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Quantum mechanics is often taken to entail
holism. I examine the arguments for this
claim, and find that although there is no

general argument from the structure of quantum
mechanics to holism, there are specific arguments
for holism available within the three main realist
interpretations (Bohm, Ghirardi-Rimini-Weber and
many-worlds). However, Evans, Price and Wharton’s
sideways Einstein-Podolsky-Rosen-Bell example chal-
lenges the holistic conclusion. I show how the sym-
metry between the sideways and standard Einstein-
Podolsky-Rosen-Bell set-ups can be used to argue
against holism. I evaluate the prospects for extending
this insight to more general quantum systems, with
a view to producing a genuinely time-symmetric hid-
den variable theory. I conclude that, although this
extension undermines the analogy between the side-
ways and standard cases, quantum mechanics with-
out holism remains a live possibility.
Quanta 2016; 5: 85–92.

1 Introduction

Quantum mechanics has seemed to many commentators
to entail holism, the existence of properties of compound
systems that cannot be reduced to properties of their parts.
However, the argument is far from straightforward. In
what follows, I rehearse the standard argument from en-
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tangled states, consider its defects, and then construct a
more indirect argument from the three major interpreta-
tions of quantum mechanics to a holistic conclusion. I
then show how an analogy between entangled states and
ordinary preparation/measurement scenarios can be used
to undermine even the indirect argument. The analogy
suggests that quantum mechanics should be interpreted
as a time-symmetric theory, in the sense that causal in-
fluences flow both from earlier in time to later and from
later to earlier. However, while the analogy is sugges-
tive, it only holds for maximally entangled states, and
hence fails when the time-symmetric approach is applied
to general quantum states. I argue that the failure of the
analogy is no impediment to the time-symmetric interpre-
tation of quantum mechanics, and hence that holism is
not necessarily a consequence of quantum mechanics.

2 Arguments for holism

The canonical argument for holism appeals to entan-
gled states of a pair of particles. For example, con-
sider a pair of spin-1/2 particles in the singlet state
|S 〉 = 1√

2

(
|↑z〉1 |↓z〉2 − |↓z〉1 |↑z〉2

)
, where |↑z〉1 and |↓z〉1

are states in which particle 1 is z-spin-up and z-spin-down
respectively, and similarly for particle 2. According to
Teller [1], the property described by state |S 〉 is a holistic
property of the pair of particles: it describes a relation
between them that cannot be reduced to their intrinsic
properties. Teller’s reason is that the state |S 〉 cannot be
factored into the product of a state of particle 1 and a state
of particle 2. But as it stands this is just the beginning
of an argument. Non-factorizability is a mathematical
property of a mathematical object. To make the case that
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this mathematical property tells us something about the
physical properties of the particles themselves, we need
to know how the mathematical object |S 〉 functions as a
description of the physical world. And this is precisely
what is up for grabs in quantum mechanics.

Bell’s theorem [2] might seem to provide some hope
here [3]. Bell’s theorem tells us that (subject to some
plausible assumptions) no ascription of properties to the
individual particles can explain the observed behavior
of state |S 〉 on measurement. One might be tempted to
claim on this basis that we have to postulate a holistic
property of the pair to explain what we observe. But
what does the holistic property add? Suppose we observe
that particle 1 is z-spin-up and particle 2 is z-spin-down.
By itself, a holistic property of the pair corresponding to
state |S 〉 provides no explanation for what we observe,
as |S 〉 is entirely symmetric between spin-up and spin-
down for each particle. We could try to break the sym-
metry by ascribing spin properties to the two particles
that are revealed on measurement, but this is precisely
what Bell’s theorem precludes. That is, the conclusion
of Bell’s theorem is not that explaining the outcomes we
see requires holistic properties, but that, subject to Bell’s
assumptions, the outcomes we see are inexplicable. Most
people, Bell included, find this conclusion unacceptable.
Hence Bell [4, p.20] saw his theorem as a reductio of
his assumptions: one of them must be false. But then
nothing follows from Bell’s theorem (at least directly)
about whether the properties of the individual particles
are sufficient to explain the outcomes we observe.

So is there any argument that quantum mechanics en-
tails holism? Perhaps the best hope is to look at the
various realist interpretations of quantum mechanics on
offer: Bohmian hidden variable theories, Ghirardi-Rimini-
Weber-type spontaneous collapse theories, and Everettian
many-worlds theories. Each of these theories explains the
outcomes of measurements on state |S 〉 by violating one
of Bell’s assumptions. Bohm’s theory and the Ghirardi-
Rimini-Weber theory violate locality, the assumption that
a measurement performed on one particle cannot affect
the properties of the other. Many-worlds theories violate
uniqueness, the assumption that each measurement has
exactly one outcome. So for none of them does Bell’s the-
orem directly imply that the properties of the individual
particles alone are insufficient to explain those outcome.
But nevertheless, each of them arguably entails holism:
even though Bell’s theorem does not in itself require
the explanation of the measurement outcomes to involve
anything over and above the properties of the individual
particles, in fact each of these theories does appeal to
an irreducible property of the pair of particles to explain
what we see. The reason is that in each case the quantum
state is typically taken to be genuinely descriptive of the

properties of an entity in the world, of something like a
field. This field is most readily understood as an entity
residing in a multi-dimensional configuration space, al-
though it can be argued that the field can be understood
in three-dimensional terms [5]. In any event, for an en-
tangled state like |S 〉, the properties of this entity include
a special connection between particles 1 and 2 that is
crucial to the explanation of measurement outcomes.

Let us see briefly why holism is required in the three
major realist interpretations [6]. In Bohm’s theory, the
field described by |S 〉 pushes around a pair of particles,
and the positions of the particles correspond to the out-
comes of our measurements. There are initial positions
of the particles such that if particle 1 is not measured,
particle 2 is found to be z-spin-up on measurement, but
if particle 1 is measured, particle 2 is found to be z-spin
down. That is, the measurement of particle 1 affects
the properties of particle 2. This process is non-local,
but more to the point, it constitutes a special connection
between just these two particles: the measurement of par-
ticle 1 does not affect the properties of any other particle.
This connection entails counterfactual conditionals such
as “If the two particles were to have their spins measured
in the same direction, then they would have opposite spins
in that direction”. These conditional relations are not re-
ducible to the local properties of the individual particles
or of the regions of space they occupy. (The conditional
relations are reducible to the properties of regions of con-
figuration space, but these regions are not local in the
relevant sense.)

A similar process is at work in the Ghirardi-Rimini-
Weber theory. In this case the quantum state |S 〉 is a com-
plete description of the two-particle system, and there
is a small chance per unit time of the state undergoing
a collapse in which it becomes highly localized in the
coordinates of one particle or the other. This collapse
probability only becomes significant when many particles
become involved, for example on measurement. When
the z-spin of particle 1 is measured, state |S 〉 collapses to
(a state close to) one or other of its terms, and hence both
particles acquire z-spin properties. Again, this process is
non-local, but the key point is the special connection be-
tween particle 1 and particle 2 embodied by the entangled
state. This state again supports counterfactual condition-
als, and is irreducible to the local properties of the spatial
regions associated with the individual particles.

The situation in the many-worlds theory is a little
more subtle. As in Ghirardi-Rimini-Weber, a quantum
state like |S 〉 is a complete description of the system,
but unlike Ghirardi-Rimini-Weber, there is no collapse
mechanism. Instead, both spin outcomes occur when a
spin measurement is performed, and since the terms in
the state describing each outcome hardly interact after
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Figure 1: Spacetime diagram of the standard Einstein-
Podolsky-Rosen-Bell experiment.

the measurement, they can be treated as separate worlds.
When the z-spin of particle 1 is measured, two worlds are
produced, and relative to a world, both particles acquire
z-spin properties. There is nothing straightforwardly non-
local in the many-worlds case, but the process via which
both particles acquire spin properties still embodies a spe-
cial connection between just these two particles. Again,
the state supports counterfactual conditionals, relative to
a world: “If the two particles were to have their spins
measured in the same direction, then relative to a world,
they would have opposite spins in that direction”. And
again, these conditional relations are not reducible to the
local properties of the spatial regions associated with each
particle.

So in each case, the explanation of the results we ob-
serve appeals to an irreducible property of the pair of
particles (or the regions of space associated with each
of them) that supports counterfactual relations between
them. There are a few caveats, such as attempts by some
Bohmians to regard state |S 〉 as describing a law rather
than a field [7]. But these aside, the entangled nature
of state |S 〉 genuinely corresponds to a holistic property
of the ontology associated with the theory in question.
So the three main realist interpretations of quantum me-
chanics all entail holism, and in roughly the same way.
One might quite reasonably conclude that holism is an
inevitable feature of the quantum world.

But such a conclusion would be premature. Taking
my cue from Evans, Price and Wharton [8], I argue that
a different perspective on the situation undermines the
holistic conclusion.

↑L↓L

S

x
t L

R

R↑ R↓

Figure 2: Spacetime diagram of the sideways Einstein-
Podolsky-Rosen-Bell experiment.

3 Looking at things sideways

The experiment we have been considering is the stan-
dard Einstein-Podolsky-Rosen-Bell experiment. Figure 1
shows a spacetime diagram of the set-up. The particles
are emitted at source S and travel outwards to spin detec-
tors at L and R. The spin detectors consist of magnets that
deflect particles up or down according to their spin, after
which the particles may be run into a fluorescent screen
which lights up at the impact point.

Figure 2, on the other hand, shows the Evans-Price-
Wharton sideways version of the Einstein-Podolsky-
Rosen-Bell set-up. Here a single particle is introduced
at L and travels to R via S. S is in this case a device that
reflects the particles, that is, that reverses their direction
and their spin. L and R contain the same magnets as be-
fore: at R the particle is deflected up or down depending
on its spin, and at L the particle is introduced either as a
spin-up particle through the L-up channel or a spin-down
particle through the L-down channel, and is deflected by
the magnets onto the trajectory towards S.

These experimental set-ups look rather different: the
standard experiment involves two-particles, whereas the
sideways version involves a single particle. But as Evans,
Price and Wharton point out, the two experiments bear
striking symmetry relations to each other. That is, if we
reflect the left-hand side of Figure 1 in the x = 0 line,
and then reflect it again in the t = 0 line, we obtain
Figure 2. What is more, the probabilistic treatment of
the single particle in the sideways version at two times is
strongly analogous to the treatment of the two particles
in the standard experiment at a single time. That is, if we
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are completely ignorant about whether the particle in the
sideways version is introduced through L-up or L-down,
then it is appropriate to ascribe a 50% chance to each, and
consequently a 50% chance each to the particle emerging
through R-up or R-down. But we know that the spin at
L will be the opposite of the spin at R; the spins at the
two times are perfectly anticorrelated. This is exactly the
probability ascription appropriate for the entangled state
|S 〉 in the standard experiment.

But despite the analogies, there is an immediate dis-
analogy between the two cases: there is no temptation
whatsoever to appeal to holistic properties to explain the
particle’s behavior in the sideways version. The overall
argumentative strategy of Evans, Price and Wharton is
to use the analogy between the sideways and standard
experiments to dissolve the apparent problems posed by
entangled states. Their target is locality: while the stan-
dard Einstein-Podolsky-Rosen-Bell experiment is often
thought to require non-local action of some kind, nothing
of the sort is evident in the sideways version, which casts
doubt on the arguments for non-locality in the standard
case. My intent is similar: while the standard Einstein-
Podolsky-Rosen-Bell experiment is often thought to re-
quire holistic properties, nothing of the sort is evident in
the sideways version, which casts doubt on the arguments
for holism in the standard case. Let us see how that might
go.

4 Time symmetry

Consider the sideways Einstein-Podolsky-Rosen-Bell
set-up. Suppose a spin-up particle is introduced through
the L-up channel. It travels via S to R, where it emerges
through the R-down channel. From L to S it is a z-spin-up
particle, and from S to R it is a z-spin-down particle: prop-
erties ascribed to the particle at a single time suffice to
explain what we observe. Similar observations apply if
the particle is introduced through L-down and emerges
from R-up. Of course, in the standard case, things get
more problematic when the magnets at L and R can be
rotated from the z-axis: this is the insight behind Bell’s
proof. But rotating the magnets causes no additional prob-
lems for the sideways version. Suppose the magnets at
L are rotated so that they make an angle of 120◦ with
the z-axis; call this direction the w-axis. Suppose that a
w-spin-up particle is introduced through the L-up channel.
It is a w-spin-up particle from L to S and a w-spin-down
particle from S to R. But it is measured along the z-axis
at R, and we know that empirically speaking there is a
25% chance that it will be measured as z-spin-down and
a 75% chance that it will be measured as z-spin-up. We
could, if we like, explain this by postulating some process

at R by which the particle acquires a z-spin property on
measurement, for example a Ghirardi-Rimini-Weber-type
collapse.

But in fact this is not required. We can simply stipu-
late that the w-spin-down particle also has a pre-existing
z-spin property, either up or down, distributed statistically
in the required 3:1 ratio. One might suspect that Bell’s
theorem rules out the explanation of the observed out-
comes by pre-existing properties, but this is not the case
because the sideways set-up explicitly violates one of
Bell’s assumptions, namely the independence of the parti-
cle properties from the device settings at L and R [9]. The
properties of the particle clearly depend on the device set-
ting at L: when the magnets are oriented along the w-axis
and a particle is introduced through the L-up channel, it
has to have the w-spin-up property if it is to be deflected
towards S by the magnets. Given that it has this property,
it is a straightforward matter to ascribe it spin-properties
for any direction in which its spin might be measured
at R, without violating the predictions of quantum me-
chanics. If the angle between the magnets at L and at R
is θ, then the required statistical distribution is that the
particle is spin-down in the direction of the magnets at R
with probability cos2 (θ/2), and spin-up with probability
sin2 (θ/2). So in the sideways version, nothing fancy is
required to explain the results we observe: the results just
reflect the pre-existing properties of the particles. There
is no need for holistic properties, and there is no need for
a special mechanism for coordinating the spins of the two
particles via a field.

Suppose we carry over this explanation to the standard
Einstein-Podolsky-Rosen-Bell case. What is required is
that we regard the properties of particle 1 between S and
L as dependent on the measurement that is performed at
L. The twist, of course, is that in the standard case the
particle between S and L is earlier in time than the mea-
surement at L; hence the dependence of its properties on
the later measurement event is an example of backwards-
in-time causation. The coherence of such accounts has
been defended at length by Price [10]. The payoff is that
the measurement outcomes in the standard case can be
explained entirely by local particle properties that are
revealed on measurement. If the magnets at L and R
are both oriented along the z-axis, then particle 1 is ei-
ther z-spin-up or z-spin-down (with a 50% probability
of each), and particle 2 has the opposite z-spin property.
If the magnets at L are oriented along the w-axis, then
particle 1 is either w-spin-up or w-spin-down (with a 50%
probability of each), particle 2 has the opposite w-spin,
and the z-spin property of particle 2 is statistically dis-
tributed accordingly, 3:1 in favor of z-spin-up if particle
2 is w-spin-down, and 3:1 in favor of z-spin-down if parti-
cle 2 is w-spin-up. There is no need for holism, no need
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for the non-local mechanisms of Bohm and Ghirardi-
Rimini-Weber, and no need for the world-splitting of the
many-worlds theory.

One thing that is strange about the story so far, though,
is that it is spatially asymmetric: the measurement per-
formed at L affects the properties of the particles, but the
measurement at R simply records them. This asymmetry
reflects the obvious temporal asymmetry of the sideways
case: L is a preparation event and R is a measurement
event. But to inflict a spatial asymmetry on the standard
case would be absurd. The obvious alternative, given
the time-symmetric causation involved in the current ac-
count of correlation, is to deny both the spatial asymmetry
in the standard case and the temporal asymmetry in the
sideways case. That is, in the standard case particle 1
is affected by the measurement at L, and particle 2 is
affected by the measurement at R. Indeed, because of the
constraint that their total spin must be zero introduced
by the manner of production of the particle pair at S, in
fact both measurements affect the properties of both par-
ticles. And now that we are in the business of regarding
causation as a time-symmetric notion, the same goes for
the sideways case: the properties of the single particle
are affected both by the past preparation event L and the
future measurement event R.

But the details introduce some complications. Consider
the standard case first, and suppose that the magnets at
L and R are aligned along the z-axis. Then it really does
not matter whether we start our causal story at L or at R.
That is, we could say that because the magnets at L are
along the z-axis, particle 1 is either z-spin-up or z-spin-
down (with a 50% probability of each), and because of
the way the particles are produced at S, particle 2 has the
opposite spin. Alternatively, we could say that because
the magnets at R are along the z-axis, particle 2 is either z-
spin-up or z-spin-down (with a 50% probability of each),
and because of the way the particles are produced at S,
particle 1 has the opposite spin. These stories are clearly
compatible. But if the magnets at L are aligned along the
w-axis the two stories looks different. Starting at L, we
say that because of the magnet orientation, the particle is
either w-spin-up or w-spin down (with a 50% probability
of each), because of the production method at S, particle
2 has the opposite w-spin, and because of particle 2’s
w-spin, its z-spin properties are distributed 3:1 in favor of
one outcome over the other. But starting at R, we say that
because of the magnet orientation, the particle is either
z-spin-up or z-spin down (with a 50% probability of each),
because of the production method at S, particle 2 has the
opposite z-spin, and because of particle 2’s z-spin, its w-
spin properties are distributed 3:1 in favor of one outcome
over the other. These two stories look incompatible: they
seem to ascribe different probabilities to the various spin

properties. For example, one story says that the z-spin of
particle 1 is distributed evenly between up and down, and
the other story says that it is distributed unevenly.

But this apparent incompatibility dissolves once we
untangle what the various probabilities are conditional
on. If we start at L, then the probabilities that particle 1
is w-spin-up and w-spin down are unconditionally 50%
each, and the probabilities that particle 2 is z-spin-up and
z-spin down are 75% and 25% respectively, given that
particle 1 is w-spin-up, and 25% and 75% respectively,
given that particle 1 is w-spin down. If we start at R, then
the probabilities that particle 2 is z-spin-up and z-spin
down are unconditionally 50% each, and the probabili-
ties that particle 1 is w-spin-up and w-spin down are 75%
and 25% respectively, given that particle 1 is z-spin-up,
and 25% and 75% respectively, given that particle 1 is
z-spin down. These probability ascriptions are perfectly
compatible, and in fact reflect what we observe in an
Einstein-Podolsky-Rosen-Bell experiment. That is, if we
just look at the results for particle 1 (or just those for
particle 2), we see that results are evenly distributed be-
tween spin-up and spin-down whichever spin direction
is measured. It is only when we compare the results for
the two particles that the distinctive entanglement corre-
lations emerge. For example, if we look that the z-spin
results for particle 2 only in cases where particle 1 was
found to be w-spin-up, we find that they are distributed
3:1 in favor of z-spin-up.

So for a given pair of settings in the standard case, the
two stories (the one starting at L and the one starting
at R) are just two ways of describing the same distribu-
tion of spin properties. And we can do the same for the
sideways case. That is, although it is natural to treat L
as a preparation event and R as a measurement, we can
just as well do the reverse. However, we need to be a
little careful, because at the human level preparation and
measurement are not the same kind of thing, and there
is no obvious sense in which one is the time-reverse of
the other. The goal here, though, is just to show that it is
possible to regard the quantum process between prepara-
tion and measurement as time-symmetric. So to that end,
let us construe the preparation event so that it is closely
analogous to the time-reverse of a measurement event, at
least as regards the description of the quantum system.
That is, just as a measurement event produces a spin-up
or a spin-down outcome at random with a 50/50 statistical
distribution, let us suppose that preparation involves intro-
ducing a particle at random into the spin-up or spin-down
channel with a 50/50 statistical distribution.

Then supposing that the magnets at L are aligned along
the w-axis and those at R are aligned along the z-axis, we
can describe things like this. Starting at the earlier event L,
we say that because of the magnet orientation, the particle
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at time 1 is either w-spin-up or w-spin down (with a 50%
probability of each), because of the reflection method at S,
the particle at time 2 has the opposite w-spin, and because
of this w-spin, its z-spin properties at R are distributed
3:1 in favor of one outcome over the other. But starting
at R, we say that because of the magnet orientation, the
particle at time 2 is either z-spin-up or z-spin down (with
a 50% probability of each), because of the reflection
method at S, the particle at time 1 has the opposite z-spin,
and because of this z-spin, its w-spin properties at L are
distributed 3:1 in favor of one outcome over the other.
These two descriptions are compatible because in each
case the 50/50 probabilities are unconditional, and the
75/25 probabilities are conditional on the spin at the other
time.

There is something odd about the latter version of the
story: it is not the kind we are used to telling. But from the
current perspective, the oddity is of a purely pragmatic
character that has nothing to do with the structure of
the quantum world. That is, given the familiar temporal
asymmetries at the macroscopic level, we often prepare
a system for later measurement, but we never prepare
a system for earlier measurement, so we are interested
in the forward-in-time story rather than the backward-
in-time story. But these familiar temporal asymmetries
(presumably) have an origin in entropic asymmetry that
has nothing to do with the behavior of simple quantum
systems [10]. So given that backwards-in-time causation
is necessary in the standard case, it seems appropriate
to propose a temporal symmetry in the sideways case
analogous to the spatial symmetry in the standard case.

Thinking back to the arguments in favor of holism in
the previous section, what all three realist interpretations
of quantum mechanics have in common is that they treat
the quantum state as descriptive of the properties of a
physical entity. It is here that holism takes root. And now
we can see how the time-symmetric account avoids the
holistic conclusion: the quantum state is treated merely
as a convenient summary of an observer’s knowledge of
the system, as part of a recipe via which the observer
can calculate the probability that the system possesses
a particular property. But as far as the ontology goes,
the time-symmetric account just has particles and their
individual properties. The fact that the entangled state
|S 〉 cannot be factored into a state of particle 1 and a state
of particle 2 just shows that the observer’s knowledge is
irreducible to knowledge of particle 1 and knowledge of
particle 2, since it includes counterfactual conditionals
holding between them. But there need be no property
of the quantum system itself encoding those condition-
als: they are enforced by the causal structures described
above.

5 Towards a theory, away from an
analogy

Section 4 shows how we can supplement the quantum
state with spin properties (hidden variables) to recover
the observed measurement results in standard Einstein-
Podolsky-Rosen-Bell cases without recourse to holistic
properties of the entire system. And since it is such cases
that provide the strongest prima facie case for holism,
this suggests that holism is not an inevitable consequence
of quantum mechanics. But we need to be careful here:
this is just a single case, albeit a widely discussed one.
There is no guarantee that a general recipe for ascribing
properties to systems can be constructed that recovers all
the empirical predictions of quantum mechanics. That
is, there is no guarantee that the time-symmetric strategy
can be turned into a full-fledged hidden variable theory.

So let us consider how the property ascription of the
previous section might be generalized. The recipe for
ascribing probabilities to properties when the w-axis is
selected at L and the z-axis at R is summarized in Table 1.

Table 1 L
↑w ↓w

R ↑z 3/8 1/8
↓z 1/8 3/8

Table 1 shows the unconditional probabilities of the most
fine-grained properties: that is, the top left cell shows
the probability of the relevant particle (or particles in
the standard case) being w-spin-up and z-spin-up. The
unconditional probabilities for the two possible properties
at L can be obtained by summing the probabilities in a
column: for instance, the probability of w-spin-up at L is
3/8+1/8 = 1/2. Similarly, the unconditional probabilities
for the two possible properties at R can be obtained by
summing the probabilities in a row. The probability of a
property at L conditional on a particular property at R can
be found by restricting attention to the relevant row and
renormalizing. That is, the probability of spin-up on the
left given spin-up on the right is (3/8)/(3/8 + 1/8) = 3/4.
Similarly for the other conditional probabilities.

This probabilistic recipe for ascribing properties to
systems can be straightforwardly generalized in a number
of ways. First, suppose the w-axis makes an angle θ with
the z-axis. Then the probabilities are as in Table 2.

Table 2 L
↑w ↓w

R ↑z (1/2) sin2 (θ/2) (1/2) cos2 (θ/2)
↓z (1/2) cos2 (θ/2) (1/2) sin2 (θ/2)
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Table 2 is analogous to a recipe suggested by Price [11]
in a very similar context. Second, suppose the state,
rather than being the symmetric entangled state |S 〉, is
some general state |φ〉, that the measurement at L is of a
binary observable Â with two non-degenerate eigenstates
|A1〉 and |A2〉, and that the measurement at at R is of a
binary observable B̂ with two non-degenerate eigenstates
|B1〉 and |B2〉. Then the recipe for assigning probabilities
to the properties A1, A2, B1 and B2 corresponding to the
eigenstates is given in Table 3.

Table 3 L
A1 A2

R B1 |〈A1B1|φ〉|
2 |〈A2B1|φ〉|

2

B2 |〈A1B2|φ〉|
2 |〈A2B2|φ〉|

2

Here |A1B1〉 is shorthand for |A1〉1 |B1〉2 (and so on).
Finally, we can generalize further to n-ary observables
Â and B̂ with non-degenerate eigenstates |Ai〉 and |Bi〉

(respectively). Then the recipe for ascribing probabilities
to the properties Ai and Bi is given in Table 4.

Table 4 L
A1 A2 · · · An

R B1 |〈A1B1|φ〉|
2 |〈A2B1|φ〉|

2 · · · |〈AnB1|φ〉|
2

B2 |〈A1B2|φ〉|
2 |〈A2B2|φ〉|

2 · · · |〈AnB2|φ〉|
2

...
...

...
. . .

...

Bn |〈A1Bn|φ〉|
2 |〈A2Bn|φ〉|

2 · · · |〈AnBn|φ〉|
2

Table 4 is a fairly general recipe for assigning probabili-
ties to properties based on the settings of the measuring
devices. Note that not all potentially measurable prop-
erties of the system are assigned probabilities, but only
those for which measurements are actually performed.
This is what allows the time-symmetric hidden variable
approach to avoid the no-go theorems of Bell [2] and
Kochen-Specker [12]. Such a recipe can account for the
probability distribution of measurement outcomes for a
system prepared in a certain state (when L occurs earlier
than R, as in the sideways case), and also the measure-
ment outcomes for entangled systems (when L and R are
space-like separated, as in the standard case).

This looks like the beginnings of a time-symmetric
approach to hidden variables. It is worth noting, though,
that the analogy between sideways and standard Einstein-
Podolsky-Rosen-Bell cases from which we began does
not carry over to this more general context. For maximally
entangled states like |S 〉, a “sideways” single-particle
analog exists that ascribes exactly the same probabilities
to spin properties. But for partially entangled two-particle
entangled states, there is no single-particle analog with the
same probability ascriptions [13]. This is not a significant

problem, though: while the analogy between sideways
and standard cases is a useful motivating heuristic, the
time-symmetric approach does not depend on any general
analogy between two particles at a single time and a single
particle at two times. The recipes for ascribing properties
to particles in Tables 3 and 4 above still work perfectly
well for entangled, partially entangled and unentangled
two-particle states in standard Einstein–Podolsky-Rosen-
Bell situations, as well as for single-particle states in
sideways analogs, where those analogs exist.

There is still more work to be done in developing the
time-symmetric approach; there is no dynamical evolu-
tion of the state in the simple models considered here.
In particular, it is not yet clear how interference should
be handled in a time-symmetric hidden variable theory.
There are a number of promising approaches: Price [10,
pp. 252–257] suggests in general terms how a time-
symmetric approach might explain interference phenom-
ena; Spekkens [14] constructs a toy model that exhibits
some of the features of interference; Sutherland [15]
constructs a time-symmetric version of Bohm’s theory
that can generate interference effects; and Wharton [16]
describes two-slit interference in time-symmetric terms,
where the number of slits the particle passes through de-
pends on the later measurement made on it. If one or more
of these approaches bears fruit, then the time-symmetric
approach will be a notable competitor to the interpretive
approaches considered in Section 2.

6 Discussion

Holism comes up repeatedly in the context of quantum
mechanics, and while the route from entanglement to
holism is not a clear one, a case can be made for holism,
in the sense that each of the three main realist interpre-
tations of quantum mechanics appeals to an irreducible
property of both subsystems to explain the behavior of an
entangled pair. But Evans, Price and Wharton’s sideways
perspective on entanglement is instructive here. Given
the analogy between standard and sideways Einstein-
Podolsky-Rosen-Bell experiments, it looks like holism
should apply to both or neither. Holism is implausible
in the sideways case, and the behavior of the system can
be fully explained without appeal to holistic properties.
So the idea is that perhaps the same kind of explanation
can be applied to the standard case. And indeed it can, as
long as we are prepared to accept causal influences from
the future to the past. The resulting temporally symmet-
ric account avoids the need for holistic properties, and
allows the quantum state to adopt a purely epistemic role,
describing the observer’s knowledge of the properties of
the individual particles.
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Evans, Price and Wharton do not give us a full quan-
tum mechanical theory, just an analysis of a couple of
examples; other work extends the analogy to cover all
maximally entangled states, but not partially entangled
states [13, 16]. However, it is straightforward to general-
ize the recipe for assigning probabilities to properties in
the standard case to cover all states, maximally entangled
or otherwise, provided one is willing to give up the anal-
ogy between the standard and sideways cases that was
used to motivate the time-symmetric theory. The time-
symmetric approach itself is independent of the analogy:
once the approach has been recognized, the analogy can
be left aside. This gives hope that a time-symmetric hid-
den variable theory that is provably empirically equivalent
to standard quantum mechanics can be constructed. In
the meantime, we can at least conclude that the path from
quantum mechanics to holism is not a straightforward
one.
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