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n non-relativistic quantum mechanics, the abso-

lute square of Schrodinger’s wave function for a

particle in a potential determines the probability
of finding it either at a position or momentum at a
given time. In classical mechanics the correspond-
ing problem is determined by the solution of Liou-
ville’s equation for the probability density of find-
ing the joint position and momentum of the particle
at a given time. Integrating this classical solution
over either one of these two variables can then be
compared with the probability in quantum mechan-
ics. For the special case that the force is a constant,
it is shown analytically that for an initial Gaussian
probability distribution, the solution of Liouville’s in-
tegrated over momentum is equal to Schrodinger’s
probability function in coordinate space, provided
the coordinate and momentum initial widths of this
classical solution satisfy the minimal Heisenberg un-
certainty relation. Likewise, integrating Lioville’s so-
lution over position is equal to Schrodinger’s proba-
bility function in momentum space.
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1 Introduction

In 1926, when Erwin Schrodinger formulated the fun-
damental non-relativistic equation for quantum mechan-
ics [I]l, his students rhymed:

Erwin with his psi can do
Calculations quite a few

But one thing has not been seen:
Just what does psi really mean [2]].

Shortly afterwards, Max Born gave a precise meaning
to psi, Schrodinger’s wave function y/(7, t) for a particle
traveling in a potential V(7, ¢), by proposing that |y(7, 1)|?
is the probability density for finding it in the position
interval (7,7 + d7) at time ¢ [3,[4]. Since then, many
attempts have been made to derive this interpretation
from first principles, but without success, although efforts
in this direction have continued up to the present time [5].
To counter early criticisms for his interpretation, Born
pointed out that in classical mechanics, the unavoidable
uncertainties in initial conditions imply that in practice
classical mechanics is also statistical in nature [3,4]. But
recently, in an article entitled “The trouble with quantum
mechanics”, Steve Weinberg asked “Since Schrodinger’s
equation is deterministic, how do probabilities get into
quantum mechanics?” [6]]. The large number of responses
by physicists to his article indicates that the answer to
this question is still not settled [7].

In the absence of interference effects, the time evolu-
tion of the absolute square of Schrodinger’s wave function
is closely related to the solution of Liouville’s equation
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for the corresponding probability function in classical me-
chanics. In this note, we demonstrate this correspondence
for the motion of a particle moving under the action of a
constant force. For the special case that the initial prob-
ability distribution is a Gaussian function, the quantum
and the classical problem can both be solved analytically.
Then, if the initial widths in coordinate and momentum
space satisfy the minimal Heisenberg uncertainty relation,
it is shown that the evolution of the quantum and classical
probability distributions is identically the same.

We consider the Liouville equation in one dimension
along the direction x of a constant force. Let P(x, v, f) be
the probability of finding a particle at x with velocity v at
time ¢. Then at a later time ¢ + dt

P(x +dx,v+dv,t +dt) = P(x,u,t), (D)
and to first order in the infinitesimals dt, dx and dv,
opP opP oP
— — — =0. 2
dxax+dvav+dtat 0 (2)
Setting
dx = vdt ,dv = adt. 3)

where a = dv/dt is the acceleration due to an external
force that can depend on x, v and ¢, leads to Liouville’s
equation
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For an initial Gaussian dependence of P on x and v,
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where o, and o, are the widths in coordinate and velocity
respectively.

It can be readily shown that for the case that a is a con-
stant, the time dependent solution of Liouville’s equation,

Eq.[] is
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Proof.
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Hence
2
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To compare this result with the corresponding solution
of the Schrédinger equation for a constant acceleration a,
consider the probability P’(x, ) for finding a particle at x
at time ¢ independent of its velocity v. Then

+00 1 (-x - %)2
P (x9 t) = IOO dUP(x’ v, t) = \/ﬂo’(t) exp - 20.2(t)
(10)

where o (t) = Vo2 + 1202
For the special case that the widths o, and o, satisfy
the minimal Heisenberg uncertainty relation

h
TNy = o (11)
we obtain
nr o\
o(t) = |0z +( ) , (12)
2mo

The corresponding time dependent Schrodinger equa-
tion for this problem is

MW(x,0) I OY(x,1)

B
o m ox

+ V(Y (x, 1), (13)
for a potential V(x) = —amx. Let the initial state at t = 0
be a Gaussian wave function with the same width o, as
in the classical problem,

_1 ¥2
W(x,0) = (27r0'§) *exp (—4—2)

X

(14)

Recently, I discussed the solution of Eq. [I3] with this
initial condition [{]], so only the results will be given here.
One finds that

Y(x, 1) = ¢(x, 1) exp [@] (15)

where

1 2\2
252 \]7°# x—
o(x,t) = |21 (0')26 + 4;717")25)] exp _é(kr)%% R
(16)
and
2

S(x,t)=amt(x—%). (17
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Hence, according to Eq.[I(]
W, D = P(x,1),

showing that in coordinate space the probability distri-
bution in quantum mechanics is exactly the same as in
classical mechanics. A similar identity is obtained for the
probability distribution in momentum space.

(13)

We have demonstrated analytically that for particle mo-
tion under the action of a constant force, the spreading in
coordinate space of a quantum mechanical wave packet,
and a corresponding classical distribution are exactly the
same. In this special case, quantum interference effects
do not occur. Originally, Schrodinger interpreted |y(x, £)|?
to be the density of a particle like the electron, and con-
cerned with this spreading, he wrote to Lorentz:

Would you consider it a very weighty objection
against the theory if it were to turn out that the
electron is incapable of existing in a completely
field free space? (9} p. 59]

Even as late as 1946, he wrote to Einstein:

I am no friend of the probability theory, I have
hated it from the first moment when our dear
friend Max Born gave it birth. For it could be
seen how easy and simple it made everything,
in principle, everything ironed out and the true
problem concealed. [10, p. 435]

Schrodinger’s strong reaction to Born’s probability in-
terpretation may partly explain why it continues to be
debated up to the present time.

For space dependent forces, the corresponding equa-
tions have to be solved numerically, and I have done such
a calculation for the important classical and quantum
problem of a central inverse square force [[11,/12]. In
this case the spreading of an initially well localized wave
packet occurs around the center of force, and the quantum
and classical distribution remain the same until the tip
of the distribution catches up with its tail. Afterwards,
interference effects occur in quantum mechanics that do
not have a classical analog, and recurrences appear that
also do not have any classical analog [13]]. These recur-
rences have been verified experimentally for Rydberg
atoms [|14}/15]).

I thank David Book for a careful reading of this
manuscript and helpful comments.
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