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The learning process for multilayered neural net-
works with many nodes makes heavy demands
on computational resources. In some neural

network models, the learning formulas, such as the
Widrow–Hoff formula, do not change the eigenvec-
tors of the weight matrix while flatting the eigenval-
ues. In infinity, these iterative formulas result in
terms formed by the principal components of the
weight matrix, namely, the eigenvectors correspond-
ing to the non-zero eigenvalues. In quantum com-
puting, the phase estimation algorithm is known to
provide speedups over the conventional algorithms
for the eigenvalue-related problems. Combining the
quantum amplitude amplification with the phase esti-
mation algorithm, a quantum implementation model
for artificial neural networks using the Widrow–Hoff
learning rule is presented. The complexity of the
model is found to be linear in the size of the weight
matrix. This provides a quadratic improvement over
the classical algorithms.
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1 Introduction

Artificial neural networks [1–3] are adaptive statistical
models which mimic the neural structure of the human
brain to find optimal solutions for multivariate problems.
In the design of artificial neural networks are determined
the following: the structure of the network, input-output
variables, local activation rules, and a learning algorithm.
Learning algorithms are generally linked to the activities
of neurons and describe a mathematical cost function.
Often, a minimization of this cost function composed of
the weights and biases describes the learning process in
artificial neural networks. Moreover, the learning rule in
this process specifies how the synaptic weights should be
updated at each iteration. In general, learning rules can
be categorized as supervised and unsupervised learning:
In supervised learning rules, the distance between the
response of the neuron and a specified response, called
target t, is considered. However, it is not required in
unsupervised learning rules. Hebbian learning rule [4] is
a typical example of the unsupervised learning, in which
the weight vector at the ( j+1)th iteration is updated by the
following formula (we will mainly follow [2] to describe
learning rules):

w[j+1] = w[j] − ηtx. (1)

Here, x is the input vector, η is a positive learning constant
and w[j] represents the weights at the jth iteration. And t
is the target response. Learning is defined by getting an
output closer to the target response.
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On the other hand, Widrow–Hoff learning rule [5],
which is the main interest of this paper, illustrates a typical
supervised learning rule [2, 3, 6]

w[j+1] = w[j] − ησ
′(v)(t − y)x, (2)

where v = xT w is the activation of the output cell
and σ′(v) is the derivative of the activation function
which specifies the output of a cell in the considered
network, y = σ(v): e.g., the sigmoid function, σ(v) =

1/(1+exp(−v)). While in the Hebbian iteration the weight
vector is moved in the direction of the input vector by an
amount proportional to the target, in the Widrow–Hoff

iteration, the change is proportional to the error (t − y).
If we consider multi-neurons; the activation, the output,
and the target values becomes vectors: viz., v, y and t,
respectively. When there are several input and target asso-
ciations, the set of inputs, targets, activations, and outputs
can be represented by the matrices X,T,V, and Y , respec-
tively. Then, the above equations come in matrix forms
as follows

W[ j+1] = W[ j] − ηXT T , (3)

W[ j+1] = W[ j] − η(σ′(V) ~ X)(T − Y)T , (4)

where W represents the matrix of synaptic weights.
It is known that the learning task for multilayered neu-

ral networks with many nodes makes heavy demands on
computational resources. Algorithms in quantum compu-
tational model provide computational speedup over their
classical counterparts for some particular problems: e.g.,
Shor’s factoring algorithm [7] and Grover’s search algo-
rithm [8]. Using adiabatic quantum computation [9, 10]
or mapping data set to quantum random access mem-
ory [11,12] speedups in big data analysis have been shown
to be possible [13–15]. Furthermore, Lloyd and collabo-
rators [16] have described a quantum version for principal
component analysis.

In the recent decades, relating the neurons in the net-
works with qubits [17], a few different quantum networks
analogous of the artificial neural networks have also been
developed: e.g. [18–23] (For a complete review and list
of references, see [24]). These models should not be
confused with the classical algorithms (cf. [25, 26]) in-
spired by the quantum computing. Furthermore, using the
Grover search algorithm [8], a quantum associative mem-
ory is introduced [27]. Despite some promising results,
there is still need for further research on new models [24].

The quantum phase estimation algorithm (PEA) [28]
provides computational speedups over the known classi-
cal algorithms in eigenvalue related problems. The algo-
rithm mainly finds the phase value of the eigenvalue of a
unitary matrix (considered as the time evolution operator
of a quantum Hamiltonian) for a given approximate eigen-
vector. Because of this property, PEA is ubiquitously used

as a subcomponent of other algorithms. While in the gen-
eral case, PEA requires a good initial estimate of an eigen-
vector to produce the phase; in some cases, it is able to
find the phase by using an initial equal superposition state:
e.g., Shor’s factoring algorithm [7]. In [29], it is shown
that a flag register can be used in the phase estimation
algorithm to eliminate the ill-conditioned part of a matrix
by processing the eigenvalues greater than some threshold
value. Amplitude amplification algorithm [8, 30–32] is
used to amplify amplitudes of certain chosen quantum
states considered. In the definition of quantum reinforce-
ment learning [33, 34], states and actions are represented
as quantum states. And based on the observation of states
a reward is applied to the register representing actions.
Later, the quantum amplitude amplification is applied to
amplify the amplitudes of rewarded states. In addition, in
a prior work [35] combining the amplitude amplification
with the phase estimation algorithm, we have showed a
framework to obtain the eigenvalues in a given interval
and their corresponding eigenvectors from an initial equal
superposition state. This framework can be used as a way
of doing quantum principal component analysis (QPCA).

For a given weight matrix W; in linear auto-associators
using the Widrow–Hoff learning rule; during the learning
process, the eigenvectors do not change while the eigen-
values go to one [2, 6]: i.e., lim j→∞W[ j] converges to
QQT , where Q represents the eigenvectors of W. There-
fore, for a given input x, the considered network produces
the output QQT x. In this paper, we present a quantum im-
plementation model for the artificial neural networks by
employing the algorithm in [35]. In particular, we show
how to construct QQT x on quantum computers in linear
time. In the following section, we give the necessary
description of Widrow–Hoff learning rule and QPCA de-
scribed in [35]. In Section 3, we shall show how to apply
QPCA to the neural networks given by the Widrow–Hoff

learning rule and discuss the possible implementation
issues such as the circuit implementation of W, the prepa-
ration of the input x as a quantum circuit, and determining
the number of iterations in the algorithm. In Section 4, we
analyze the complexity of the whole application. Finally,
in Section 5, an illustrative example is presented.

2 Methods

In this section, we shall describe the Widrow–Hoff learn-
ing rule and the quantum algorithms used in the paper.

2.1 Widrow–Hoff Learning

For a linear autoassociator, i.e. Y = V , σ′(V) = I, and
T = X; Widrow–Hoff learning rule given in Eq. (4),
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also known as LMS algorithm, in matrix form can be
described as follows [2, 3]

W[ j] = W[ j−1] + η(X −W[ j−1]X)XT . (5)

This can be also expressed by using the eigendecom-
position of W = QΛQT : i.e., W[ j] = QΦ[ j]QT , where
Φ[ j] = [I − (I − ηΛ) j]. Φ[ j] is called the eigenvalue matrix
at the epoch j. Based on this formulation, Widrow–Hoff

error correction rule only affects the eigenvalues and flat-
tens them when η ≤ 2λ−1

max (λmax is the largest eigenvalue
of W): i.e., lim j→∞Φ[ j] = I. Thus, in infinity, the learning
process W ends up as: W[∞] = QQT .

2.2 Quantum Algorithms Used in the
Model

In the following, we shall first explain two well-known
quantum algorithms and then describe how they are used
in [35] to obtain the linear combination of the eigenvec-
tors.

2.2.1 Quantum Phase Estimation Algorithm

The phase estimation algorithm (PEA) finds an estimation
for the phase of an eigenvalue of a given operator [28,36].
In mathematical terms, the algorithm seen in Figure 1 as
a circuit works as follows:

• An estimated eigenvector
∣∣∣ϕ j

〉
associated to the jth

eigenvalue eıφ j of a unitary matrix, U of order N is
assumed given. U is considered as a time evolution
operator of the Hamiltonian (H) representing the
dynamics of the quantum system

U = eıtH/~, (6)

where t represents the time and ~ is the Planck con-
stant. As a result, the eigenvalues of U and H are
related: while eıφ j is the eigenvalue of U, its phase
φ j is the eigenvalue of H.

• The algorithm uses two quantum registers dedicated
to the eigenvalue and the eigenvector, respectively,
|reg1〉 and |reg2〉 with m and (n = log2N) number
of qubits. The initial state of the system is set to
|reg1〉|reg2〉=|0〉

∣∣∣ϕ j
〉
, where |0〉 is the first standard

basis vector.

• Then, the quantum Fourier transform is applied to
|reg1〉, which produces the following equal superpo-
sition state

UQFT |reg1〉 |reg2〉 =
1
√

M

M−1∑
k=0

|k〉
∣∣∣ϕ j

〉
, (7)

where M = 2m and |k〉 is the kth standard basis
vector.

Figure 1: The phase estimation part of the algorithm.

• For each kth qubit in the first register, a quantum
operator, U2k−1

, controlled by this qubit is applied
to the second register. This operation leads the first
register to hold the discrete Fourier transform of the
phase, φ j.

• The inverse quantum Fourier transform on the first
register produces the binary digits of φ j.

• Finally, the phase is obtained by measuring the first
register.

2.2.2 Quantum Amplitude Amplification
Algorithm

If a given quantum state |ψ〉 in N-dimensional Hilbert
space can be rewritten in terms of some orthonormal
states considered as the good and the bad parts of |ψ〉 as

|ψ〉 = sin(θ)
∣∣∣ψgood

〉
+ cos(θ) |ψbad〉 , (8)

then amplitude amplification technique [8, 32, 37] can be
used to increase the amplitude of

∣∣∣ψgood
〉

in magnitude
while decreasing the amplitude of |ψbad〉. The technique
mainly consists of two parts: the marking and the am-
plifying implemented by two operators, respectively U f

and Uψ. Here, U f marks-flips the sign of-the amplitudes
of

∣∣∣ψgood
〉

and does nothing to |ψbad〉. U f can be imple-

mented as a reflection operator when
∣∣∣ψgood

〉
and |ψbad〉

are known

U f = I − 2
∣∣∣ψgood

〉 〈
ψgood

∣∣∣ , (9)

where I is an identity matrix. In the amplification part,
the marked amplitudes are amplified by the application
of the operator Uψ

Uψ = I − 2 |ψ〉 〈ψ| (10)

To maximize the probability of
∣∣∣ψgood

〉
, the iteration oper-

ator G = UψU f is applied iteratively O(
√

N) times to the
resulting state.

2.3 Quantum principal component analysis

In [35], we have shown that combining PEA with the
amplitude amplification, one can obtain eigenvalues in
certain intervals.
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In the phase estimation part, the initial state of the reg-
isters is set to |0〉 |0〉. Then, the second register is put into
the equal superposition state 1/

√
N(1, . . . , 1)T . The phase

estimation process in this input generates the superposi-
tion of the eigenvalues on the first and the eigenvectors on
the second register. In this final superposition state, the
amplitudes for the eigenpairs are proportional to the norm
of the projection of the input vector onto the eigenvector:
i.e., the normalized sum of the eigenvector elements. This
part is represented by UPEA and also involves the input
preparation circuit, Uinput, on the second register.

In the amplification part, first, U f is applied to the first
register to mark the eigenvalues determined by the binary
values of the eigenvalues: For instance, if we want to mark
an eigenvalue equal to 0.25 in |reg1〉 with 3 qubits, we
use U f = I − 2 |010〉 〈010| since the binary form of 0.25
is (010) (the left most bit represents the most significant
bit). The amplitudes of the marked eigenvalues are then
amplified by the application of Uψ with |ψ〉 representing
the output of the phase estimation

|ψ〉 = UPEA |reg1〉 |reg2〉 = UPEA |0〉 |0〉 . (11)

Using the above equation, Uψ can be implemented as

Uψ = I − 2 |ψ〉 〈ψ| = UPEAU0U†PEA, (12)

where U0 = I − 2 |0〉 〈0|. The amplitudes of the eigen-
values in the desired region are further amplified by the
iterative application of the operator G = UψU f . At the
end of this process, a linear combination of the eigenvec-
tors with the coefficients determined by the normalized
sum of the vector elements of the eigenvectors are pro-
duced. In the following section, we shall show how to
apply this process to model the implementation of the
neural networks based on the Widrow–Hoff learning rule.

3 Application to the Neural
Networks

Since the weight matrix in Widrow–Hoff learning rule
converges to the principal components in infinity [6]: i.e.,
W[∞] = QQT , the behavior of the trained network on
some input |x〉 can be concluded as

W[∞] |x〉 = QQT |x〉 . (13)

Our main purpose is to find an efficient way to implement
this behavior on quantum computers by using the quan-
tum principal component analysis. For this purpose, we
form U f in a way that marks only the non-zero eigen-
values and their corresponding eigenvectors: For zero
eigenvalues ( in binary form (0 . . . 0) ), the first register

Figure 2: The general quantum algorithm to find the principal
components of W. The dashed box indicates an iteration of the
amplitude amplification.

is in |0〉 = (1, 0, 0 . . . , 0, 0)T state. Therefore, we need to
construct a U f which marks the nonzero eigenvalues and
does nothing to |0〉. This can be done by using a vector
|f〉 in the standard basis which has the same non-zero
coefficients for the all basis states except the first one

U f = I − 2 |f〉 〈f| , with |f〉 =
1
µ



0
1
1
...

1


. (14)

Here, µ is a normalization constant equal to 1√
M−1

. U f

does nothing when the first register in |0〉 state; however,
it does not only flip the signs but also changes the am-
plitudes of the other states. Then, Uψ is applied for the
amplification of the marked amplitudes. The iterative
application of UψU f results in a quantum state where the
amplitude of |0〉 becomes almost zero and the amplitudes
of the other states become almost equal. At this point,
the second register holds QQT |x〉 which is the expected
output from the neural network. This is explained in more
mathematical terms below.

3.1 Details of the Algorithm

Here, we assume that U = eıWt is given: Later, in Sec-
tion 3.4, we shall also discuss how U may be obtained as
a quantum circuit from a given W matrix.

Figure 2 shows the algorithm as a quantum circuit
where the dashed lines indicate an iteration in the am-
plitude amplification. At the beginning, UPEA is applied
to the initial state |0〉|0〉. Note that UPEA includes also
an input preparation circuit, Uinput, bringing the second
register from |0〉 state to the input |x〉. UPEA generates a
superposition of the eigenvalues and associated eigenvec-
tors, respectively, on the first and the second registers with
the amplitudes defined by the overlap of the eigenvector
and the input |x〉

|ψ〉 = UPEA |0〉 |0〉 =

N−1∑
j=0

α j
∣∣∣λ j

〉 ∣∣∣ϕ j
〉
, (15)

where α j =
〈
ϕ j

∣∣∣ |x〉.
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In the second part, the operator G = UψU f is applied
to |ψ〉 iteratively until QQT |x〉 can be obtained on the
second register. The action of U f applied to |ψ〉 is as
follows

|ψ1〉 = U f |ψ〉 = (I − 2 |f〉 〈f|)
N−1∑
j=0

α j
∣∣∣λ j

〉 ∣∣∣ϕ j
〉

= |ψ〉 − 2µ |f〉 |ϕ̄〉 .

(16)

Here, assuming the first k number of eigenvalues are zero,
the unnormalized state |ϕ̄〉 is defined as

|ϕ̄〉 =

N−1∑
j=k

α j
∣∣∣ϕ j

〉
. (17)

It is easy to see that |ϕ̄〉 = QQT |x〉, which is our target
output. When Uψ is applied to the output in Eq. (16), we
simply change the amplitudes of |ψ〉

Uψ |ψ1〉 = Uψ (|ψ〉 − 2µ |f〉 |ϕ̄〉)
= (I − 2 |ψ〉 〈ψ|) |ψ〉 − 2µ (I − 2 |ψ〉 〈ψ|) |f〉 |ϕ̄〉

= − |ψ〉 − 2µ

I − 2 |ψ〉
N−1∑
j=0

α j
〈
ϕ j

∣∣∣ 〈λ j
∣∣∣ |f〉 |ϕ̄〉

= − |ψ〉 − 2µ |f〉 |ϕ̄〉 + 4µ2P f |ψ〉

= (4µ2P f − 1) |ψ〉 − 2µ |f〉 |ϕ̄〉 .
(18)

Here, P f is the initial success probability and equal to∑N−1
j=k α

2
j . The repetitive applications of G only changes

the amplitudes of |ψ〉 and |f〉 |ϕ̄〉: e.g.,

G2 |ψ〉 = (c2 − 3c + 1) |ψ〉 − (c − 2)2µ |f〉 |ϕ̄〉

G3 |ψ〉 = (c3 − 5c2 + 6c − 1) |ψ〉 − (c2 − 4c + 3)2µ |f〉 |ϕ̄〉
(19)

where c = (4µ2P f − 1). The normalized probability of
(2µ |f〉 |ϕ〉) is presented in Figure 3 by using different
values for c (The amplitudes of |ψ〉 and (2µ |f〉) are nor-
malized.). The amplitude of |ψ〉 through the iterations of
the amplitude amplification oscillates with a frequency
depending on the overlaps of the input with the eigenvec-
tors. When the amplitude of |ψ〉 becomes close to zero,
the second register in the remaining part |f〉 |ϕ̄〉 is exactly
QQT |x〉 and the first register is equal to |f〉.

Figure 4 represents the iterations of the algorithm for a
random 27 × 27 matrix with 27/2 number of zero eigen-
values and a random input |x〉. In each subfigure, we have
used different numbers of qubits for the first register to see
the effect on the results. The bar graphs in the subfigures
shows the probability change for each state |j〉, j = 0 . . . 1,
of the first qubit (A different color tone indicates a differ-
ent state.). When the probability for |0〉 becomes close

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Iteration

P
ro

ba
bi

lit
y

The normalized Probability of (2µ|f 〉|ϕ〉)

 

 

c = 0.1
c = 0.3
c = 0.5
c = 0.7

Figure 3: The normalized probability of (2µ |f〉 |ϕ〉) through the
iterations for different values of c.

to zero, the probabilities for the rest of the states become
equal and so the total sum of these probabilities as shown
in the bottom figure of each subfigure becomes almost
one. At that point, the fidelity found by

∣∣∣〈reg2|QQT |x〉
∣∣∣

also comes closer to one.

3.2 Number of Iterations

Through the iterations, while the probability for |0〉 state
goes to zero, the probabilities for the rest of the states
become almost equal. This indicates that the individual
states of each qubit turn into the equal superposition state.
Therefore, if the state of a qubit in the first register is
in the almost equal superposition state, then the success
probability is very likely to be in its maximum level. In
the Hadamard basis, |0〉 and |1〉 are represented in the
equal superposition states as follows

|0〉 =
|0〉 + |1〉
√

2
and |1〉 =

|0〉 − |1〉
√

2
. (20)

Therefore, using the Hadamard basis, if the probability
of measuring |0〉 is close to one, in other words, if |1〉
is not seen in the measurement, then the second register
likely holds QQT |x〉 with a maximum possible fidelity.
Figure 5 shows the comparisons of the individual qubit
probabilities (i.e., the probability to see a qubit in the
first register in |0〉 in the Hadamard basis.) with the total
probability observed in Figure 4f for the random case: As
seen in the figure, the individual probabilities exhibit the
same behavior as the total probability.

Generally, obtaining a possible probability density of
an unknown quantum state is a difficult task. However,
since we are dealing with only a single qubit and do not
require the exact density, this can be done efficiently. For
instance, if |0〉 is seen n number of times in ten measure-
ments, then the success probability is expected to be n/10.
Here, the number of measurements obviously determines
the precision in the obtained probability which may also
affect the fidelity.
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(a) m is 1.
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(b) m is 2.
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(c) m is 3.
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(d) m is 4.
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(e) m is 5.
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(f) m is 6.

Figure 4: The probability changes in the iteration of the amplitude amplification for a random 27 × 27 matrix with 27/2 number
of zero eigenvalues and a random input |x〉 (MATLAB code for the random generation is given in Appendix). In each subfigure,
we have used different numbers of qubits, m, for the first register to see the effect on the results. The bar graphs in the subfigures
shows the probability change for each state |j〉, j = 0 . . . 1, of the first qubit. For each state, a different color tone is used.

Quanta | DOI: 10.12743/quanta.v7i1.65 February 2018 | Volume 7 | Issue 1 | Page 12

http://dx.doi.org/10.12743/quanta.v7i1.65


0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

ba
bi

lit
y

The Probability of Each Qubit After Hadamard Gates

 

 

Total Probability
qubit−1
qubit−2
qubit−3
qubit−4
qubit−5
qubit−6
Fidelity

Figure 5: The probability to see a qubit in the first register in
|0〉 state after applying a Hadamard gate to the qubit and its
comparison with the total probability and the fidelity given in
Figure 4f. Note that the above separate curve is the fidelity.
Since there are only small differences between the probabilities
on the individual qubits and the total probability, the curves
for the probabilities mostly overlap.

3.3 Error-Precision (Number of Qubits in
|reg1〉)

The number of qubits, m, in the first register should be
sufficient to distinguish very small nonzero eigenvalues
from the ones which are zero. In our numerical random
experiments, we have observed that choosing only six
or five qubits are enough to get very high fidelity while
not requiring a high number of iterations. The impact of
the number of qubits on the fidelity and the probability
is shown in Figure 4 in which each sub-figure is drawn
by using different register sizes for the same random case.
As seen in the figure, the number of qubits also affects
the required number of iterations: e.g., while for m = 3,
the highest fidelity and probability are seen at the fourth
iteration; for m = 6, it happens around the ninth iteration.

3.4 Circuit Implementation of W

The circuit implementation of W requires forming a quan-
tum circuit representing the time evolution of W: i.e.,
U = eı2πWt. When W is a sparse matrix, the circuit can be
formed by following the method in [38]. However, when
it is not sparse but in the following form W =

∑
j xjxj

T ,
then the exponential becomes equal to

U = eı2πWt = eı2πt
∑

j xjxj
T
. (21)

To approximate the above exponential, we apply the
Trotter–Suzuki formula [39–42] to decompose Eq. (21)
into the terms U j = eı2πtxjxj

T
= Uxj ĪU†xj , where Ī is a

kind of identity matrix with the first element set to eı2πt,
and Uxj is a unitary matrix with the first row and column
equal to xj. For instance, if the second order Trotter–
Suzuki decomposition is applied to Eq. (21) (note that the
order of the decomposition impacts the accuracy of the
approximation), the following is obtained

eı2πt
∑κ

j=1 xjxj
T
≈ U j

(
eı2π

t
2
∑κ

j=2 xjxj
T
)

U j. (22)

Then, the same decomposition is applied to the term
eı2πt/2

∑κ
j=2 xjxj

T
in the above equation. This recursive de-

composition yields an approximation composed of (4κ)
number of Uxj matrices. Any Uxj can be implemented as
a Householder matrix by using O(2n) quantum operations
which is linear in the size of xj [43–46].

3.5 Obtaining a solution from the output

Generally, the amplitudes of the output vector (the fi-
nal state of the second register) encodes the information
needed for the solution of the considered problem. Since
obtaining the full density of a quantum state is known to
be very inefficient for larger systems, one needs to drive
efficient measurement schemes specific to the problem.
For instance, for some problems, comparisons of the peak
values instead of the whole vectors may be enough to
gauge a conclusion: In this case, since a possible outcome
in a measurement would be the one with an amplitude
likely to be greater than most of the states in magnitude,
the peak values can be obtained efficiently. However, this
alone may not be enough for some applications.

Moreover, in some applications such as the spectral
clustering problem, a superposition of vectors that are
forming a solution space for the problem can be used as
an input state. In that case, the measurement of the output
in the solution space yields the solution for the problem.
This method can be used efficiently (polynomial time
complexity in the number of qubits) when the vectors
describing the solution space are tensor product of Pauli
matrices.

4 Complexity Analysis

The computational complexity of a quantum algorithm is
assessed by the total number of single gates and two qubit
controlled NOT (CNOT) gates in the quantum circuit im-
plementing the algorithm. We derive the computational
complexity of the whole method by finding the complex-
ities of U f on the first register with m number of qubits
and Uψ on the second register with n number of qubits.
We shall use M = 2m and N = 2n to describe the sizes of
the operators on the registers.
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4.1 The complexity of U f

It is known that the number of quantum gates to imple-
ment a Householder matrix is bounded by the size of the
matrix [43–46]. Therefore, the circuit for U f requires
O(M) CNOT gates since it is a Householder transforma-
tion formed by the vector |f〉 of size M.

4.2 The complexity of Uψ

The operator Uψ is equal to UPEAU0U†PEA in which the
total complexity will be typically governed by the com-
plexity of UPEA. UPEA involves the Fourier transforms,
input preparation circuit, and the controlled U = eıtW

with different t values:

• The circuits for the quantum Fourier transform and
its inverse are well known [36] and can be imple-
mented on the first register in O(m2).

• The input preparation circuit on the second register,
Uinput, can be implemented again as a Householder
transformation by using O(N) number of quantum
gates. It can be also designed by following Sec-
tion III.B. of [47]: In that case, for every two vector
elements, a controlled rotation gate is used to con-
struct Uinput with the initial row equal to x; thus,
Uinput |0〉 = |x〉.

• The circuit complexity of U = eıtW is highly re-
lated to the structure of W. When W of order N
is sparse enough: i.e., the number of nonzero en-
tries is bounded by some polynomial of the num-
ber of qubits, poly(n); then W can be simulated
by using only O(poly(n)) number of quantum gates
[38, 48, 49]. However, when W is not sparse but
equal to

∑
xixi

T , then as shown in Section 3.4, we
use Trotter–Suzuki formula which yields a product
of (4κ) number of Uxj matrices with 1 ≤ j ≤ κ. Since
Uxj can be implemented as a Householder transfor-
mation by using O(N) quantum gates, U requires
O(κN) quantum gates.

If we combine all the above terms, the total complexity
can be concluded as

O(κN + M). (23)

This is linear in system-size, however, exponential in the
number of qubits involved in either one of the registers. In
comparison, any classical method applied to obtain QQT x
at least requires O(N2) time complexity because of the
matrix vector multiplication. Therefore, the quantum
model presented here may provide a quadratic speedup
over the classical methods for some applications. When

the weight matrix is sparse or the data is given as a quan-
tum states, it can be implemented in O(poly(n)). There-
fore, the whole complexity becomes linear in the number
of qubits, which may provide an exponential speedup over
the classical algorithms. However, when the weight ma-
trix is not sparse, the complexity becomes exponential in
the number of qubits. The current experimental research
by big companies such as Google and IBM aims to build
50 qubit operational quantum computers [50]. Because
of the limitations of the current quantum computer tech-
nology, when the required number of qubits goes beyond
50, the applications of the algorithm becomes infeasible.

5 An Illustrative Example

Here, we give a simple example to show how the al-
gorithm works: Let us assume, we have given weights
represented by the columns of the following matrix [51]

X =
1
10
×


−1 +1
−1 −1
+1 −1
−1 +1

 , (24)

where we scale the vectors by 1
10 so as to make sure that

the eigenvalues of W are less than one. To validate the
simulation results, first, W[∞] is classically computed by
following the singular value decomposition of X

QΦPT =


+.5774 0

0 1
−.5774 0
+.5774 0


(
.2495 0

0 .14142

) (
−.7071 +.7071
−.7071 −.7071

)
.

(25)
Therefore,

W[∞] = QQT =


+.333 0 −.333 +.333

0 1 0 0
−.333 0 +.333 −.333
+.333 0 −.333 +.333

 (26)

We use the following Trotter–Suzuki formula [39–42] to
compute the exponential of W = XX′

U = eı2πW ≈ eıπx2xT
2 eı2πx1xT

1 eıπx2xT
2 (27)

In the simulation for a random input |x〉, the com-
parison of W[∞] |x〉 = QQT |x〉 with the output of the
second register in the quantum model yields the fi-
delity. For two different random inputs, the simula-
tion results in each iteration are shown in Figure 6a
and Figure 6b for |x〉 = (.3517 .3058 .6136 .6374)T and
|x〉 = (.7730 .1919 .1404 .5881)T , respectively.
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(a) For the generated random input |x〉 = (.3517 .3058 .6136 .6374)T .
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(b) For the generated random input |x〉 = (.7730 .1919 .1404 .5881)T .

Figure 6: The simulation results of the quantum model for the example in Section 5 with two different input vectors.

6 Conclusion

The weight matrix of the networks based on the Widrow–
Hoff learning rule converges to QQT , where Q repre-
sents the eigenvectors of the matrix corresponding to the
nonzero eigenvalues. Here, we applied the quantum prin-
cipal component analysis method described in [35] to
artificial neural networks using the Widrow–Hoff learn-
ing rule and showed that one can implement an equivalent
quantum circuit which produces the output QQT x for a
given input x in linear time. We also discussed the im-
plementation details by using random cases, analyzed the
computation complexity based on the number of quantum
gates and presented a simple numerical example. The
model is general and requires only linear time computa-
tional complexity in the size of the weight matrix.

Appendix: MATLAB Code for the
Random Matrix

The random matrix used in the numerical example is
generated by the following MATLAB code snippet:

%number of non-zero eigenvalues

npc = ceil(N/2);

d = rand(N,1);%random eigenvalues

d(npc+1:end) = 0;

%random eigenvectors

[Qfull,˜] = qr(randn(N));

%the unitary matrix in PEA

U = Qfull*diag(exp(1i*2*pi*d))*Qfull’;

%normalized input vector

x = rand(N,1); x = x/norm(x);
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