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works with many nodes makes heavy demands

on computational resources. In some neural
network models, the learning formulas, such as the
Widrow-Hoff formula, do not change the eigenvec-
tors of the weight matrix while flatting the eigenval-
ues. In infinity, these iterative formulas result in
terms formed by the principal components of the
weight matrix, namely, the eigenvectors correspond-
ing to the non-zero eigenvalues. In quantum com-
puting, the phase estimation algorithm is known to
provide speedups over the conventional algorithms
for the eigenvalue-related problems. Combining the
quantum amplitude amplification with the phase esti-
mation algorithm, a quantum implementation model
for artificial neural networks using the Widrow—-Hoff
learning rule is presented. The complexity of the
model is found to be linear in the size of the weight
matrix. This provides a quadratic improvement over
the classical algorithms.
Quanta 2018; 7: 7-18.

The learning process for multilayered neural net-
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1 Introduction

Artificial neural networks [[1H3]] are adaptive statistical
models which mimic the neural structure of the human
brain to find optimal solutions for multivariate problems.
In the design of artificial neural networks are determined
the following: the structure of the network, input-output
variables, local activation rules, and a learning algorithm.
Learning algorithms are generally linked to the activities
of neurons and describe a mathematical cost function.
Often, a minimization of this cost function composed of
the weights and biases describes the learning process in
artificial neural networks. Moreover, the learning rule in
this process specifies how the synaptic weights should be
updated at each iteration. In general, learning rules can
be categorized as supervised and unsupervised learning:
In supervised learning rules, the distance between the
response of the neuron and a specified response, called
target ¢, is considered. However, it is not required in
unsupervised learning rules. Hebbian learning rule [4] is
a typical example of the unsupervised learning, in which
the weight vector at the (j+ 1)th iteration is updated by the
following formula (we will mainly follow [2]] to describe
learning rules):

Wij+1] = W[j) — X (D)
Here, x is the input vector, 7 is a positive learning constant
and wj) represents the weights at the jth iteration. And ¢
is the target response. Learning is defined by getting an
output closer to the target response.

February 2018 | Volume 7 | Issue 1| Page 7


mailto:adaskin25@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.12743/quanta.v7i1.65

On the other hand, Widrow—Hoff learning rule [5]],
which is the main interest of this paper, illustrates a typical
supervised learning rule [12}3}/6]]

2)

where v = x’w is the activation of the output cell
and o’ (v) is the derivative of the activation function
which specifies the output of a cell in the considered
network, y = o(v): e.g., the sigmoid function, o(v) =
1/(1+exp(—v)). While in the Hebbian iteration the weight
vector is moved in the direction of the input vector by an
amount proportional to the target, in the Widrow—Hoft
iteration, the change is proportional to the error (¢t — y).
If we consider multi-neurons; the activation, the output,
and the target values becomes vectors: viz., v,y and t,
respectively. When there are several input and target asso-
ciations, the set of inputs, targets, activations, and outputs
can be represented by the matrices X, T, V, and Y, respec-
tively. Then, the above equations come in matrix forms
as follows

Wij+1] = Wij1 — 1o (0)(t — y)X,

Wiy = Wiy — nXT7,
Wit = Wi =@’ (V)@ X)(T - Y)',

where W represents the matrix of synaptic weights.

It is known that the learning task for multilayered neu-
ral networks with many nodes makes heavy demands on
computational resources. Algorithms in quantum compu-
tational model provide computational speedup over their
classical counterparts for some particular problems: e.g.,
Shor’s factoring algorithm [7]] and Grover’s search algo-
rithm [[§]]. Using adiabatic quantum computation [9,/10]]
or mapping data set to quantum random access mem-
ory [[11412]] speedups in big data analysis have been shown
to be possible [13-15]]. Furthermore, Lloyd and collabo-
rators [[16] have described a quantum version for principal
component analysis.

In the recent decades, relating the neurons in the net-
works with qubits [|17]], a few different quantum networks
analogous of the artificial neural networks have also been
developed: e.g. [[18-23]] (For a complete review and list
of references, see [24]). These models should not be
confused with the classical algorithms (cf. [25,26]) in-
spired by the quantum computing. Furthermore, using the
Grover search algorithm []], a quantum associative mem-
ory is introduced [27]]. Despite some promising results,
there is still need for further research on new models [24].

The quantum phase estimation algorithm (PEA) [28]]
provides computational speedups over the known classi-
cal algorithms in eigenvalue related problems. The algo-
rithm mainly finds the phase value of the eigenvalue of a
unitary matrix (considered as the time evolution operator
of a quantum Hamiltonian) for a given approximate eigen-
vector. Because of this property, PEA is ubiquitously used

3)
“4)
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as a subcomponent of other algorithms. While in the gen-
eral case, PEA requires a good initial estimate of an eigen-
vector to produce the phase; in some cases, it is able to
find the phase by using an initial equal superposition state:
e.g., Shor’s factoring algorithm [7]]. In [29], it is shown
that a flag register can be used in the phase estimation
algorithm to eliminate the ill-conditioned part of a matrix
by processing the eigenvalues greater than some threshold
value. Amplitude amplification algorithm [8}30-32] is
used to amplify amplitudes of certain chosen quantum
states considered. In the definition of quantum reinforce-
ment learning [33]34], states and actions are represented
as quantum states. And based on the observation of states
a reward is applied to the register representing actions.
Later, the quantum amplitude amplification is applied to
amplify the amplitudes of rewarded states. In addition, in
a prior work [35]] combining the amplitude amplification
with the phase estimation algorithm, we have showed a
framework to obtain the eigenvalues in a given interval
and their corresponding eigenvectors from an initial equal
superposition state. This framework can be used as a way
of doing quantum principal component analysis (QPCA).

For a given weight matrix W; in linear auto-associators
using the Widrow—Hoff learning rule; during the learning
process, the eigenvectors do not change while the eigen-
values go to one [2,|6]: i.e., lim;_ W converges to
QQ", where Q represents the eigenvectors of W. There-
fore, for a given input x, the considered network produces
the output QQ” x. In this paper, we present a quantum im-
plementation model for the artificial neural networks by
employing the algorithm in [35]]. In particular, we show
how to construct Q7 x on quantum computers in linear
time. In the following section, we give the necessary
description of Widrow—Hoff learning rule and QPCA de-
scribed in [35]]. In Section 3] we shall show how to apply
QPCA to the neural networks given by the Widrow—Hoff
learning rule and discuss the possible implementation
issues such as the circuit implementation of W, the prepa-
ration of the input x as a quantum circuit, and determining
the number of iterations in the algorithm. In Sectiond] we
analyze the complexity of the whole application. Finally,
in Section[5] an illustrative example is presented.

In this section, we shall describe the Widrow—Hoff learn-
ing rule and the quantum algorithms used in the paper.

For a linear autoassociator, i.e. Y = V, ¢/(V) = I, and
T = X; Widrow—Hoft learning rule given in Eq. (@),
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also known as LMS algorithm, in matrix form can be
described as follows [2},3]]

Wij = Wijony +n(X = Wi X)X (5)

This can be also expressed by using the eigendecom-
position of W = QAQT: ie., W;; = Q®(;;Q", where
;) = [I— (I —nA)’]. @ is called the eigenvalue matrix
at the epoch j. Based on this formulation, Widrow—Hoff
error correction rule only affects the eigenvalues and flat-
tens them when n < 2/1;1}”( (Amayx 1s the largest eigenvalue
of W): ie., limj_, @) = I. Thus, in infinity, the learning
process W ends up as: We; = Q07

In the following, we shall first explain two well-known
quantum algorithms and then describe how they are used
in [35]] to obtain the linear combination of the eigenvec-
tors.

The phase estimation algorithm (PEA) finds an estimation
for the phase of an eigenvalue of a given operator [28l[36].
In mathematical terms, the algorithm seen in Figure|l|as
a circuit works as follows:

e An estimated eigenvector ’cp j> associated to the jth
eigenvalue ¢'%/ of a unitary matrix, U of order N is
assumed given. U is considered as a time evolution
operator of the Hamiltonian (H) representing the
dynamics of the quantum system

U — eltH/h

(6)

where ¢ represents the time and 7 is the Planck con-
stant. As a result, the eigenvalues of U and H are
related: while ¢'%/ is the eigenvalue of U, its phase
¢; is the eigenvalue of H.

e The algorithm uses two quantum registers dedicated
to the eigenvalue and the eigenvector, respectively,
|[reg1) and |reg,) with m and (n = log,N) number
of qubits. The initial state of the system is set to
|reg1>|reg2>:|0>|<,o j>, where |0) is the first standard
basis vector.

e Then, the quantum Fourier transform is applied to
|reg1), which produces the following equal superpo-
sition state

1 M-1
Uorr Iregi)Irega) = —= D Re), @
k=0

where M = 2™ and k) is the kth standard basis
vector.
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Figure 1: The phase estimation part of the algorithm.

U PEA

e For each kth qubit in the first register, a quantum
operator, U 2 , controlled by this qubit is applied
to the second register. This operation leads the first
register to hold the discrete Fourier transform of the

phase, ¢;.

o The inverse quantum Fourier transform on the first
register produces the binary digits of ¢;.

o Finally, the phase is obtained by measuring the first
register.

If a given quantum state |/) in N-dimensional Hilbert
space can be rewritten in terms of some orthonormal
states considered as the good and the bad parts of |) as

W) = in(9) [Ygooa ) + cOS(O) Wpad) - ©)

then amplitude amplification technique [8}[32}37] can be
used to increase the amplitude of |;bg,,,,d> in magnitude
while decreasing the amplitude of |/344). The technique
mainly consists of two parts: the marking and the am-
plifying implemented by two operators, respectively Uy
and Uy. Here, Uy marks-flips the sign of-the amplitudes
of |v,l/good> and does nothing to [Y/4q4). Uy can be imple-

mented as a reflection operator when 'l,//good> and [Ypaa)
are known

Uf =1-2 |'7”g00d> <'7”g00d| s (9)

where [ is an identity matrix. In the amplification part,
the marked amplitudes are amplified by the application
of the operator Uy,

Uy =1=2ly) Yl (10)

To maximize the probability of |¢/gwd>, the iteration oper-

ator G = U, Uy is applied iteratively O( VN) times to the
resulting state.

In [35], we have shown that combining PEA with the
amplitude amplification, one can obtain eigenvalues in
certain intervals.
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In the phase estimation part, the initial state of the reg-
isters is set to |0) |0). Then, the second register is put into
the equal superposition state 1/ VN(1, ..., 1)T. The phase
estimation process in this input generates the superposi-
tion of the eigenvalues on the first and the eigenvectors on
the second register. In this final superposition state, the
amplitudes for the eigenpairs are proportional to the norm
of the projection of the input vector onto the eigenvector:
i.e., the normalized sum of the eigenvector elements. This
part is represented by Upga and also involves the input
preparation circuit, Uiy, On the second register.

In the amplification part, first, Uy is applied to the first
register to mark the eigenvalues determined by the binary
values of the eigenvalues: For instance, if we want to mark
an eigenvalue equal to 0.25 in |reg;) with 3 qubits, we
use Uy = I —21010)(010] since the binary form of 0.25
is (010) (the left most bit represents the most significant
bit). The amplitudes of the marked eigenvalues are then
amplified by the application of U, with |i/) representing
the output of the phase estimation

) = Upealregi)lregz) = Upea10)10) . (11)

Using the above equation, Uy, can be implemented as

Uy =1=210) W = UpaUoUhyy,  (12)
where Uy = I — 2|0) (0. The amplitudes of the eigen-
values in the desired region are further amplified by the
iterative application of the operator G = Uy Uy. At the
end of this process, a linear combination of the eigenvec-
tors with the coefficients determined by the normalized
sum of the vector elements of the eigenvectors are pro-
duced. In the following section, we shall show how to
apply this process to model the implementation of the
neural networks based on the Widrow—Hoff learning rule.

Since the weight matrix in Widrow—Hoff learning rule
converges to the principal components in infinity [6]: i.e.,
Wil = QQT, the behavior of the trained network on
some input |x) can be concluded as
Wie) %) = Q0T [x) . (13)
Our main purpose is to find an efficient way to implement
this behavior on quantum computers by using the quan-
tum principal component analysis. For this purpose, we
form Uy in a way that marks only the non-zero eigen-
values and their corresponding eigenvectors: For zero
eigenvalues ( in binary form (0. ..0) ), the first register

Quanta | DOI:|10.12743/quanta.v7i1.65
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Figure 2: The general quantum algorithm to find the principal
components of W. The dashed box indicates an iteration of the
amplitude amplification.

isin |0) = (1,0,0...,0, O)T state. Therefore, we need to
construct a Uy which marks the nonzero eigenvalues and
does nothing to |0). This can be done by using a vector
If) in the standard basis which has the same non-zero
coeflicients for the all basis states except the first one

0
| 1
Up=1-2If)(f], with |f) = — |1 (14)
M
1
. . . 1
Here, p is a normalization constant equal to vk Uy

does nothing when the first register in |0) state; however,
it does not only flip the signs but also changes the am-
plitudes of the other states. Then, Uy, is applied for the
amplification of the marked amplitudes. The iterative
application of Uy U results in a quantum state where the
amplitude of |0) becomes almost zero and the amplitudes
of the other states become almost equal. At this point,
the second register holds QQ7 |x) which is the expected
output from the neural network. This is explained in more
mathematical terms below.

Here, we assume that U = ¢V’ is given: Later, in Sec-
tion[3.4] we shall also discuss how U may be obtained as
a quantum circuit from a given W matrix.

Figure [2] shows the algorithm as a quantum circuit
where the dashed lines indicate an iteration in the am-
plitude amplification. At the beginning, Upg4 is applied
to the initial state |0)|0). Note that Upga includes also
an input preparation circuit, Uiy, bringing the second
register from |0) state to the input [x). Upga generates a
superposition of the eigenvalues and associated eigenvec-
tors, respectively, on the first and the second registers with
the amplitudes defined by the overlap of the eigenvector
and the input [x)

N-1

W) = Upea10)10) = > |1} ]¢)).

J=0

15)

where a; = <gaj| x).
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In the second part, the operator G = Uy Uy is applied
to |y iteratively until 007 |x) can be obtained on the
second register. The action of Uy applied to |y) is as
follows

N-1
W) = Uslgy = (= 2160¢E) ) j[4;) |5

~ (16)

=) = 2ulf) o).

Here, assuming the first k number of eigenvalues are zero,
the unnormalized state |p) is defined as

N-1

o) = ij|<ﬁj>-

Jj=k

7)

It is easy to see that |p) = 007" |x), which is our target
output. When Uy, is applied to the output in Eq. (I6), we
simply change the amplitudes of |y/)

Uy 1) = Uy () = 2ulf) 1@))
= =21 WD W) = 2ud =2 1y) WD If) 1@)

N-1
=~y -2 [1 -2 ) a;(p)] (ﬂjl] £} 1)
Jj=0

= — gy — 211 |p) + 44> Py 1)

= PPy — 1) ) — 2ulf) @) .
(18)

Here, Py is the initial success probability and equal to
?]: _k] a?. The repetitive applications of G only changes
the amplitudes of |y) and If) |p): e.g.,

G* gy = (¢* =3¢+ 1) ) — (c — 2)2uf) |@)
G’ ) = (¢ = 5¢* + 6¢ — D) gy — (c* = 4c + 3)2ulf) 1)
(19)

where ¢ = (4/12Pf — 1). The normalized probability of
(2u |fy |p)) is presented in Figure [3] by using different
values for ¢ (The amplitudes of ) and (2u |f)) are nor-
malized.). The amplitude of |i) through the iterations of
the amplitude amplification oscillates with a frequency
depending on the overlaps of the input with the eigenvec-
tors. When the amplitude of |/) becomes close to zero,
the second register in the remaining part |f) |p) is exactly
Q0T |x) and the first register is equal to |f).

Figure {] represents the iterations of the algorithm for a
random 27 x 27 matrix with 27/2 number of zero eigen-
values and a random input |x). In each subfigure, we have
used different numbers of qubits for the first register to see
the effect on the results. The bar graphs in the subfigures
shows the probability change for each state [j), j=0...1,
of the first qubit (A different color tone indicates a differ-
ent state.). When the probability for [0) becomes close

Quanta | DOI:|10.12743/quanta.v7i1.65

The normalized Probability of (2u|f)|e))
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Figure 3: The normalized probability of 2u |£) |p)) through the
iterations for different values of c.

to zero, the probabilities for the rest of the states become
equal and so the total sum of these probabilities as shown
in the bottom figure of each subfigure becomes almost
one. At that point, the fidelity found by [(regs| QO [x)|
also comes closer to one.

Through the iterations, while the probability for |0) state
goes to zero, the probabilities for the rest of the states
become almost equal. This indicates that the individual
states of each qubit turn into the equal superposition state.
Therefore, if the state of a qubit in the first register is
in the almost equal superposition state, then the success
probability is very likely to be in its maximum level. In
the Hadamard basis, |0) and |1) are represented in the
equal superposition states as follows

_o+m 0) — 11)
V2 V2 o

Therefore, using the Hadamard basis, if the probability
of measuring |0) is close to one, in other words, if |1)
is not seen in the measurement, then the second register
likely holds QQ7 |x) with a maximum possible fidelity.
Figure [5| shows the comparisons of the individual qubit
probabilities (i.e., the probability to see a qubit in the
first register in |0) in the Hadamard basis.) with the total
probability observed in Figure [4f] for the random case: As
seen in the figure, the individual probabilities exhibit the
same behavior as the total probability.

Generally, obtaining a possible probability density of
an unknown quantum state is a difficult task. However,
since we are dealing with only a single qubit and do not
require the exact density, this can be done efficiently. For
instance, if |0) is seen n number of times in ten measure-
ments, then the success probability is expected to be n/10.
Here, the number of measurements obviously determines
the precision in the obtained probability which may also
affect the fidelity.

10

and |1) =

(20)
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Figure 4: The probability changes in the iteration of the amplitude amplification for a random 27 x 27 matrix with 27 |2 number
of zero eigenvalues and a random input |X) (MATLAB code for the random generation is given in[Appendix)). In each subfigure,
we have used different numbers of qubits, m, for the first register to see the effect on the results. The bar graphs in the subfigures
shows the probability change for each state |j), j = 0...1, of the first qubit. For each state, a different color tone is used.
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The Probability of Each Qubit After Hadamard Gates
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Figure 5: The probability to see a qubit in the first register in
|0) state after applying a Hadamard gate to the qubit and its
comparison with the total probability and the fidelity given in
Figure Note that the above separate curve is the fidelity.
Since there are only small differences between the probabilities
on the individual qubits and the total probability, the curves
for the probabilities mostly overlap.

The number of qubits, m, in the first register should be
sufficient to distinguish very small nonzero eigenvalues
from the ones which are zero. In our numerical random
experiments, we have observed that choosing only six
or five qubits are enough to get very high fidelity while
not requiring a high number of iterations. The impact of
the number of qubits on the fidelity and the probability
is shown in Figure 4] in which each sub-figure is drawn
by using different register sizes for the same random case.
As seen in the figure, the number of qubits also affects
the required number of iterations: e.g., while for m = 3,
the highest fidelity and probability are seen at the fourth
iteration; for m = 6, it happens around the ninth iteration.

The circuit implementation of W requires forming a quan-
tum circuit representing the time evolution of W: i.e.,
U = ¢>W!, When W is a sparse matrix, the circuit can be
formed by following the method in [38]]. However, when
it is not sparse but in the following form W = }; xjij,
then the exponential becomes equal to

U = &2Wt — elZﬂl‘ZijXjT.

21

To approximate the above exponential, we apply the
Trotter—Suzuki formula [39-42]] to decompose Eq. (21))
into the terms U; = 2™ = Uy I Uij, where 1 is a

Quanta | DOI:|10.12743/quanta.v7i1.65

kind of identity matrix with the first element set to ¢'>™,

and Uy, is a unitary matrix with the first row and column
equal to x;. For instance, if the second order Trotter—
Suzuki decomposition is applied to Eq. (ZI)) (note that the
order of the decomposition impacts the accuracy of the
approximation), the following is obtained

X sy (e ey, 22)

Then, the same decomposition is applied to the term
P25 i the above equation. This recursive de-
composition yields an approximation composed of (4«)
number of Uy, matrices. Any Uy; can be implemented as
a Householder matrix by using O(2") quantum operations

which is linear in the size of x; [43-46].

Generally, the amplitudes of the output vector (the fi-
nal state of the second register) encodes the information
needed for the solution of the considered problem. Since
obtaining the full density of a quantum state is known to
be very inefficient for larger systems, one needs to drive
efficient measurement schemes specific to the problem.
For instance, for some problems, comparisons of the peak
values instead of the whole vectors may be enough to
gauge a conclusion: In this case, since a possible outcome
in a measurement would be the one with an amplitude
likely to be greater than most of the states in magnitude,
the peak values can be obtained efficiently. However, this
alone may not be enough for some applications.

Moreover, in some applications such as the spectral
clustering problem, a superposition of vectors that are
forming a solution space for the problem can be used as
an input state. In that case, the measurement of the output
in the solution space yields the solution for the problem.
This method can be used efficiently (polynomial time
complexity in the number of qubits) when the vectors
describing the solution space are tensor product of Pauli
matrices.

The computational complexity of a quantum algorithm is
assessed by the total number of single gates and two qubit
controlled NOT (CNOT) gates in the quantum circuit im-
plementing the algorithm. We derive the computational
complexity of the whole method by finding the complex-
ities of U on the first register with m number of qubits
and U, on the second register with n number of qubits.
We shall use M = 2" and N = 2" to describe the sizes of
the operators on the registers.
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It is known that the number of quantum gates to imple-
ment a Householder matrix is bounded by the size of the
matrix [43-46]. Therefore, the circuit for Uy requires
O(M) CNOT gates since it is a Householder transforma-
tion formed by the vector |f) of size M.

The operator Uy, is equal to UppaUp UITJE 4 1n which the
total complexity will be typically governed by the com-
plexity of Upga. Upga involves the Fourier transforms,
input preparation circuit, and the controlled U = "V
with different 7 values:

o The circuits for the quantum Fourier transform and
its inverse are well known [36] and can be imple-
mented on the first register in o(m>?).

o The input preparation circuit on the second register,
Uinput» can be implemented again as a Householder
transformation by using O(N) number of quantum
gates. It can be also designed by following Sec-
tion IIL.B. of [47]: In that case, for every two vector
elements, a controlled rotation gate is used to con-
struct Uj,py, with the initial row equal to x; thus,
Uinput 10) = [x).

e The circuit complexity of U = "% is highly re-
lated to the structure of W. When W of order N
is sparse enough: i.e., the number of nonzero en-
tries is bounded by some polynomial of the num-
ber of qubits, poly(n); then W can be simulated
by using only O(poly(n)) number of quantum gates
[38,148,49]]. However, when W is not sparse but
equal to x;X;! , then as shown in Section we
use Trotter—Suzuki formula which yields a product
of (4k) number of Uy; matrices with I < j < «. Since
Uy can be implemented as a Householder transfor-
mation by using O(N) quantum gates, U requires
O(kN) quantum gates.

If we combine all the above terms, the total complexity
can be concluded as

O(kN + M). (23)
This is linear in system-size, however, exponential in the
number of qubits involved in either one of the registers. In
comparison, any classical method applied to obtain QQ” x
at least requires O(N?) time complexity because of the
matrix vector multiplication. Therefore, the quantum
model presented here may provide a quadratic speedup
over the classical methods for some applications. When
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the weight matrix is sparse or the data is given as a quan-
tum states, it can be implemented in O(poly(n)). There-
fore, the whole complexity becomes linear in the number
of qubits, which may provide an exponential speedup over
the classical algorithms. However, when the weight ma-
trix is not sparse, the complexity becomes exponential in
the number of qubits. The current experimental research
by big companies such as Google and IBM aims to build
50 qubit operational quantum computers [50]]. Because
of the limitations of the current quantum computer tech-
nology, when the required number of qubits goes beyond
50, the applications of the algorithm becomes infeasible.

Here, we give a simple example to show how the al-
gorithm works: Let us assume, we have given weights
represented by the columns of the following matrix [[51]]

-1 +1
1 -1 -1
-1 +1

where we scale the vectors by % so as to make sure that
the eigenvalues of W are less than one. To validate the
simulation results, first, W« is classically computed by
following the singular value decomposition of X

+.5774 0
00 = 0 1{{2495 0 \(-.7071 +.7071
“|-5774 ol o .14142)\-7071 -.7071
+.5774 0
(25)
Therefore,
+333 0 -.333 +.333
0 1 0 0
_ T _
Wiw = 00" =|_ 333 o 4333 —333| @9
+333 0 -.333 +.333

We use the following Trotter—Suzuki formula [39-42] to
compute the exponential of W = XX’

2rW XXy 2rxixY imxpxT
U=e¢e @72 TR MR

(27)

In the simulation for a random input |x), the com-
parison of Wi [x) = 007" |x) with the output of the
second register in the quantum model yields the fi-
delity. For two different random inputs, the simula-
tion results in each iteration are shown in Figure [64]
and Figurefor Ix) = (.3517 .3058 .6136 .6374)" and
Ix) = (.7730 .1919 .1404 .5881)7, respectively.
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(a) For the generated random input |x) = (3517 .3058 .6136 .6374)" (b) For the generated random input |x) = (.7730 .1919 .1404 .5881)".

Figure 6: The simulation results of the quantum model for the example in Sectionwith two different input vectors.

The weight matrix of the networks based on the Widrow—
Hoff learning rule converges to QQ7, where Q repre-
sents the eigenvectors of the matrix corresponding to the
nonzero eigenvalues. Here, we applied the quantum prin-
cipal component analysis method described in [35]] to
artificial neural networks using the Widrow—Hoff learn-
ing rule and showed that one can implement an equivalent
quantum circuit which produces the output QQ7x for a
given input X in linear time. We also discussed the im-
plementation details by using random cases, analyzed the
computation complexity based on the number of quantum
gates and presented a simple numerical example. The
model is general and requires only linear time computa-
tional complexity in the size of the weight matrix.

The random matrix used in the numerical example is
generated by the following MATLAB code snippet:

%number of non-zero eigenvalues

npc = ceil(N/2);

d = rand(N, 1) ;%random eigenvalues
d(npc+l:end) = 0;

%random eigenvectors

[Qfull,”] = gr(randn(N));

%the unitary matrix in PEA

U = Qfull*diag(exp(li*2*pi*d))*Qfull’;
%normalized input vector

X rand(N,1); x = x/norm(x);
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