A, B. It is seen from
(15,16) that

QA =
∑

i

|i〉A〈i|A, (17)

QB =
∑

i

|i〉B〈i|B . (18)

The reduced density operators have equal positive
eigenvalues {ri > 0 : ∀i} (implying equality of the
multiplicities of the distinct ones among them). The
possible zero eigenvalues may differ arbitrarily (cf
(15,16)).

The Schmidt canonical decomposition was studied in
a previous work [2].

Corollary 4. The following relations are always valid:

|Ψ〉AB = Qs |Ψ〉AB, s = A, B. (19)

Proof. Since Qs =
∑

i | i〉s〈i |s, s = A, B, the claim is
obvious when |Ψ〉AB is written as a canonical Schmidt
decomposition (14). �

Corollary 5. One always has

|Ψ〉AB ∈ R(QAQB). (20)

Remark 2. If we enumerate by j the distinct positive
common eigenvalues {r j > 0 : ∀ j} of ρs, s = A, B, and
by Q j

s, s = A, B the corresponding eigen-projectors, then
one has the relations

ρs =
∑

j

r jQ
j
s, s = A, B, (21)

R̄(ρs) = R(Qs) =

⊕∑
j

R(Q j
s) s = A, B. (22)

∀ j : dim
(
R(Q j

A)
)

= dim
(
R(Q j

B)
)
< ∞. (23)

As to (22), one should note that if and only if
dim (R(ρs)) = ∞, s = A, B, then the range R(ρs) is a
linear manifold that is not equal but only dense in its topo-
logical closure R̄(ρs), s = A, B. The symbol ⊕ denotes
orthogonal sum of subspaces.

One should also note that all positive-eigenvalue eigen-
subspacesR(Q j

s) are necessarily always finite dimensional
((23)) because

∑
i ri = 1 (a consequence of the normal-

ization of |Ψ〉AB), and hence no positive-eigenvalue can
have infinite degeneracy. But there may be denumerably
infinitely many distinct positive eigenvalues r j.

We refer to (21,22,23) as the subsystem picture of |Ψ〉AB.
It serves as a first layer of an underlying grounding for
Schmidt decomposition.

Remark 3. One can say that one has a canonical Schmidt
decomposition (14) if and only if the expansion is bi-
orthonormal and all expansion coefficients are positive.

Remark 4. A canonical Schmidt decomposition (14) of
any bipartite state vector |Ψ〉AB is non-unique because
the eigen-sub-basis {| i〉B : ∀i} of ρB spanning its range
R(ρB) is non-unique. Even if ρB is non-degenerate in all
its positive eigenvalues, there is the non-uniqueness of
the phase factors of |i〉B.

4 Correlated Schmidt
decomposition

We investigate further the mentioned non-uniqueness (see
end of the preceding section). In the canonical Schmidt
decomposition (14) it is clear that the entanglement in
|Ψ〉AB boils down to the choice of the partner in the terms
of the decomposition.

We introduce explicitly this choice of a partner keeping
in mind the subsystem picture (cf (21,22,23)). It turns out
that the best thing to do is to define an antiunitary map
that takes the (topologically) closed range R̄(ρB) onto the
symmetrical entity R̄(ρA).

The map is called the correlation operator, and it is
denoted by the symbol Ua [2–4].
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Definition 4. If a canonical Schmidt decomposition (14)
is given, then the two orthonormal sub-bases of equal
power {|i〉B : ∀i} and {|i〉A : ∀i} appearing in it determine
an antiunitary, i.e., antilinear and unitary, operator Ua,

the correlation operator, which is a correlation entity
inherent in the given state vector |Ψ〉AB:

∀i : |i〉A ≡ (Ua |i〉B)A . (24)

The correlation operator Ua, mapping R̄(ρB) onto
R̄(ρA), is well defined by (24) and by the additional re-
quirements of antilinearity (complex conjugation of num-
bers, coefficients in any linear combination on which the
operator may act) and continuity (if the bases are infinite).
Both these requirements follow from that of antiunitarity.
Preservation of every scalar product up to complex con-
jugation, which, by definition, makes Ua antiunitary, is
easily seen to follow from (24) and the requirements of
antilinearity and continuity because Ua takes a basis into
another one.

Definition 5. On account of Definition 4 and (24), any
canonical Schmidt decomposition (14) of any bipartite
state vector |Ψ〉AB can be written in the form

|Ψ〉AB =
∑

i

r
1
2
i (Ua |i〉B)A ⊗ |i〉B. (25)

This form is called a correlated canonical Schmidt de-
composition. (In [5, §2], instead of the term correlated,
the term strong was used.)

One should note that (25) contains all the entities that
appear in (14) plus (explicitly) the correlation operator
Ua, which is implicitly contained in (14). Expansion (25)
makes explicit the fact that the opposite-subsystem eigen-
sub-basis {| i〉A : ∀i} in (14) is not just any such set of
vectors once the eigen-sub-basis {|i〉B : ∀i} is chosen.

Theorem 4. The correlation operator Ua is uniquely
determined by the given (arbitrary) bipartite state vector
|Ψ〉AB.

Proof. Let {| j, k j〉B : ∀k j,∀ j} and {| j, l j〉B : ∀l j,∀ j}
be two arbitrary eigen-sub-bases of ρB spanning R̄(ρB).
The vectors are written with two indices, j denoting the
eigen-subspace R(Q j

B), ∀ j : Q j
B ≡

∑
k j | j, k j〉B〈 j, k j |B,

corresponding to the eigenvalue r j of ρB to which the
vector belongs, and the other index k j ( l j) enumerates
the vectors within the eigen-subspace R(Q j

B) in case the
eigenvalue r j of ρB is degenerate, i.e., if its multiplicity is
more than 1.

The proof goes as follows. Let

∀ j : | j, k j〉B =
∑

l j

U( j)
k j,l j
| j, l j〉B,

where U( j)
k j,l j

are unitary sub-matrices. Then, keeping Ua

one and the same, we can start out with the correlated
Schmidt decomposition in the k j-eigen-sub-basis, and
after a few simple steps (utilizing the antilinearity of Ua

and the unitarity of the transition sub-matrices), we end up
with the correlated Schmidt decomposition (of the same
|Ψ〉AB) in the l j-eigen-sub-basis. Complex conjugation is
denoted by asterisk.

|Ψ〉AB =
∑

j

r
1
2
j

∑
k j

(
Ua | j, k j〉B

)
A
| j, k j〉B

=
∑

j

r
1
2
j

∑
k j

∑
l j

(
U( j)

k j,l j

)∗ (
Ua | j, l j〉B

)
A
⊗

∑
l′j

(
U( j)

k j,l′j
| j, l′j〉A

)
B

=
∑

j

r
1
2
j

∑
l j

∑
l′j

∑
k j

(
U( j)

k j,l j

)∗
U( j)

k j,l′j

(
Ua | j, l j〉B

)
A
⊗ | j, l′j〉B

=
∑

j

r
1
2
j

∑
l j

∑
l′j

δl j,l′j

(
Ua | j, l j〉B

)
A
⊗ | j, l′j〉B

=
∑

j

r
1
2
j

∑
l j

(
Ua | j, l j〉B

)
A
| j, l j〉B.

�

It may seem that the uniqueness of Ua when |Ψ〉AB is
given is a poor compensation for the trouble one has treat-
ing an antilinear operator. But the difficulty is more psy-
chological than practical, because all that distinguishes
an antiunitary operator from a unitary one is

(i) its antilinearity, i.e. it complex-conjugates the num-
bers in any linear combination on which it acts, and

(ii) its property that it complex-conjugates every scalar
product (preserving its absolute value):

〈ψ||φ〉 =
(
(〈ψ| U†a)(Ua |φ〉)

)∗
.

The full compensation comes, primarily from the insight
in entanglement that Ua furnishes, from its practical use-
fulness, and, at last but not at least, from its important
physical meaning.

The physical meaning of the correlation operator Ua

is best discussed in the context of Schrödinger’s steering
(see three passages beneath relation (70) in §6.3 below).
One should realize that physical meaning in quantum
mechanics comes always heavily packed in mathematics.
One must discern the physics in the haze of the formalism.
This is attempted below.

Remark 5. The correlated Schmidt canonical expansion
(25) can be viewed in two opposite ways:

(i) as a given bipartite state vector |Ψ〉AB determining
its two inherent entities, the reduced density operator ρB

in spectral form (cf (16)) and the correlation operator Ua

(cf (24)), both relevant for the entanglement in the state
vector (and one can read them in the given expansion);
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(ii) as a given pair (ρB,Ua) ( Ua mapping antiunitarily
R̄(ρB) onto some equally dimensional subspace of HA)
determining a bipartite state vector |Ψ〉AB.

The second view of correlated Schmidt expansion al-
lows a systematic generation and classification of all state
vectors inHA ⊗HB (cf [6]).

Theorem 5. The expansion coefficients {|n〉A : ∀n} in any
subsystem-basis expansion (1) can be evaluated, besides
by (2), also utilizing the reduced density operator ρB and
the correlation operator Ua as follows:

∀n : |n〉A =

(
Uaρ

1
2
B |n〉B

)
A
. (26)

Proof. We substitute a canonical Schmidt decomposition
of |Ψ〉AB in (2) for an arbitrary n value:

|n〉A = 〈n|B|Ψ〉AB

= 〈n|B

∑
i

r
1
2
i |i〉A |i〉B


=

∑
i

r
1
2
i 〈n|B|i〉B× |i〉A. (27)

On the other hand, evaluating the RHS of (26) making
use of the spectral form (16) of ρB and of (24), we obtain:

Uaρ
1
2
B |n〉B = Ua

∑
i

r
1
2
i |i〉B〈i|B

 |n〉B
=

∑
i

r
1
2
i (〈i|B|n〉B)∗ × (Ua |i〉B)A

=
∑

i

r
1
2
i 〈n|B|i〉B× |i〉A. (28)

The asterisk denotes complex conjugation. It is required
by the antilinearity property of the correlation operator.
Comparing (27) and (28), we see that they are equal. �

Theorem 5, as it stands, is new with respect to previ-
ous work. Though, in [2, Eq. 34] an analogous result was
obtained, the derivation was formulated and presented in
the approach in which bipartite states are written as an-
tilinear Hilbert–Schmidt mappings ofHB intoHA. This
approach is almost never used in the literature.

Remark 6. Substituting (26) in (1) one obtains

|Ψ〉AB =
∑

n

(
Uaρ

1
2
B |n〉B

)
A
⊗ |n〉B. (29)

This can be called a generalized correlated canonical
Schmidt decomposition. Note that the nearby subsystem
basis {|n〉B : ∀n} is not necessarily an eigenbasis of ρB;
it is arbitrary. This is how it is a generalization. Form
(29) of expansion in a subsystem basis is relevant for
Schrödinger’s steering discussed in detail in §6.3 below.

Remark 7. Theorem 5 and relation (26) enables one
to prove the uniqueness of the correlation operator Ua

independently of Theorem 4. Namely, this uniqueness
is a consequence of the uniqueness of the partial scalar
product (proved in §8.1).

Remark 8. When a pair of orthonormal sub-bases {|i〉B :
∀i} and {| i〉A : ∀i} appearing in a canonical Schmidt
decomposition (14) is given, one can extend Ua to the
entireHB, denote the extended operator as Ūa, and write

Ūa =
∑

i

|i〉AK〈i|B, (30)

where K is complex conjugation (denoted by asterisk
when acting on numbers). Definition (30) is actually
symbolical. Its true meaning consists in the following.

∀ |φ〉B ∈ HB : Ūa |φ〉B =

∑
i

|i〉AK〈i|B

 |φ〉B
=

∑
i

(〈i|B|φ〉B)∗ |i〉A. (31)

The extended operator Ūa acts as Ua in the range R(ρB),
and it acts as zero in the null space of ρB. In other words,
one can write

Ūa = UaQB, (32)

where QB is the range projector of ρB. Since QB projects
onto the range, it does not matter that Ua is defined only
on the range.

Remark 9. As one can easily see, utilizing complete or-
thonormal eigen-bases of ρs, s = A, B (cf (15,16,17,18)
and (24)), one has

ρA = UaρBU−1
a QA, (33)

ρB = U−1
a ρAUaQB. (34)

Thus, the reduced density operators are, essentially, im-
ages of each other via the correlation operator. The
term essentially points to the fact that the dimensions of
the null spaces are independent of each other. Property
(33,34) is called twin operators. More will be said about
such pairs of operators below, cf Definition 6 below.

In terms of subspaces, to (33,34) correspond the image-
relations

R(QA) = UaR(QB), (35)

R(QB) = U−1
a R(QA). (36)

One obtains an even more detailed view when one takes
into account the eigen-subspaces R(Q j

s) of ρs correspond-
ing to (the common) distinct positive eigenvalues r j of ρs,

where Q j
s projects onto the r j−eigen-subspace, s = A, B

(cf the subsystem picture (21,22,23)). Then one obtains a

Quanta | DOI: 10.12743/quanta.v7i1.69 January 2018 | Volume 7 | Issue 1 | Page 25

http://dx.doi.org/10.12743/quanta.v7i1.69


view of the entanglement in a given composite state |Ψ〉AB

in terms of the so-called correlated subsystem picture [3]:

ρs =
∑

j

r jQ
j
s, s = A, B, (37)

and in terms of subspaces

R̄(ρs) =

⊕∑
j

R(Q j
s), s = A, B, (38)

where ⊕ denotes an orthogonal sum of subspaces.
Further, as it is also straightforward to see in eigen-

bases of ρs, s = A, B,

∀ j : R(Q j
A) = UaR(Q j

B),

R(Q j
B) = U−1

a R(Q j
A). (39)

The correlation operator makes not only the ranges of
the reduced density operators images of each other, but
also all positive-eigenvalue eigen-subspaces of the re-
duced density operators. In other words, the correla-
tion operator Ua, making the reduced density operators
ρs, s = A, B images of each other, makes also the eigen-
decompositions of the ranges R(ρs), s = A, B images of
each other.

The relations (33,34,35,36) and (37,38,39) constitute
the correlated subsystem picture of the given state vector
|Ψ〉AB in terms of operators and corresponding subspace
state entities. This is the second layer in the underlying
grounding of the (correlated) Schmidt decomposition.

5 Twin-correlated Schmidt
decomposition

In the correlated subsystem picture of a given bipartite
state vector | Ψ〉AB (in the preceding section) we have
searched for a comprehension of entanglement and its
canonical form, but doing so we have investigated only
state entities ρA, ρB,Ua . Now, we introduce observables
that can contribute to the theory by enriching and broad-
ening our understanding.

Lemma 1. Let |Ψ〉AB be a bipartite state vector, ρA its first-
subsystem reduced density operator, QA the range pro-
jector of the latter, and OA =

∑
k okPk

A a first-subsystem
observable in spectral form. Let further P,0

A be the sum
of all those eigen-projectors Pk

A of OA that do not nullify
|Ψ〉AB. Then, P,0

A QA = QA, i.e., P,0
A ≥ QA, or, in words,

P,0
A is larger than QA or equivalently R(P,0

A ) ⊇ R(QA).

Proof. One can write

ρA = trB (|Ψ〉AB〈Ψ|AB)

= trB

∑
k

Pk
A |Ψ〉AB〈Ψ|AB


= P,0

A ρA

where the second partial-trace rule in §8.2 was used.
Taking an eigen-sub-basis {|i〉A : ∀i} of ρA spanning its

range, one can further write ρA in spectral form and one
obtains∑

i

ri |i〉A〈i|A=
∑

i

riP,0
A |i〉A〈i|A, ∀i : ri > 0.

Applying this to an eigenvector | ī〉A corresponding to
rī > 0, one obtains rī | ī〉A = rīP

,0
A | ī〉A. Finally, since

QA =
∑

i |i〉A〈i|A, the claimed relation follows. �

Definition 6. Let OA ≡
∑

k akPk
A and OB ≡

∑
l blPl

B be
opposite-subsystem Hermitian operators (observables) in
spectral form. If one can renumerate all eigen-projectors
Pk

A and Pl
B that do not nullify the given composite state

vector |Ψ〉AB by a common index, e.g. m, so that

∀m : Pm
A |Ψ〉AB = Pm

B |Ψ〉AB (40)

is valid, then the operators OA and OB are said to be twin
operators or twin observables in |Ψ〉AB. Twin projectors
will also be called twin events.

In [7] twin observables were called physical twins, and
also algebraic twins, were mentioned. They were defined
by OA |Ψ〉AB = OB |Ψ〉AB.

Remark 10. Introducing P,0
s ≡

∑
m Pm

s , s = A, B,
Lemma 1 implies P,0

s Qs = Qs, i.e., that Qs is a sub-
projector of P,0

s : Qs ≤ P,0
s , or equivalently, R(Qs) ⊆

R(P,0
s ), s = A, B. Further, we can define P=0

s , s = A, B
as the sum of all nullifying eigen-projectors: P=0

A ≡∑
k′ Pk′

A , where ∀k′ : Pk′
A | Ψ〉AB = 0, and symmet-

rically for subsystem B. Then it further follows that
∀k′ : Pk′

s ≤ P=0
s ≤ Qc

s, where Qc
s ≡ Is − Qs is the

null-projector of ρs, s = A, B.

Proposition 1. The corresponding results am and bm of
subsystem measurements of twin observables are equally
probable and ideal measurement causes equal change of
the bipartite state:

∀m : 〈Ψ|AB Pm
A |Ψ〉AB = 〈Ψ|AB Pm

B |Ψ〉AB, (41)

|Ψ〉AB〈Ψ|AB →
∑

m

Pm
A |Ψ〉AB〈Ψ|AB Pm

A

=
∑

m

Pm
B |Ψ〉AB〈Ψ|AB Pm

B . (42)
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Proof. Follows directly from Definition 6 and (40). �

Theorem 6. If OA and OB are twin operators
(cf Definition 6), then each of their non-nullifying eigen-
projectors Pm

s , s = A, B commutes with the correspond-
ing reduced density operator

∀m : [Pm
A , ρA] = 0, (43)

[Pm
B , ρB] = 0. (44)

Proof. Straightforward evaluation, utilizing (40) and both
partial-trace rules from §8.2, gives:

Pm
AρA = Pm

A trB (|Ψ〉AB〈Ψ|AB)

= trB
(
(Pm

A |Ψ〉AB)〈Ψ|AB
)

= trB
(
(Pm

B |Ψ〉AB)〈Ψ|AB
)

= trB
(
|Ψ〉AB)(〈Ψ|AB Pm

B )
)

= trB
(
|Ψ〉AB)(〈Ψ|AB Pm

A )
)

= (trB (|Ψ〉AB)(〈Ψ|AB)) Pm
A

= ρAPm
A

The symmetrical claim is proved similarly. �

We now state and prove (for the reader’s convenience)
a basic claim of quantum mechanics that is crucial for our
further development of the correlated subsystem picture
(elaborated in the preceding section).

Lemma 2. Let O =
∑

k okPk and Ō =
∑

l ōlP̄l be two
commuting Hermitian operators (each with a purely dis-
crete spectrum) in spectral form. Then also

∀k, ∀l : [Pk, P̄l] = 0. (45)

Proof. Let | k, qk〉 be a complete orthonormal eigenba-
sis of O: ∀k, qk : O | k, qk 〉 = ok | k, qk 〉. Then
O(Ō | k, qk〉) = ŌO | k, qk〉 = ok(Ō | k, qk〉). Hence,
Pk(Ō | k, qk〉) = (Ō | k, qk〉) = ŌPk | k, qk〉. Further,
for k′ , k, Pk(Ō | k′, qk′〉) = PkPk′(Ō | k′, qk′〉) = 0 =

ŌPk | k′, qk′〉. Thus, ∀k : [Pk, Ō] = 0. Applying this
result to the last commutation itself, one finally obtains
∀k, l : [Pk, P̄l] = 0 as claimed. �

Definition 7. Let OB =
∑

k akPk
B be a nearby-subsystem

observable that commutes with the corresponding reduced
density operator ρB of a given bipartite state vector |Ψ〉AB.
Also, let us index the non-nullifying eigen-projectors of
OB by m. Then, according to Lemma 2, each eigen-
projector Pm

B of OB commutes with Qc
B, the null-projector

of ρB (cf Remark 10), because it is also the eigen-
projector of ρB corresponding to its zero eigenvalue. This
implies that it also commutes with QB because the latter
is ortho-complementary to Qc

B. Hence, for each value of

m, we can define the minimal sub-projector Pmin,m
B that

acts on |Ψ〉AB equally as Pm
B . Equivalently:

∀m : Pmin,m
B |Ψ〉AB = Pm

B |Ψ〉AB,

Pmin,m
B ≤ Pm

B , Pmin,m
B ≤ QB. (46)

Naturally,

∀m : Pmin,m
B = Pm

B QB = QBPm
B QB. (47)

Finally, we can define

Omin
B ≡

∑
m

amPmin,m
B (48)

and call it the minimal part of OB.

Proposition 2. If OB =
∑

k akPk
B commutes with ρB, then

the corresponding minimal operator Omin
B can be obtained

as follows:
Omin

B ≡ OBQB. (49)

Proof. We write OB = (
∑

m amPm
B) +

∑
k′ ak′Pk′

B . Here
by Pk′

B are denoted the nullifying eigen-projectors of OB

(cf Remark 10). Then (47), (48), and Remark 10 imply

OBQB =

∑
m

amPm
B +

∑
k′

ak′Pk′
B

 QB

=

∑
m

amPmin,m
B +

∑
k′

ak′Pk′
B Qc

B

 QB

=
∑

m

amPmin,m
B = Omin

B .

�

Remark 11. Commutation (44) and Remark 10, which
claims that QB = QB

∑
m Pm

B , and since ∀ j : Q j
BQB =

Q j
B, the former relation implies ∀ j : Q j

B
∑

m Pm
B = Q j

B,
in conjunction with (47), lead to the following spectral
operator decomposition:

ρB =
∑

j

r j

∑
m

Q j
BPmin,m

B , (50)

or in terms of the corresponding subspaces

R(QB) =

⊕∑
j

⊕∑
m

(
R(Q j

B) ∩ R(Pmin,m
B

)
. (51)

Naturally, the RHS of (50) may contain zero operator
terms, and on the RHS of (51) may appear corresponding
zero subspaces.

Quanta | DOI: 10.12743/quanta.v7i1.69 January 2018 | Volume 7 | Issue 1 | Page 27

http://dx.doi.org/10.12743/quanta.v7i1.69


Remark 12. As it is well known, the commutation re-
lations (44) and (43) imply that there exist common
eigen-bases of ρB and Omin

B in R(QB) as well as of ρA

and Omin
A in R(QA). We are primarily interested in the

former. Let by ( jm)′ be denoted a pair of indices for
which Q j

BPmin,m
B , 0. We introduce a third index q( jm)′ to

enumerate the orthonormal vectors in the corresponding
non-zero subspaces R(Q j

B) ∩ R(Pmin,m
B ).

Remark 13. The decomposition without zero terms is

QB =
∑
( jm)′

Q j
BPmin,m

B

=
∑
( jm)′

∑
q( jm)′

|( jm)′q( jm)′〉B〈( jm)′q( jm)′ |B . (52)

Definition 8. Expanding a given bipartite state | Ψ〉AB

in the subsystem sub-basis appearing in (52), we obtain,
what we call, the twin-correlated canonical Schmidt de-
composition:

|Ψ〉AB =
∑
( jm)′

∑
q( jm)′

r
1
2
j |( jm)′q( jm)′〉A |( jm)′q( jm)′〉B, (53)

with

∀( jm)′q( jm)′ : |( jm)′q( jm)′〉A =
(
Ua |( jm)′q( jm)′〉B

)
A

(54)

(cf the correlated canonical Schmidt decomposition (14)).
If the role of the correlation operator Ua is not made ex-
plicit in (53) or, equivalently, if (54) is not joined to it, i.e.,
(53) itself (as it stands) we call twin-adapted canonical
Schmidt decomposition.

As a consequence of (54), one has

∀( jm)′ : Q j
APmin,m

A = Ua
(
Q j

BPmin,m
B

)
U−1

a QA, (55)

∀( jm)′ : Q j
BPmin,m

B = U−1
a

(
Q j

APmin,m
A

)
UaQB. (56)

The following result is another consequence of (54).

Theorem 7. If Omin
s , s = A, B are minimal twin observ-

ables for |Ψ〉AB, then

∀m : Pmin,m
B =

′∑
j

∑
q( jm)′

|( jm)′q( jm)′〉B〈( jm)′q( jm)′ |B, (57)

∀m : Pmin,m
A =

′∑
j

∑
q( jm)′

|( jm)′q( jm)′〉A〈( jm)′q( jm)′ |A, (58)

where the prime sum over j denotes restriction to those
terms in which j with the given m gives a non-zero sub-
space in (51). Further,

∀m : Pmin,m
A = UaPmin,m

B U−1
a QA, (59)

∀m : Pmin,m
B = U−1

a Pmin,m
A UaQB. (60)

Relations (52,54,55,56,59,60) constitute the twin-
correlated subsystem picture. It is the third and most
intricate layer of the underlying foundation of Schmidt
decomposition. It completes the correlated subsystem
picture (cf (33,34,35,36) and (37,38,39)) by the pair of
minimal twin observables Omin

A , Omin
B , and the latter pic-

ture was, in turn, a completion of the subsystem picture
(cf (21,22,23)) by the correlation operator.

The original articles [1–7], which have been reviewed
here, did not present the third layer of foundation suf-
ficiently precisely and transparently. Therefore, a com-
pletely new derivation is given in this section.

One may wonder if there may exist two different ob-
servables OA and ŌA both twins with one and the same
opposite-subsystem observable OB in a given |Ψ〉AB.

Proposition 3. If OA and ŌA are both twin observables
with one and the same opposite-subsystem observable OB,
then

Omin
A = Ōmin

A .

Proof. Follows immediately from (59). �

Remark 14. One can have OA , ŌA only if ρA is singular,
and then the only difference is in the terms Pm

A Qc
A, where

Qc
A ≡ IA − QA is the null-space projector of ρA. The

operators Pm
A Qc

A are sub-projectors of Qc
A. These terms in

the projectors Pm
A = Pm

A QA + Pm
A Qc

A nullify |Ψ〉AB. Taking
OA or ŌA means no difference for the entanglement in
|Ψ〉AB because the latter takes place between R(QB) and
R(QA) (with no regard to the null spaces of ρs, s = A, B).

The minimal form of a discrete subsystem Hermitian
operator that commutes with the corresponding reduced
density operator of the given bipartite state vector |Ψ〉AB

(cf Definition 7 and Proposition 2) was not defined ex-
plicitly in previous work. Hence, the presentation there
of this last and most intricate form of Schmidt decompo-
sition and its underlying entanglement foundation was
not so transparent. In the present exposition there is new
insight and there are new results.

One may wonder which observables OB do have a twin
observable in the given bipartite state.

Theorem 8. Let |Ψ〉AB be any bipartite state vector and
OB ≡

∑
l blPl

B be an observable for the nearby subsys-
tem B. OB has a twin observable OA if and only if

(A) OB, as an operator, commutes with the correspond-
ing reduced density operator: ρB = trA (|Ψ〉AB〈Ψ|AB),
[OB, ρB] = 0. Then there exists a unique minimal twin
observable Omin

A .
(B) If the bipartite state is expanded in an eigenbasis

{|l, ql〉B : ∀l, ql} of OB

|Ψ〉AB =
∑

l

∑
ql

|l, ql〉A |l, ql〉B
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the expansion coefficients satisfy the orthogonality condi-
tions: 〈l, ql |A|l′, ql′〉A = 0 whenever l , l′.

Proof. (A) follows in a straightforward way from (52),
for which the commutation of OB with ρb is sufficient
(cf Lemma 2). Then, with the help of (54), the eigen-
projectors Pmin,m

A are defined by (58).
(B) Obvious. �

Remark 15. One may further wonder whether, if
[OB, ρB] = 0 and | Ψ 〉AB is expanded in the com-
mon eigenbasis of these two operators, it can happen
that one does not obtain a twin-adapted Schmidt de-
composition of the bipartite state. The answer is: No,
it cannot happen! One necessarily obtains a twin-
adapted Schmidt decomposition in terms of Omin

B and
Omin

A ≡
∑

m om
(
UaPmin,m

B U−1
a

)
QA (cf Definition 7 and

Proposition 2), where QA =
∑

i (Ua |i〉B)A

(
〈i|B U†a

)
A

, and
the eigenvalues {om : ∀m} are arbitrary distinct non-zero
real numbers (they are irrelevant).

One may also wonder if there exits a bipartite state
that has no twin observables. The answer is again: No!
Formally, the reduced density operators ρs, s = A, B
themselves are twin operators, as obvious in the canonical
Schmidt decomposition (cf (14)). They, or any other
Hermitian operators with the same eigen-projectors, can
be viewed as minimal (in the sense of Definition 7) twin
observables.

6 Distant measurement and
Einstein–Podolsky–Rosen states

The approach based on correlation operator as an entan-
glement entity furnished a specific view of a historically
important notion: the Einstein–Podolsky–Rosen paradox.

6.1 Distant measurement

Let any bipartite state vector | Ψ〉AB be given, and let
OA =

∑
m amPm

A + O′A and OB =
∑

m bmPm
B + O′B be

twin observables in it (cf Definition 6). The relations
O′A |Ψ〉AB = 0 = O′B |Ψ〉AB are valid.

The change of state in non-selective [9] (when no
definite-result sub-ensemble is selected) ideal measure-
ment [10–12]

|Ψ〉AB〈Ψ|AB →
∑

m

Pm
B |Ψ〉AB〈Ψ|AB Pm

B (61)

can be caused, in principle, by direct measurement on
the nearby subsystem B. Further, this composite-system

change of state implies the ideal-measurement change of
state

ρB →
∑

m

Pm
BρBPm

B (62)

on the nearby subsystem B (obtained when the partial
trace over subsystem A is taken).

In this case, by the very definition of subsystem mea-
surement, there is no interaction between the measuring
instrument and the distant subsystem A.

Proposition 4. In spite of lack of interaction with the dis-
tant subsystem A in the composite-system change-of-state
(61), this subsystem nevertheless undergoes the ideal-
measurement change

ρA →
∑

m

Pm
AρAPm

A (63)

due to the entanglement in |Ψ〉AB.

Proof. The change is implied by (42), and seen by taking
the partial trace over subsystem B. �

Definition 9. Change (63) is said to be due to distant
measurement (on the distant subsystem A) [2].

Remark 16. It has been proved in [13] that the ideal
change (63) on the distant subsystem A can be caused by
any exact subsystem measurement of the twin observable
on the nearby subsystem B. The entanglement in |Ψ〉AB

does not distinguish, as far as influencing the distant sub-
system is concerned, ideal measurement, non-ideal non-
demolition (synonyms: predictive, first-kind, repeatable)
measurement and even demolition (synonyms: retrodic-
tive, second-kind, non-repeatable) measurements on the
nearby susbsystem as long as they are exact measure-
ments.

Remark 17. Distant measurement is always ideal mea-
surement. Moreover, the non-selective version does
not change the state of the opposite distant subsys-
tem A at all. Namely, on account of the commutation
∀m : [Pm

A , ρA] = 0 (cf (43) in Theorem 6), one has∑
m

Pm
AρAPm

A =
∑

m

ρAPm
A

= ρA

∑
m

Pm
A

= ρA

∑
m

Pm
A +

∑
k̄

Pk̄
A


= ρA,

(cf Remark 10). Hence, only the selective version of
distant measurement may change the distant state.
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Remark 18. One may further write

ρA =
∑

m

Pm
AρAPm

A

=
∑

m

tr(ρBPm
B ) ×

Pm
AρAPm

A

tr(ρAPm
A )

and view mathematically ρA as an orthogonal mixture
of substates (selected subensembles empirically) each
predicting a definite value of OA. The selective distant
measurements reduce ρA to the corresponding state term.
Since non-selective measurement is actually the entirety
of all selective measurements, the true physical meaning
of the change (63) is in making the term states available
to selective measurement.

Remark 19. Let ρA =
∑

m wmρ
m
A ( wm being statistical

weights: ∀m : wm ≥ 0,
∑

m wm = 1) be an arbitrary
orthogonal decomposition of the distant state ρA. It can
be realized by non-selective distant measurement caused
by a suitable subsystem measurement on the nearby sub-
system B. Namely, the range projectors Qm

A of the term
states ρm

A are orthogonal. Defining ∀m : Pmin,m
A ≡ Qm

A
and OA ≡

∑
m amPmin,m

A ( am any distinct real numbers),
one has the commutation [OA, ρA] = 0, and, according
to Theorem 8 (reading it in reverse), there exists a mini-
mal twin observable OB for the opposite subsystem. Its
measurement gives rise to the distant measurement of OA,
and hereby to the orthogonal state decomposition that we
have started with.

Let us for the moment forget about twin observables,
and consider more general ones.

Remark 20. Non-selective measurement of any nearby-
subsystem observable OB =

∑
l blPl

B gives rise to a distant
state decomposition

ρA = trB (|Ψ〉AB〈Ψ|AB)

=
∑

l

trB
(
Pl

B(|Ψ〉AB〈Ψ|AB)
)

=
∑

l

trB
(
Pl

B(|Ψ〉AB〈Ψ|AB)Pl
B

)
=

∑
l

〈Ψ|AB Pl
B |Ψ〉AB ×

trB
(
Pl

B(|Ψ〉AB〈Ψ|AB)Pl
B

)
tr

(
Pl

B(|Ψ〉AB〈Ψ|AB)Pl
B

) .
where idempotency and the first partial-trace rule (cf §8.2)
were used. Note that selective measurement of the same
nearby subsystem observable gives, by, what is called,
distant preparation, a term state in the above distant state
decomposition. The latter itself is a way of writing ρA as
a mixture.

Remark 21. A subsystem measurement of a twin
observable OB =

∑
l blPl

B in a given state | Ψ 〉AB

(cf Definition 6) measures actually the correspond-
ing minimal observable Omin

B =
∑

m bmPmin,m
B

(cf Definition 7 and Proposition 2). But, on ac-
count of the correlation operator as an entanglement
entity contained in the bipartite state, simultane-
ously and ipso facto also the distant twin observable
Omin

A =
∑

m amPmin,m
A =

∑
m am

(
UaPmin,m

B U−1
a

)
is dis-

tantly measured. This makes the role of entanglement
transparent.

To my knowledge it is an open question if the counter-
part of Remark 19 holds true for non-orthogonal decom-
positions of ρA, i.e., if every such decomposition can be
given rise to by measurement of some nearby-subsystem
observable.

6.2 Einstein–Podolsky–Rosen states

Definition 10. If a bipartite state vector | Ψ〉AB allows
distant measurement of two mutually incompatible ob-
servables (non-commuting operators) OA and ŌA, then we
say that we are dealing with an Einstein–Podolsky–Rosen
state [14].

Theorem 9. A state |Ψ〉AB is an Einstein–Podolsky–Rosen
state if and only if at least one of the positive eigenvalues
r j of ρB = trA |Ψ〉AB〈Ψ|AB is degenerate, i.e., has multi-
plicity at least two. This amounts to some repetition in

the expansion coefficients r
1
2
i in the canonical Schmidt

decomposition (14).

Proof. Considering the twin-correlated subsystem pic-
ture (cf (52,54,55,56,59,60), it is straightforward to see
that if at least one non-zero subspace R

(
Q j

BPmin,m
B

)
,

indexed by ( jm)′, is two or more dimensional, then,
and only then, one can have two different eigen-bases
{| ( jm)′q( jm)′ 〉B : ∀( jm)′,∀q( jm)′} and {|( jm)′r( jm)′〉B :
∀( jm)′,∀r( jm)′} so that the correlation operator Ua

can determine the corresponding (also different) eigen-
bases {

(
Ua |( jm)′q( jm)′〉B

)
A

: ∀( jm)′,∀q( jm)′} and

{
(
Ua|( jm)′r( jm)′〉B

)
A

: ∀( jm)′,∀r( jm)′} of distant incom-
patible minimal observables Omin

A and Ōmin
A . �

The original Einstein–Podolsky–Rosen paper [14] dis-
cussed the two-particle state | Ψ〉AB defined by a fixed
eigenvalue ~p of the total linear momentum

( p̂A + p̂B) |Ψ〉AB = ~p |Ψ〉AB,

where p̂A and p̂B are the particle linear momentum vector
operators, and a fixed eigenvalue ~r of the relative radius
vector

(r̂A − r̂B) |Ψ〉AB = ~r |Ψ〉AB.

For clarity, the operators are denoted with hats to distin-
guish them from fixed eigenvalues of vectors.
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The discussion went essentially as follows: If one per-
forms a position measurement of the nearby particle B and
obtains the value ~rB, then ipso facto the distant particle A
acquires without interaction, via distant measurement, the
value ~rA = ~r + ~rB. On the other hand, as an alternative,
one can perform a linear momentum measurement of the
nearby particle with a result ~pB and also obtain, by distant
measurement, a definite value of the linear momentum
~pA = ~p − ~pB of the distant particle without interaction.

The authors found this conclusion paradoxical in view
of the contention that quantum mechanics was complete,
and |Ψ〉AB did not contain the mentioned values obtained
without interaction (with a spooky action as Einstein liked
to say), and, moreover, it could not contain the two in-
compatible values simultaneously as valid for one and
the same pair of particles because position and linear
momentum are incompatible.

As a slight formal objection, one may notice that the
mentioned fixed values of the total linear momentum and
the relative radius vector belong to continuous spectra,
and the corresponding state is of infinite norm (a general-
ized vector). Bohm pointed out [15] that one can easily
escape this formal difficulty by taking for |Ψ〉AB not the
original Einstein–Podolsky–Rosen state described above,
but the well known singlet two-particle spin state

|Ψ〉AB =
1
√

2
(|↑〉A |↓〉B − |↓〉A |↑〉B) , (64)

where ↑ and ↓ denote spin-up and spin-down respectively
along any axis. For the same |Ψ〉AB given by (64) one can
choose either the z-axis or the x-axis, and make an argu-
ment in complete analogy with the Einstein–Podolsky–
Rosen state described above. Then it is fully within the
quantum formalism.

It appears that the authors of [14] consider that the
paradoxical nature of an Einstein–Podolsky–Rosen state
lies in its contradiction with completeness of the quantum-
mechanical description of an individual bipartite system
(which was claimed by the Copenhagen interpretation).
Actually, this contradiction may be viewed to be present
in every entangled bipartite state |Ψ〉AB because it has at
least one pair of twin observables (cf the final parts of the
preceding section). They make possible selective distant
measurement, and it creates (or finds) a definite value of
the distant twin observable that was not a sharp value in
|Ψ〉AB.

One can find articles in the literature in which all entan-
gled bipartite states are called Einstein–Podolsky–Rosen
states. It might be due to realization of this point. The
more so, since Schrödinger’s view of distant correlations,
discussed in the next subsection, brings home this point.

Let us return to the singlet state given by (64). (It
is hard to find a simpler and better known Einstein–

Podolsky–Rosen state.) Let us choose to measure the
spin component of the nearby particle B along the z-axis.
Let further the measuring instrument be in the initial or
ready-to-measure state |0〉m, and the experimenter in the
ready-to-watch the result state |0〉e. The entire four-partite
system is in the initial state

|Ψ〉AB |0〉m |0〉e =
1
√

2
(|↑〉A |↓〉B− |↓〉A |↑〉B)⊗ |0〉m |0〉e.

(65)
At the end of the measurement, the four-partite system is,
e.g., in the state

|↑〉A |↓〉B⊗ |z, ↑A, ↓B〉m |z, ↑A, ↓B〉e, (66)

where |z, ↑A, ↓B〉m is the state of the measuring instrument
in which the so-called pointer position show the results
↓ for subsystem B, and ↑ for the distant subsystem A,
and |z, ↑A, ↓B〉e is the analogous state of the experimenter
in which the counterpart of the pointer position is the
corresponding contents of consciousness.

Einstein, Podolsky and Rosen were troubled by the
idea that, in transition from (65) to (66), the result ↑A was
brought about in a distant action without interaction (a
spooky action), which could not be reconciled with basic
physical ideas that reigned outside quantum mechanics.
It seems to me that the father of relativity ideas in physics
has fallen victim to the Bohrian (or Copenhagen) sugges-
tion that (66) describes absolute reality. But no wonder;
this was more than two decades before Everett’s relative-
state ideas appeared [16].

In previous work [17, §7C] I have adopted, what I call
humorously, a pocket edition of Everett’s relative-state
interpretation of quantum mechanics. (I was sticking to
the idea of a laboratory, forgetting about parallel worlds
in a multiverse [18].) I have called the approach relative
reality of unitarily evolving states (RRUES).

Let me apply RRUES to the above direct measurement
on subsystem B, and to the simultaneous distant measure-
ment on subsystem A.

If the unitary evolution of the system does not change
spin projections, then the above initial four-partite state
(65) evolves into the state

1
√

2
(|↑〉A |↓〉B⊗ |z, ↑A, ↓B〉m |z, ↑A, ↓B〉e +

|↓〉A |↑〉B⊗ |z, ↓A, ↑B〉m |z, ↓A, ↑B〉e). (67)

Here the state (66) is one of the components, one of the
branches in Everett’s terminology. The point is that the
result | z, ↑A, ↓B〉m is relative to the state | z, ↑A, ↓B〉e of
the observer. Reality of the measurement results are only
relative to the branch in which the observer finds himself.
I think this is a suitable realization of Mermin’s Ithaca
mantra “the correlations, not the correlata” [19].
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One might object that replacing absolute reality of
the description of a quantum state by its relative reality
is unacceptable. It is well known that for some time
the same objection was raised when Einstein replaced
absolute motion by relative motion. Nowadays we find
no difficulty with it.

Thus, in RRUES there is no spooky action in distance
without interaction. One might wonder if RRUES as a
new term is justified, when it is pure Everett’s relative-
state theory. Actually, the new term serves the sole pur-
pose of emphasizing (via the two R’s) the new relativity
idea introduced by Everett in his seminal work.

As it was pointed out in Remark 20, any non-selective
or selective measurement on the nearby subsystem B
gives rise to distant state decomposition or distant state
preparation respectively on the distant subsystem A. One
can easily see that two choices of distinct non-selective
direct measurements on subsystem B can induce state
decompositions on subsystem A that do not have a com-
mon continuation (finer decomposition), and hence are
actually incompatible. This might be viewed as a kind of
a generalized Einstein–Podolsky–Rosen phenomenon.

Realizations of Einstein–Podolsky–Rosen states in
thought and real experiments are pointed out in the second
and third passage of §7 below.

6.3 Schrödinger’s steering

Relation (29) introduces explicitly the correlation opera-
tor into investigations of the effects on the distant subsys-
tem A caused by measurement performed on the nearby
subsystem B . This enabled the Belgrade school to have
an original angle and elaborate Schrödinger’s approach
to distant correlations.

The role of the correlation operator in studying distant
nearby-subsystem measurement effects has thus led to
the articles [1, 20, 21]. But they were written partly in
the antilinear Hilbert–Schmidt operators approach, which
has been abandoned in this review.

For the reader’s convenience we rewrite (and renumer-
ate) relation (29):

|Ψ〉AB =
∑
n′

(
Uaρ

1
2
B |n

′〉B

)
A
⊗ |n′〉B. (68)

Inserting U−1
a UaQB (= QB) between ρ

1
2
B and |n′〉B in

(68), which can be done because ρ
1
2
BQB = ρ

1
2
B, one obtains

the equivalent formula

|Ψ〉AB =
∑
n′
ρ

1
2
A
(
UaQB |n′〉B

)
A ⊗ |n

′〉B (69)

due to Uaρ
1
2
BU−1

a QA = ρ
1
2
A (cf (33) etc).

If a nearby-subsystem observable

OB =
∑
n′

bn′ |n′〉B〈n′ |B, n′′ , n′′′ ⇒ bn′′ , bn′′′ ,

is measured ideally and selectively having, e.g., the result
bn̄ in mind, then | Ψ〉AB is hereby converted into the

uncorrelated bipartite state
(
Uaρ

1
2
B |n̄〉B

)
A
⊗ | n̄〉B. This

implies the fact that the distant subsystem A is brought
into the state (cf (6))

|n̄〉A =

(
Uaρ

1
2
B |n̄〉B

)
A

‖

(
Uaρ

1
2
B |n̄〉B

)
A
‖

=

(
Uaρ

1
2
B

QB| n̄〉B
‖QB| n̄〉B‖

)
A

‖

(
Uaρ

1
2
B

(QB| n̄〉B)
‖QB| n̄〉B‖

)
A
‖

. (70)

The fact that ρ
1
2
B = ρ

1
2
BQB is always valid was utilized

(cf Corollary 4).
The nearby-subsystem measurement that leads to (70)

was called steering by Schrödinger [22, 23] and distant
steering in previous work of the present author [20, 21].
It is also called distant preparation of a state. It is part
of a distant state decomposition (cf Remark 20) that is
brought about by the ideal non-selective measurement of
the nearby observable OB mentioned above.

Schrödinger pointed out [22, 23] the paradoxical fact
that a skilful experimenter can steer, without any inter-
action, a distant particle (that is correlated with a nearby
one on account of past interactions) into any of a wide set
of states.

The basic steering formula (70) makes clear what the
physical meaning of the correlation operator Ua is. It
plays an essential role in determining into which state
the distant subsystem is steered. Since this determination
takes place jointly with ρB, the physical meaning of Ua

is much more clear when the action of ρB is simplified.
This is the case when | n̄〉B =| i〉B (cf (15), i.e., when

ρB | n̄〉B = ri | n̄〉B. Then ρ
1
2
B amounts in (70) to multi-

plication with r
1
2
i , and this has no effect on steering; it

affects only the probability (see below). Then | n̄〉B is
steered into the state (Ua |i〉B)A =| i〉A. If the eigenvalue
ri is degenerate, i.e., if R(Q j

B) for r j = ri is at least two
dimensional, then the action of Ua in mapping R(Q j

B)
onto R(UaQ j

BU−1
a )

(
= R(Q j

A)
)

(cf the correlated subsys-
tem picture ((33,34,35,36) and (37,38,39)), is non-trivial.
Otherwise, it determines the phase factor of |i〉A.

Viewing all this in analogy with classical probability
theory, one can say that the occurrence of |n̄〉B〈n̄|B is the
condition in the conditional probability, which is the state
vector given by the LHS of (70).
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Remark 22. From (70) follows that all choices of |n̄〉B that
have the same projection in R(ρB) give the same distant
state, and if two choices of nearby state vectors differ only
by a phase factor, so do the corresponding distant states.

Proposition 5. (A) All states |φ〉A that belong to R(ρ
1
2
A)

and no other states can be brought about by distant steer-
ing.

(B) A given state |φ〉A ∈ R(ρ
1
2
A) can be steered into, i.e.,

it can be given rise to by selective direct measurement of
|n̄〉B〈n̄|B in |Ψ〉AB (cf passage below (68)), if and only if

0 ,
QB |n̄〉B
‖QB |n̄〉B‖

=
ρ
− 1

2
B U−1

a |φ〉A

‖ρ
− 1

2
B U−1

a |φ〉A‖
.

Proof. (A) follows immediately from relation (69) and
(B).

(B) Relation (68) is seen to imply the claim if one

has in mind the fact that in R̄(ρB) ρ
1
2
B is non-singular and

it maps R̄(ρB) onto R(ρ
1
2
B) in a one-to-one way (cf (75)

below). �

Proposition 5B implies the Lemma of Hadjisavvas
[24]: For any given density operator ρ a state vector |φ〉
can appear in a decomposition ρ = w |φ〉〈φ | +

∑
k wkρk

(where w +
∑

k wk = 1, each ρk is a density operator,
and the sum is finite or countably infinite) if and only if
|φ〉 ∈ ρ

1
2 (let us call it suitability).

That every suitable state vector can appear in a de-
composition follows from Proposition 5B by perform-
ing purification transforming by isomorphism ρ into
ρA = trB (|Ψ〉AB〈Ψ|AB) in any way (cf Theorem 2), and
then taking a basis inHB that contains the final state vec-
tor in the relation in Proposition 5B. Clearly, this will
give a pure-state decomposition of ρA in which |φ〉〈φ| will
appear.

That no state vector outside ρ
1
2 can appear in a decom-

position can be seen by writing down such a decomposi-
tion, then using it for purification (cf Theorem 2), and
getting into contradiction with Proposition 5.

Remark 23. A well-known special case of steering is
quantum erasure [25]. For instance, the well-known
two-slit interference disappears when linear polarizers, a
vertical and a horizontal one, are put on the respective
slits [26] because entanglement with the polarization (in-
ternal degree of freedom) suppresses the coherence. But
a 45◦ polarization analyzer can restore (or revive) the
interference. (The suppressing entanglement is erased.)
Here choice of the analyzer is actually choice of the state
|n̄〉B in Proposition 5B.

One should note that steering is not a deterministic
operation. As it follows from (68), the state (70) comes

about with the probability p(bn̄) = ‖ρ
1
2
B | n̄〉B‖

2 (because
a unitary operator does not change the norm). As easily
seen, one actually has

p(bn̄) = ‖QB |n̄〉B‖2 ×
∥∥∥∥∥ρ 1

2
B

QB |n̄〉B
‖QB |n̄〉B‖

∥∥∥∥∥2
. (71)

Relation (71) implies that all choices of |n̄〉B the projec-
tions in R(ρB) of which differ only by a phase factor have
the same probability.

Since, on account of the positive-eigenvalue eigen-
subspaces R(Q j

B) of ρB, one has QB =
∑

j Q j
B, and (71)

can be further rewritten as

p(bn̄) = ‖QB |n̄〉B‖2 ×
∑

j

r j ×

∥∥∥∥∥∥∥ Q j
B |n̄〉B

‖QB |n̄〉B‖

∥∥∥∥∥∥∥
2 . (72)

Remark 24. One can see in (72) that the probability of
successful steering (occurrence of |n̄〉B〈n̄|B) is larger if:

(i) |n̄〉B has a larger projection in the range R(ρB) (if it
is more in the range than in the null space), and

(ii) the projection is more favorably positioned in the
range (if it grabs larger eigenvalues r j).

On account of Remark 24(i), it is practical to restrict
oneself to state vectors from the range

|n〉B = QB |n〉B. (73)

Choice (73) implies

p(bn) =

∥∥∥∥∥ρ 1
2
B |n〉B

∥∥∥∥∥2
=

∑
j

r j ×

∥∥∥∥Q j
B |n〉B

∥∥∥∥2
(74)

(cf (37)).
In my previous work [21], Lemmata 1–3 give a de-

tailed mathematical account of the fine structure of R(ρB)

concerning the action of ρ
1
2
B. Neither the approach of writ-

ing bipartite state vectors in terms of antilinear Hilbert–
Schmidt operators that is adopted in the article nor the re-
sults of Lemmata 1–3 do I consider physically sufficiently
important (at the time of writing this review). Hence it
is not reproduced here. All that should be pointed out is
that one always has

R(ρ) ⊆ R(ρ
1
2 ) ⊆ R̄(ρ), (75)

and if dim(R(ρ) < ∞, then one has equality throughout in
(75), and if dim(R(ρ) = ∞, then both inclusion relations
are proper. It is also worth pointing out that the mentioned
Lemmata 1–3, unlike the rest of the article, are stated
and proved in terms of standard quantum-mechanical
arguments.
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Remark 25. In case of infinite-dimensional range R(ρB),

the distant states in R̄(ρA) 	 R(ρ
1
2
A), where 	 denotes set-

theoretical substraction (of a subset), are a kind of irra-
tionals concerning steering: one cannot steer the distant
subsystem into these states exactly, but one can achieve

this arbitrarily closely (because R(ρ
1
2
A) is dense in R̄(ρA),

cf (75)).

Remark 26. As it was pointed out in Remark 20, one can
perform measurement of an incomplete observable OB,
i.e., one that has degenerate eigenvalues, on the nearby
subsystem and obtain distant state decomposition in the
non-selective version, or state preparation in the selective
version. In the latter case one has generalized steering,
which results, in general, in a mixed state of the distant
subsystem.

Schrödinger’s steering has recently drawn much atten-
tion. For example, steering was generalized to mixed
states in [27]. Asymmetric steering was studied in [28].
See also the review article in [29].

7 Concluding remarks

In the article “On bipartite pure-state entanglement struc-
ture in terms of disentanglement” [1], Schrödinger’s dis-
entanglement, i.e., distant state decomposition, as a phys-
ical way to study entanglement, is carried one step further
with respect to previous work in investigating the quali-
tative side of entanglement in any bipartite state vector.
Distant measurement or, equivalently, distant orthogonal
state decomposition from previous work (cf Remark 18
and Remark 19) is generalized to distant linearly inde-
pendent complete state decomposition both in the non-
selective and the selective versions (cf Remark 20). The
results are displayed in terms of commutative square dia-
grams, which show the power and beauty of the physical
meaning of the antiunitary correlation operator Ua inher-
ent in any given bipartite state vector |Ψ〉AB. It is shown
that linearly independent distant pure-state preparation,
which is caused by selective measurement of an observ-
able OB on the nearby system that does not commute with
its state operator ρB (cf Theorem 6), carries the highest
probability of occurrence among distant preparations that
are not obtained by selective distant measurement.

In the two-part article “On Einstein–Podolsky–Rosen-
type entanglement in the experiments of Scully et al.”,
“I. The micromaser case and delayed-choice quantum era-
sure” and “II. Insight in the real random delayed-choice
erasure experiment” [17, 30], intricate realizations of
Einstein–Podolsky–Rosen states in a thought experiment
and a real experiment respectively are discussed.

In the preprint “Quantum correlations in multipartite

states. Study based on the Wootters–Mermin theorem”
[31] a nice example of an Einstein–Podolsky–Rosen state
is given (cf §7, Eq.(15) there).

In the article “The role of coherence entropy of physical
twin observables in entanglement” [32], the concept of
twin observables for bipartite quantum states is simplified.
The relation of observable and state is studied in detail
from the point of view of coherence entropy.

In the article “Irrelevance of the Pauli principle in dis-
tant correlations between identical fermions” [33], it was
shown that the Pauli non-local correlations do not con-
tribute to distant correlations between identical fermions.
In distant correlations a central role is played by dis-
tant measurement (cf §6.1). A negentropy measure of
distant correlations is introduced and discussed. It is
demonstrated that distant correlations are necessarily of
dynamical origin.

In the article “How to define systematically all possible
two-particle state vectors in terms of conditional probabil-
ities” [6], all bipartite state vectors of given subsystems
were systematically generated using the state operator ρB

of the nearby subsystem and the correlation operator Ua

(cf §3 and §4).
In the article “Complete Born rule from environment-

assisted invariance in terms of pure-state twin unitaries”
[5], the concept of twin observables was extended to twin
unitaries. It was shown that the latter are the other face of
Zurek’s envariance concept.

In the article “Mixed-state twin observables” [34], the
twin-observables notion was extended to bipartite mixed
states (density operators) ρAB. It was shown that com-
mutation of the twin observables with the corresponding
state operators [OA, ρA] = 0 and [OB, ρB] = 0 are neces-
sary conditions also for mixed states, but these relations
are no longer sufficient.

In the article “Hermitian Schmidt decomposition and
twin observables of bipartite mixed states” [35], it was
shown that every mixed bipartite state (density operator)
ρAB has a Schmidt decomposition in terms of Hermitian
subsystem operators. This result is due to the fact that
ρAB is an element in the Hilbert space of all linear Hilbert–
Schmidt operators inHA ⊗HB.

In the article “On statistical and deterministic quan-
tum teleportation” [36], it was shown that use of correla-
tion operators gives insight in teleportation (cf §6, Fig. 2
there).

In the preprint “Delayed twin observables: are they a
fundamental concept in quantum mechanics?” [37], the
twin-observables concept is generalized to the case when
unitary time evolution takes place.

Finally, it is worth reemphasizing that all results pre-
sented in §2,§3,§4,§5 and §6 apply to every bipartite state
vector. For instance, in |Ψ〉AB subsystem A can be the or-
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bital, and subsystem B the spin degree of freedom of one
electron, but it can also describe a many-particle system
in which A contains some of the particles and B contains
the rest.

The correlation operator provides us with a way to
comprehend entanglement in a bipartite pure state. It pri-
marily serves to give insight. For most practical purposes
the canonical Schmidt decomposition or its stronger form,
a twin-adapted canonical Schmidt decomposition, suffice.
The correlation operator is implicit in it.

The elaborated systematic and comprehensive analysis
presented should, hopefully, enable researchers to utilize
Schmidt decomposition as a scalpel in surgery to derive
new results. At least I was myself enabled by it to work
out a detailed theory of exact quantum-mechanical mea-
surement, which will be presented elsewhere.

8 Appendix

8.1 Partial scalar product

It will be shown that partial scalar product can be defined
in three and a half ways, i.e., in three equivalent ways and
incompletely in a fourth way.

We still write arbitrary ket or bra vectors with a bar,
those without a bar are norm-one vectors. In each of the
definitions below, we define the partial scalar product only
for norm-one elements of the Hilbert spaces. If the norm
of any (or both) of the factors in the product is not one,
the final element is, by part of the definition, multiplied
by this norm (or by both norms).

Definition 11. (Partial scalar product in terms of
subsystem-basis expansion) We define partial scalar prod-
uct by essentially equating RHS of (7) and RHS of (2).
More precisely, for any norm-one element | n〉B ∈ HB

and any norm-one element |Ψ〉AB ∈ HA ⊗HB, we write:

(〈n|B|Ψ〉AB)A ≡
∑

m

(〈m|A 〈n|B|Ψ〉AB)× |m〉A. (76)

Note that the resulting element inHA is expanded in an
arbitrary basis {|m〉A : ∀m}.

Next, we derive two basic properties of partial scalar
product from the definition.

Property (i). If the bipartite element is uncorrelated
|Ψ〉AB =|ψ〉A⊗ |φ〉B, then partial scalar product reduces to
ordinary scalar product:

(〈n|B (|ψ〉A⊗ |φ〉B))A = (〈n|B|φ〉B)× |ψ〉A. (77)

This directly follows from (76).
Property (ii). If the bipartite element is ex-

panded in an absolutely convergent orthogonal series

|Ψ〉AB =
∑

k |Ψ〉
k
AB (it can be a double series), then the par-

tial scalar product has the property of extended linearity:〈n|B (
∑

k

|Ψ〉
k
AB)


A

=
∑

k

(
〈n|B |Ψ〉

k
AB

)
A
. (78)

This also follows directly from (76) if one takes into
account the fact that two absolutely converging series (or
double series) can exchange order.

One can evaluate the form of the partial scalar product
in the representation of arbitrary bases {|m〉A : ∀m} inHA

and {|q〉B : ∀q} inHB:

(〈n|B|Ψ〉AB)A =
∑

m

(〈m|A 〈n|B|Ψ〉AB)× |m〉A

=
∑

m

〈m|A 〈n|B
∑

q

|q〉B〈q|B

 |Ψ〉AB

× |m〉A
=

∑
m

∑
q

(〈n|B|q〉B) × (〈m|A 〈q|B|Ψ〉AB)× |m〉A

=
∑

m

∑
q

(〈n|B|q〉B) × 〈m|A 〈q|B|Ψ〉AB

× |m〉A.
Thus, partial scalar product in the representation in the
basis {|q〉B : ∀q} (the q-representation) is

〈m|A (〈n|B|Ψ〉AB)A =
∑

q

(〈q|B|n〉B)∗ × (〈m|A 〈q|B|Ψ〉AB),

(79)
where the asterisk denotes complex conjugation.

The q-representation can be also purely continuous
(as the coordinate or linear momentum representations).
Then (79) has the form

〈m|A (〈n|B|Ψ〉AB)A =

∫
(〈q|B|n〉B)∗ × (〈m|A 〈q|B|Ψ〉AB) dq.

(80)

Definition 12. (Partial scalar product in terms of proper-
ties (i) and (ii)) If we assume the validity of the two basic
properties from above, then, substituting the suitable gen-
eral expansion (5) for |Ψ〉AB in (〈n|B|Ψ〉AB)A one recovers
(2), and one is back to the subsystem-basis-expansion in
Definition 11. Hence, both definitions are equivalent.

Definition 13. (Partial scalar product in representation)
We define the partial scalar product by (79). Reading
the above derivation of (79) backwards, we recover the
subsystem-basis-expansion in Definition 11. Hence, both
definitions are equivalent.

Definition 14. (Partial scalar product in terms of the
partial trace up to a phase factor) See Proposition 6 in
§8.3 below.

Remark 27. The partial scalar product 〈φ|B|Ψ〉AB can be
evaluated also by expressing |Ψ〉AB as any (finite) linear
combination of tensor products of tensor-factor vectors.
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8.2 The partial-trace and its rules

The partial trace

〈m|A trBOAB |m′〉A ≡
∑

n

〈m|A 〈n|B ρAB |m′〉A |n〉 (81)

was explained in von Neumann’s book [8, p. 425] as far
as OAB ≡ ρAB, a composite-system density operator was
concerned. The so-called reduced entity (on the LHS) is
defined by (81) in bases in an apparently basis-dependent
way. But the resulting positive operator ρA = trB(ρAB) of
finite trace is basis independent.

The very concept of a partial trace comes from the
fact that one can have a state operator (density operator;
generalization of state vector) describing a subsystem as
follows. For every first-subsystem observable OA ⊗ IB

one obtains

〈OA, ρAB〉 = tr (ρAB(OA ⊗ IB))

= trA ((trBρAB) OA)

= trA (ρAOA) . (82)

The second partial-trace rule (cf below) was used. (Note
that in the full trace tr = trAtrB the indices are usually
omitted as superfluous.)

First Rule: Commutation under the partial trace
IfHA ⊗HB is a two-subsystem (complex and separable)
composite Hilbert space, if, further, OA is an operator that
acts non-trivially only inHA and OAB is any operator in
the composite Hilbert space, then the following partial-
trace rule is valid

trA (OAOAB) = trA (OABOA) . (83)

Naturally, OA is actually OA⊗ IB when acting inHA⊗HB.
Symmetrically,

trB (OBOAB) = trB (OABOB) . (84)

Rules (83) and (84) are analogous to commutation under
a full trace.

Proof. Let {| r〉A : ∀r} and {| s〉B : ∀s} be any complete
orthonormal bases in the factor spaces. Then, in view of
〈s|B IB |s′〉B = δs,s′ , one can write

〈s|B trA (OAOAB) | s̄〉B =
∑

r′r′′s′
〈r′ |A 〈s|B (OA ⊗ IB) |r′′〉A |s′〉B

×〈r′′ |A 〈s′ |B OAB |r′〉A | s̄〉B
=

∑
r′r′′
〈r′ |A OA |r′′〉A〈r′′ |A 〈s|B OAB |r′〉A | s̄〉B. (85)

On the other hand,

〈s|B trA (OABOA) | s̄〉B =
∑

r′r′′s′
〈r′ |A 〈s|B OAB |r′′〉A |s′〉B

×〈r′′ |A 〈s′ |B (OA ⊗ IB) |r′〉A | s̄〉B
=

∑
r′r′′
〈r′ |A 〈s|B OAB |r′′〉A | s̄〉B〈r′′ |A OA |r′〉A. (86)

If one exchanges the order of the two (number) factors
and also exchanges the two mute indices r′ and r′′ in each
term on the RHS of (86), then the RHS of (85) and (86)
are seen to be equal. Hence, so are the LHS’s. Rule (84)
is proved analogously. �

Second Rule: Getting out of the partial trace
Under the assumptions of the first rule, the following
relations are always valid:

trB (OAOAB) = OAtrBOAB. (87)

trB (OABOA) = (trBOAB)OA. (88)

trA (OBOAB) = OBtrAOAB. (89)

trA (OABOB) = (trBOAB)OB. (90)

An operator that acts non-trivially only in the tensor-factor
space that is opposite to the one over which the partial
trace is taken behaves analogously as a constant under a
full trace: it can be taken outside the partial trace. But
one must observe the order (important for operators, not
for numbers).

Proof. Let {| r〉A : ∀r} and {| s〉B : ∀s} be any complete
orthonormal bases in the factor spaces. Then

〈r|A trB (OAOAB) |r′〉A =
∑
r′′ss′
〈r|A 〈s|B (OA ⊗ IB) |r′′〉A |s′〉B

×〈r′′ |A 〈s′ |B OAB |r′〉A |s〉B
=

∑
r′′s

〈r|A OA |r′′〉A〈r′′ |A 〈s|B OAB |r′〉A |s〉B. (91)

On the other hand,

〈r|A OAtrBOAB |r′〉A
=

∑
r′′s

〈r|A OA |r′′〉A〈r′′ |A 〈s|B OAB |r′〉A |s〉B. (92)

The RHS of (91) and (92) are seen to be equal. Hence, so
are the LHS’s. Relations (88), (89) and (90) are proved
analogously. �

8.3 Equivalence of the partial scalar
product and a certain partial trace

The auxiliary relations that follow stand in certain analo-
gies with the known basic relation

tr(|Ψ〉AB〈Ψ|AB OAB) = 〈Ψ|AB OAB |Ψ〉AB (93)
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(obvious if one evaluates the trace in a basis in which
|Ψ〉AB is one of the elements).

Lemma 3.

trB (|φ〉B〈φ|B|Ψ〉AB〈Ψ|AB) = 〈φ|B|Ψ〉AB 〈Ψ|AB|φ〉B. (94)

Proof. Utilizing definition (81), taking into account that
〈m |A IA | m̄〉A = δm,m̄, and eventually making use of (2),
one obtains

〈m|A trB (|φ〉B〈φ|B|Ψ〉AB〈Ψ|AB) |m′〉A
=

∑
n

〈m|A 〈n|B|φ〉B〈φ|B|Ψ〉AB〈Ψ|AB|m′〉A |n〉B

=
∑
n,m̄,n̄

〈m|A 〈n|B (IA⊗ |φ〉B〈φ|B) |m̄〉A |n̄〉B

×〈m̄|A 〈n̄|B|Ψ〉AB〈Ψ|AB|m′〉A |n〉B
=

∑
n,n̄

〈n|B|φ〉B〈φ|B|n̄〉B〈m|A 〈n̄|B|Ψ〉AB〈Ψ|AB|m′〉A |n〉B

=
∑

n̄

〈φ|B|n̄〉B〈m|A 〈n̄|B|Ψ〉AB

∑
n

〈Ψ|AB|m′〉A |n〉B〈n|B|φ〉B

= 〈m|A 〈φ|B|Ψ〉AB〈Ψ|AB|m′〉A |φ〉B
= 〈m|A 〈φ|B|Ψ〉AB 〈Ψ|AB|φ〉B |m′〉A.

�

Lemma 4.

tr (|φ〉B〈φ|B|Ψ〉AB〈Ψ|AB) = ‖〈φ|B|Ψ〉AB‖
2 (95)

Proof. According to Lemma 3

tr (|φ〉B〈φ|B|Ψ〉AB〈Ψ|AB) = tr
(
〈φ|B|Ψ〉AB 〈Ψ|AB|φ〉B

)
= ‖〈φ|B|Ψ〉AB‖ tr

 〈φ|B|Ψ〉AB

‖〈φ|B|Ψ〉AB‖

〈Ψ|AB|φ〉B

‖〈Ψ|AB|φ〉B‖

 ‖〈Ψ|AB|φ〉B‖

= ‖〈φ|B|Ψ〉AB‖
2

�

Finally, the two Lemmata 3 and 4 imply the claim:

Proposition 6. The following bridge relation is valid
between partial trace and partial scalar product:

trB (|φ〉B〈φ|B|Ψ〉AB〈Ψ|AB)
tr (|φ〉B〈φ|B|Ψ〉AB〈Ψ|AB)

=
〈φ|B|Ψ〉AB

‖〈φ|B|Ψ〉AB‖

〈Ψ|AB|φ〉B

‖〈Ψ|AB|φ〉B‖
.
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