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Wavelets offer significant advantages for the
analysis of problems in quantum mechanics.
Because wavelets are localized in both time

and frequency they avoid certain subtle but poten-
tially fatal conceptual errors that can result from the
use of plane wave or δ function decomposition. Mor-
let wavelets in particular are well-suited for this work:
as Gaussians, they have a simple analytic form and
they work well with Feynman path integrals. But
to take full advantage of Morlet wavelets we need to
supply an explicit form for the inverse Morlet trans-
form and a manifestly covariant form for the four-
dimensional Morlet wavelet. We construct both here.
Quanta 2012; 1: 58–70.

1 Introduction

Wavelet transforms represent a natural development of
Fourier transforms and may be used for similar purposes.
Where the Fourier transform lets us decompose a wave
function into its component plane waves, a wavelet trans-
form lets us decompose a wave function into its compo-
nent wavelets. If we think of the plane waves as corre-
sponding to pure tones, we may think of the wavelets as
corresponding to the notes produced by physical instru-
ments: of finite duration and spanning a finite range of

This is an open access article distributed under the terms
of the Creative Commons Attribution License CC-BY-3.0, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

tones. Wavelets have two advantages over plane waves.
First, they are localized in time and frequency. This can
make them a better fit to the wave forms found in nature,
which are always localized in both time and frequency.
As a result, wavelet series will often converge faster than
corresponding Fourier series. Second, there are many
different wavelets to choose from. Therefore, we can tai-
lor our wavelets to our problem. These advantages have
resulted in their application to a wide variety of practi-
cal problems in acoustics, astronomy, medical imaging,
computer graphics, meteorology, and so on. Morlet’s
original references are [1, 2]. Wavelets are discussed in
Chui, Meyer, and other texts [3–9]. Wavelets also have
significant if less numerous applications on the theory
side: canonical quantization of the electromagnetic field
using a discrete wavelet basis [10], analysis of localiza-
tion properties of photons using windowed wavelets [11],
regularization of Euclidean field theories [12], and use
of wavelets to provide Lorentz covariant, singularity-free,
finite energy, zero action, localized solutions to the wave
equation [13].

Wavelets offer significant benefits for the study of foun-
dational questions in quantum mechanics as well. We
will focus here specifically on Morlet wavelets. These
are Gaussians, so are both easy to work with and a natu-
ral fit to path integrals [14–21], which typically consist
of long series of Gaussian integrations. Use of Morlet
wavelets can let us (1) avoid any need to invoke the prob-
lematic collapse of the wave function in the analysis of
the Stern-Gerlach experiment, (2) avoid the use of artifi-
cial convergence factors or Wick rotation in computing
path integrals, and (3) compute path integrals in a time
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symmetric way. But to prepare Morlet wavelets for their
new responsibilities we need to (1) supply an explicit
form for the ‘admissibility constant’ that is needed to
define the inverse Morlet transform, and (2) provide a
manifestly covariant extension of Morlet wavelets to four
dimensions.

2 Three applications of Morlet
wavelets

2.1 Analyzing the Stern-Gerlach
experiment

In the original Stern-Gerlach experiment [22–24] a beam
of silver atoms is sent through an inhomogeneous mag-
netic field. The beam is split into two: those atoms with
spin up getting a kick in one direction; those with spin
down in the opposite. This was striking first because it
demonstrated the existence of spin and secondly because
a classical system would have shown a continuous range
of values for the spin, not just up and down. This split is
regarded as a classic demonstration of the measurement
problem, explained in the Copenhagen interpretation [25]
as a collapse of the wave function into up and down com-
ponents.

In the Stern-Gerlach experimental the initial wave func-
tion is typically modeled as the product of a plane wave
and a spin vector. Replacing the plane waves with Gaus-
sian test functions provides a more physically realistic
model. Gondran and Gondran [26] have looked at the
time evolution of such Gaussian wave functions in a Stern-
Gerlach apparatus. They show that when the wave func-
tion is modeled with Gaussian test functions, the spin
up and spin down components split without any need
to invoke a collapse. It works a bit like a diffraction
experiment: there is coherent interference at two spots,
incoherent at the rest. One may think of this as an internal
diffraction effect.

Gondran and Gondran intended their work at least
partly in support of the Bohm interpretation; however
the math is independent of the interpretation. The im-
plication is that – at least in this case – there is no need
to invoke the highly problematic [27–30] collapse of the
wave function.

The use of a single Gaussian test function is not of
itself general. But with the use of the Morlet wavelet
transform we can write an arbitrary square-integrable
wave function as a sum over Gaussian test functions,
making the Gondran and Gondran approach completely
general.

To be sure, we could attempt to restore the honor of
the plane wave by arguing that we could build up a Gaus-

sian test function as a sum over such. But then why not
eliminate the middleman and start with Gaussian test
functions?

There are several related analyses of the Stern-Gerlach
effect. Cruz-Barrios and Gómez-Camacho [31, 32] ar-
gue that we can explain the effect by modeling the atom
with coherent internal states, whereas Venugopalan and
coauthors [33–35] argue the effect is a result of decoher-
ence. The Gondran and Gondran result is simpler in that it
posits no additional structure (coherent internal states) or
additional interaction (decoherence); standard quantum
mechanics of its own suffices.

2.2 Ensuring convergence of path
integrals

Morlet wavelets can assist in establishing convergence of
Feynman path integrals without recourse to convergence
factors as used in [14,15] or Wick rotation as in [20]; con-
vergence of the slice-by-slice integrals in the path integral
is a side-effect of the initial wave function being com-
posed of Gaussians, for which convergence is automatic.
It is sufficient to examine the free case.

We start with the free Schrödinger equation:

ı
d
dτ
ψτ

(
~x
)

= −
1

2m
∇2ψτ

(
~x
)

(1)

The path integral expression for the kernel is given by:
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(3)
where ε ≡ τ

N is the width of a time slice.
The typical integral does not converge. We can force

convergence by adding a small imaginary part ıσ to the
mass: m → m + ıσ. Equivalently we could add a small
imaginary part to the time step: ε→ ε − ıσ. Or we could
rotate time in the complex plane: t → ıt.

Now, focus attention on the first step:

ψ1
(
~x1

)
=

∫
d~x0K1

(
~x1; ~x0

)
ψ0

(
~x0

)
(4)

Assume the initial wave function is a Gaussian:

ψ1
(
~x1

)
=

( m
2πı~ε

) 3
2 (
πσ2

)− 3
4

∫
d~x0e

ıε
~

m
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This integral is convergent of itself. The result is a
(slightly wider) Gaussian. We can do an infinite series
of these, with the initial wave function showing an in-
creasing amount of middle-aged spread but with all of the
integrals converging.

As an arbitrary wave function may be written, via Mor-
let wavelets, as a sum over Gaussian test functions, we
have convergence in the general case, without the intro-
duction of artificial convergence factors.

2.3 Summing path integrals in a time
symmetric way

One immediate benefit of not needing convergence fac-
tors or Wick rotation is that we can treat time in a more
symmetric way. One case where we might want to do this
is in setting up a path integral analysis of the Stückelberg-
Schrödinger equation:

ı
dψu (x)

du
= Hψu (x) (6)

Here u is a formal parameter, a scalar of some kind –
perhaps the particle’s proper time – and H is a Lorentz
invariant Hamiltonian. There are examples in Feyn-
man [36,37] and more recently in work by Land, Horwitz,
and Seidewitz [21, 38, 39]. This approach has been suffi-
ciently interesting that there are regular conferences held
by the International Association for Relativistic Dynam-
ics (IARD) devoted to this and related questions.

In the free case H might be given by:

H = −
1

2m

(
ı
∂

∂xµ

) (
ı
∂

∂xµ

)
=

1
2m

(
∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2

)
(7)

Note that because of the Lorentz invariance the time
and space parts enter into H with opposite sign, so in the
path integral will have a problem converging in a Lorentz
covariant way.

Path integral form for the kernel:

Kτ
(
x; x′

)
= lim

N→∞

(
m

2π
√
ı~ε

)2N ∫
dt1d~x1 . . . dtN−1d~xN−1

×e
− ıε~

m
2

N−1∑
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)2
−

(
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ε

)2]
(8)

The pre-factor for the time part is the complex conju-
gate of the pre-factor for the space part:( m

2πı~ε

) 1
2
→

(
ım

2π~ε

) 1
2

(9)

A typical slice:

K j
(
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)
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(
m

2π
√
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)2 ∫
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m
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(
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(10)

But now the addition of a small imaginary part to mass
or time fails; any change that causes the time integrals
to converge will cause the space integrals to diverge and
vice versa. If we use different signs for time and space,
then we break covariance.

Wick rotation fails for the same reason. Here we rotate
time in the complex plane: t → ±ıt. But if we pick one
sign, the integral over the past will diverge; the other, the
integral over the future.

Again, look at the first step:

ψ1
(
t1, ~x1

)
=

∫
dt0d~x0K1

(
t1, ~x1; t0, ~x0

)
ψ0

(
t0, ~x0

)
(11)

Assume our initial wave function is given by a Gaus-
sian test function:

ψ1
(
t1, ~x1

)
=

(
m

2π
√
ı~ε

)2 1
πσ2

∫
dt0d~x0

×e
− ıε~

m
2

[( t1−t0
ε

)2
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(
~x1−~x0
ε

)2
]
−

t20+(~x0−〈~x0〉)2

2σ2 (12)

Now the integrals converge step by step. As any square-
integrable wave function may be written as a sum over
such (see below) we have convergence. Of course to
do this, we need covariant Morlet wavelets (see further
below).

In many cases, an asymmetric treatment of time is
harmless. But if we are analyzing time itself, then we do
not want to wire the assumption that it is asymmetric into
the maths. To do so would result in circular reasoning.
The use of small imaginary factors or Wick rotation will
not work for an analysis that is of time itself, as such
approaches implicitly prejudge the conclusion.

3 Morlet wavelets in one dimension

We will first review the Morlet wavelet transform, then
show how to compute the inverse Morlet wavelet trans-
form explicitly.

To generate a set of wavelets we start with a mother
wavelet φ (t). We get the general wavelet φsl (t) by scaling
the mother wavelet by a scale factor s and displacing her
by a displacement l:

φsl (t) ≡ |s|−
1
2 φ

(
t − l

s

)
(13)
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Figure 1: Real and imaginary parts of a mother Morlet wavelet
φ (t) given by Equation 14 with f = 13.

For Morlet wavelets the mother wavelet is given by:

φ (t) =

(
e−ı f t − e−

1
2 f 2

)
e−

1
2 t2 (14)

The second term is needed to satisfy the admissibility
condition, discussed below. The parameter t is often
the time and f may then be thought of as a reference
frequency.

In some practical applications (i.e. [40]) the second
term is dropped. However it is needed in general to ensure
convergence of the inverse Morlet wavelet transform. The
exact value of f does not matter in principle, provided it
is non-zero. If f is zero, the mother wavelet is zero (and
useless). We keep f a variable to help in calculating the
value of the admissibility constant C f .

The general Morlet wavelet is created from the mother
Morlet wavelet by scaling by s and displacing by l:

φsl (t) ≡ |s|−
1
2

(
e−ı f (

t−l
s ) − e−

1
2 f 2

)
e−

1
2 ( t−l

s )2

(15)

Both scale s and displacement l run from −∞ to ∞.
A negative scale s gives the complex conjugate of the
Morlet wavelet with positive scale:

φ−s,l (t) = φ∗s,l (t) (16)

The mother Morlet wavelet herself is given in this
notation as the Morlet wavelet with scale factor one, dis-
placement zero:

φ (t) = φ1,0 (t) (17)

Any square integrable function ψ may be expressed as
a sum over Morlet wavelets. In principle this excludes δ
functions and plane waves. We will see below they are
handled correctly however. The Morlet wavelet transform
of a wave function ψ is given by:

ψ̃sl =

∞∫
−∞

dtφ∗sl (t)ψ (t) (18)

We get the original ψ back by integrating over the
displacement and scale:

ψ (t) =
1

C f

∞∫
−∞

ds
s2

∞∫
−∞

dlφsl (t) ψ̃sl (19)

The admissibility constant is given by an integral over
the square of the Fourier transform of the mother wavelet:

C f ≡ 2π

∞∫
−∞

dω
|ω|

∣∣∣φ̂ (ω)
∣∣∣2 (20)

In the general case we could use a different set of
wavelets for the forward and the inverse transforms; it is
one of the attractions of Morlet wavelets that we do not
need to do this.

The wavelet decomposition fails if C f is not finite.
For C f to be finite, we see we need the zero frequency
component of the Fourier transform of the Morlet wavelet
mother to be zero:

φ̂ (0) = 0⇒

∞∫
−∞

dtφ (t) = 0 (21)

The Fourier transform of the Morlet mother is:

φ̂ (ω) =
(
e fω − 1

)
e−

1
2 ( f 2+ω2) (22)

By inspection, we see the zero frequency component
is zero. As noted above, the second term of the Morlet
mother wavelet was included precisely to ensure this.

The Fourier transform of the general Morlet wavelet
is:

φ̂sl (ω) = |s|
1
2 eılω

(
e f sω − 1

)
e−

1
2 ( f 2+s2ω2) (23)

It may be written in terms of the Fourier transform of
the mother:

φ̂sl (ω) = |s|
1
2 eılωφ̂ (sω) (24)

3.1 Normalization

Morlet wavelets are not wave functions, but do not object
to being treated as such. Their normalization is indepen-
dent of their scale and displacement:

∫
dtφ∗sl (t) φsl (t) =

√
π
(
e− f 2
− 2e−

3
4 f 2

+ 1
)

(25)
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We can therefore write normalized Morlet wavelets as:

φ(norm)
sl (t) =

[√
π
(
e− f 2
− 2e−

3
4 f 2

+ 1
)]− 1

2
φsl (t) (26)

3.2 Resolution of unity

We can establish the completeness of the wavelet trans-
form by very general methods, see [5].

But if we are only concerned with Morlet wavelets, we
can take advantage of their specific character to give a
less general but more immediate proof.

If we substitute the integral for ψ̃sl (Equation 18) in the
integral for the inverse Morlet wavelet transform (Equa-
tion 19) we get:

ψ (t) =
1

C f

∞∫
−∞

dsdldt′

s2 φsl (t) φ∗sl
(
t′
)
ψ

(
t′
)

(27)

This will be true if we have:

δ
(
t − t′

)
=

1
C f

∞∫
−∞

dsdl
s2 φsl (t) φ∗sl

(
t′
)

(28)

This looks like a familiar decomposition in terms of a
set of states weighted by s−2. If we can show this directly,
we will have a resolution of unity. To do this, we define
the integral:

I
(
t, t′

)
≡

1
C f

∞∫
−∞

dsdl
s2 φsl (t) φ∗sl

(
t′
)

(29)

We wish to show that this integral gives the δ function.
We write the Morlet wavelets in terms of their Fourier
transforms to get:

I
(
t, t′

)
=

1
C f

∞∫
−∞

dsdl
s2

∫
dω
√

2π
e−ıωtφ̂sl (ω)

×

∫
dω′
√

2π
eıω

′t′ φ̂∗sl
(
ω′

)
(30)

Then we write the Fourier transforms of the wavelets
in terms of the Fourier transform of the mother wavelet
(Equation 24):

1
C f

∞∫
−∞

dsdl
|s|

∫
dω
√

2π
e−ıω(t−l)φ̂ (sω)

×

∫
dω′
√

2π
eıω

′(t′−l)φ̂∗
(
sω′

)
(31)

We recognize the integral over l as a δ function in ω
and ω′.

∫
dl
2π

eı(ω−ω
′)l = δ

(
ω − ω′

)
(32)

We use this hitherto disguised δ function to do the
integral over ω′.

1
C f

∫ ∫
dsdω
|s|

e−ıωteıωt′ φ̂ (sω) φ̂∗ (sω) (33)

We break the integral up into positive and negative s
parts:

1
C f

∞∫
0

ds
s

∞∫
−∞

dωe−ıωteıωt′ φ̂ (sω) φ̂∗ (sω)

+
1

C f

0∫
−∞

ds
|s|

∞∫
−∞

dωe−ıωteıωt′ φ̂ (sω) φ̂∗ (sω) (34)

In the second term, replace s by −s and flip the sense
of the integration:

1
C f

∞∫
0

ds
s

∞∫
−∞

dωe−ıωteıωt′ φ̂ (sω) φ̂∗ (sω)

+
1

C f

∞∫
0

ds
s

∞∫
−∞

dωe−ıωteıωt′ φ̂ (−sω) φ̂∗ (−sω) (35)

We change the variable of integration to s′ = sω, then
combine the two terms:

1
C f

∞∫
0

ds′

s′

∞∫
−∞

dωe−ıωteıωt′
[
φ̂
(
s′
)
φ̂∗

(
s′
)

+ φ̂
(
−s′

)
φ̂∗

(
−s′

)]
(36)

We identify the ω integration as still another δ function,
one which can come outside of the integrals:

2πδ
(
t − t′

) 1
C f

∞∫
0

ds′

s′
[
φ̂
(
s′
)
φ̂∗

(
s′
)

+ φ̂
(
−s′

)
φ̂∗

(
−s′

)]
(37)

We replace s′ by −s′ in the second term:
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Figure 2: The admissibility constant C f as a function of f .

∞∫
0

ds′

s′
[
φ̂
(
−s′

)
φ̂∗

(
−s′

)]
(38)

= −

0∫
−∞

ds′

s′
[
φ̂
(
s′
)
φ̂∗

(
s′
)]

(39)

=

0∫
−∞

ds′

|s′|

[
φ̂
(
s′
)
φ̂∗

(
s′
)]

(40)

Giving for the integral:

∞∫
−∞

ds′

|s′|
φ̂
(
s′
)
φ̂∗

(
s′
)

(41)

Which is C f
2π (see Equation 20) so we have, as required:

I
(
t, t′

)
= δ

(
t − t′

)
(42)

3.3 Calculation of admissibility constant

To actually use the inverse Morlet transform we need
an explicit expression for the value of the admissibility
constant. By substituting the Fourier transform of the
mother Morlet wavelet (Equation 22) in the formula for
the admissibility constant (Equation 20) we get:

C f = 2πe− f 2

∞∫
−∞

dω
|ω|

(
eω f − 1

)2
e−ω

2
(43)

For convenience, we define a new integral:

I ( f ) ≡

∞∫
−∞

dω
|ω|

(
eω f − 1

)2
e−ω

2
(44)

For f = 0, we find I ( f ) = 0 by inspection. This is
expected given that the original mother wavelet is zero

when f is zero. As ω goes to zero, the integrand goes
as f 2ω so is well-behaved in the small ω limit. And as

ω goes to∞ the integrand goes as e2 fω−ω2

|ω| so is also well-
behaved in the large ω limit. Therefore we can write I ( f )
as:

I ( f ) =

f∫
0

d f
dI ( f )

d f
(45)

The advantage of taking the derivative with respect
to f is that it gets rid of the troubling factor of |ω| in
the denominator. We break up the integral over ω into
negative and positive parts:

I ( f ) =

0∫
−∞

dω
|ω|

(
eω f − 1

)2
e−ω

2
+

∞∫
0

dω
|ω|

(
eω f − 1

)2
e−ω

2

(46)
then change variables from ω → −ω in the negative

part to get:

I ( f ) =

∞∫
0

dω
|ω|

[(
e−ω f − 1

)2
+

(
eω f − 1

)2
]

e−ω
2

(47)

The derivative of I with respect to f is:

dI ( f )
d f

= 2

∞∫
0

dω
[(

e2ω f − e−2ω f
)
−

(
eω f − e−ω f

)]
e−ω

2

(48)
which can be re-written as:

dI ( f )
d f

= 4

∞∫
0

dω
[
sinh (2ω f ) − sinh (ω f )

]
e−ω

2
(49)

After integration with respect to ω we have:

dI ( f )
d f

= 2
√
π

[
e f 2

erf ( f ) − e
1
4 f 2

erf
(

f
2

)]
(50)

We integrate this with respect to f to get a pair of
generalized hypergeometric functions 2F2:

I ( f ) = f 2
[
22F2

(
1, 1;

3
2
, 2; f 2

)
− 2F2

(
1, 1;

3
2
, 2;

f 2

4

)]
(51)

Therefore, we have for C f :
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C f = 2πe− f 2
f 2

[
22F2

(
1, 1;

3
2
, 2; f 2

)
−2F2

(
1, 1;

3
2
, 2;

f 2

4

) ]
(52)

For f = 1 we obtain C1 ≈ 4.1636. This can be checked
by doing the original integral numerically, see subsec-
tion 6.2.

For small f , C f goes as:

lim
f→0

C f → 2π f 2 (53)

For large f , C f goes as:

lim
f→∞

C f → e− f 2
(54)

At this point we have an explicit form for the inverse
Morlet transform, so have reached our objective. We now
apply the Morlet wavelet transform to some interesting
cases.

3.4 Gaussian test functions

Gaussian test functions (squeezed states) are the most
important case:

ψσEτ (t) =
(
πσ2

)− 1
4 e−ıE(t−τ)− (t−τ)2

2σ2 (55)

The Fourier transform of this Gaussian test function is:

ψ̂σEτ (ω) =

(
σ2

π

) 1
4

eıωτ−
(E−ω)2σ2

2 (56)

3.4.1 Analysis

Per (Equation 18), the Morlet wavelet transform of a
Gaussian test function is:

ψ̃(σEτ)
sl =

∞∫
−∞

dtφ∗sl (t)ψσEτ (t) (57)

By inspection, we can write the Morlet wavelet in the
transform as the sum of two Gaussians:

φ∗sl (t) = π
1
4

(
ψ∗

s f
s l

(t) − e−
f 2
2 ψ∗s0l (t)

)
(58)

This means the transform reduces to a pair of Gaussian
integrations:

ψ̃(σEτ)
sl =

∞∫
−∞

dt′ |s|−
1
2

[
eı f

(t′−l)
s − e−

f 2
2

]
e−

1
2

(
t′−l

s

)2

×
(
πσ2

)− 1
4 e−ıE(t′−τ)− (t′−τ)2

2σ2 (59)

The integral is elementary, giving:

ψ̃(σEτ)
sl =

(
2
√
πσ |s|

s2 + σ2

) 1
2
{

e−ı
f s(l−τ)
s2+σ2 −

1
2

(Es− f )2σ2

s2+σ2 − e
− 1

2

[
f 2+

(Esσ)2

s2+σ2

]}
×e−ıE

σ2(l−τ)
s2+σ2 −

1
2

(l−τ)2

s2+σ2 (60)

The Morlet transform looks like a sum of inner prod-
ucts of Gaussians:

ψ̃(σEτ)
sl = π

1
4

(〈
ψs f

s l

∣∣∣∣∣∣ψσEτ

〉
− e−

f 2
2

〈
ψs0l

∣∣∣∣∣∣ψσEτ

〉)
(61)

This suggests (looking just at the leading term) that the
greatest contributions to the transform will come when
s ∼ σ, f

s ∼ E, and l ∼ τ.

3.4.2 Inverse Morlet wavelet transform

We expect the original Gaussian function will be recov-
ered by (Equation 19):

ψσEτ (t) =
1

C f

∞∫
−∞

dsdl
s2 φsl (t) ψ̃(σEτ)

sl (62)

Without loss of generality, we simplify by assuming
that τ = 0 in the original Gaussian test function and write
the Morlet wavelet as the sum of a pair of Gaussians:

ψσE (t) =
1

C f

∞∫
−∞

dsdl
s2

(
2
√
πσ

s2 + σ2

) 1
2
[
e−ı f (

t−l
s ) − e−

f 2
2

]
e−

1
2 ( t−l

s )2

×

[
e−ı

f sl
s2+σ2 −

1
2

(Es− f )2σ2

s2+σ2 − e−
f 2
2 −

1
2

(Esσ)2

s2+σ2

]
e−ıE

σ2l
s2+σ2 −

1
2

l2

s2+σ2

(63)

The integral over l is straightforward, as all the terms
are Gaussians in l:
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ψσE (t) =
1

C f

∞∫
−∞

ds
|s|

2π
3
4

(
σ

2s2 + σ2

) 1
2

×

[
e
−

2E2 s2σ2+2 f 2(2s2+σ2)+2ıEσ2t+t2

2(2s2+σ2)

−2e
−

3 f 2 s2+2σ2( f 2− f Es+E2 s2)+2ıt( f s+Eσ2)+t2

2(2s2+σ2)

+e
−

2σ2( f−Es)2+2ıt(2 f s+Eσ2)+t2

2(2s2+σ2)
]

(64)

The limit of the integrand as s goes to zero is:

2e− f 2−ıEt− t2

2σ2 f 2π
3
4σ−

9
2 |s|

×
(
σ2 + E2σ4 − 2ıEσ2t − t2

)
+ O

[
s2

]
(65)

The limit as s goes to ±∞ is:

±

√
2σπ

3
4 e− f 2− E2σ2

2
(
1 − 2e

1
4 f 2

+ e f 2)
s2 + O

[
1
s

]3

(66)

Our integral is therefore neither singular at the origin
nor divergent at infinity. Of course, we expect this since
we are guaranteed by the decomposition theorem that
this integral will give the original Gaussian. To show ex-
plicitly we get the original Gaussian we take the Fourier
transform of both sides, with respect to t. The simplifica-
tion is dramatic – most of the factors come outside of the
integral over s. On the left we have (Equation 24):

ψ̂σE (ω) =

(
σ2

π

) 1
4

e−
(E−ω)2σ2

2 (67)

On the right we get:

1
C f

2πe− f 2
(
σ2

π

) 1
4

e−
(E−ω)2σ2

2

∞∫
−∞

ds
|s|

e−s2ω2 (
e f sω − 1

)2

(68)
We change variables in the integral s′ ≡ sω:

(
σ2

π

) 1
4

e−
(E−ω)2σ2

2
1

C f
2πe− f 2

∞∫
−∞

ds′

|s′|
2e−s′2

(
e f s′ − 1

)2

(69)
We note the integral is essentially the admissibility

constant (Equation 43). Factors cancel yielding:(
σ2

π

) 1
4

e−
(E−ω)2σ2

2 (70)

Which is identical to the left hand side, as was to be
shown.

3.5 Other Applications

We will compute the Morlet wavelet transforms of δ
functions, plane waves, and – to achieve maximum self-
referentiality – a Morlet wavelet itself.

3.5.1 δ functions

Since the δ function is not a square-integrable function,
we are not guaranteed the wavelet transform will work.
We therefore write the δ function as a limit of Gaussian
test functions:

δ (x) = lim
σ→0+

1
√

2πσ
e−

x2

2σ2 (71)

This lets us use the result for a Gaussian test function
(Equation 60):

δ̃sl (τ) = lim
σ→0+

(
s2 + σ2

)− 1
2
|s|

1
2

×

[
e−ı

f s
s2+σ2 (l−τ)− 1

2
f 2σ2

s2+σ2 − e−
f 2
2

]
e−

1
2

(l−τ)2

s2+σ2 (72)

Taking the limit as σ goes to zero:

δ̃sl (τ) = |s|−
1
2

[
e−ı f (

l−τ
s ) − e−

f 2
2

]
e−

1
2

(l−τ)2

s2 (73)

This is itself a Morlet wavelet:

δ̃sl (τ) = φ∗sl (τ) (74)

We get the same result by computing the Morlet
wavelet transform directly:

δ̃sl (τ) =

∞∫
−∞

dt′φ∗sl
(
t′
)
δ
(
t′ − τ

)
= |s|−

1
2

(
eı f

τ−l
s − e−

f 2
2

)
e−

1
2 ( τ−l

s )2

(75)

Since the demonstration of the resolution of unity only
applies to square-integrable functions, we verify the in-
verse transform. We want to show:

δ (t − τ) =
1

C f

∞∫
−∞

dsdl
s2 φsl (t) φ∗sl (τ) (76)

However this is just what we showed when we com-
puted the admissibility constant (Equation 20), so we are
done.
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3.5.2 Plane waves

The Morlet wave transform of a plane wave:

χE (t) ≡
1
√

2π
e−ıEt (77)

is given by:

χ̃sl (E) =

∫
dt |s|−

1
2

[
eı f

t−l
s − e−

f 2
2

]
×e−

1
2 ( t−l

s )2 1
√

2π
e−ıEt (78)

The integral is essentially the Fourier transform of a
Morlet wavelet:

χ̃sl (E) = φ̂∗sl (E) (79)

For the inverse transform to be valid we require:

χE (t) =
1

C f

∫
dsdl

s2 φsl (t) χ̃sl (E)

=
1

C f

∫
dsdl

s2 φsl (t) φ̂∗sl (E) (80)

To show this, we take the Fourier transform (Equa-
tion 113) of each side. On the left side we get:

δ (ω − E) (81)

On the right side we write the Fourier transforms of
the Morlet wavelets (Equation 24) in terms of the Fourier
transforms of their mothers (Equation 22):

1
C f

∫
dsdl

s2 |s|
1
2 eılωφ̂ (sω) |s|

1
2 e−ılEφ̂∗ (sE) (82)

The integral over l is a δ function, which we pull out
of the integral, leaving the now familiar admissibility
constant (Equation 20) behind:

2π
C f

δ (ω − E)
∫

ds
|s|
φ̂ (sω) φ̂∗ (sω) = δ (ω − E) (83)

3.5.3 Morlet wavelet transform of a Morlet
wavelet

We look at the Morlet wavelet transform of a Morlet
wavelet (Equation 15) with σE replacing f and σ replac-
ing s:

ΦσEτ (t) ≡ |σ|−
1
2

[
e−ıE(t−τ)

− e−
σ2E2

2

]
e−

1
2 ( t−τ

σ )2
(84)

Per (Equation 18), the Morlet wavelet transform is
given by:

Φ̃
(σEτ)
sl =

∞∫
−∞

dt′φ∗sl (t) ΦσEτ (t) (85)

To apply the results for Gaussian test functions we
split the incoming Morlet wavelet ΦσEτ (t) into its two
Gaussians then use the results for Gaussian test functions
(Equation 60) to read off the results:

Φ̃
(σEτ)
sl =

(
2π

σ

s2 + σ2 |s|
) 1

2

×

{ [
e−ı

f s
s2+σ2 (l−τ)− 1

2
(Es− f )2σ2

s2+σ2 − e−
f 2
2 −

1
2

(Esσ)2

s2+σ2

]
e−ıE

σ2

s2+σ2 (l−τ)

−

[
e−ı

f s
s2+σ2 (l−τ)− 1

2
f 2σ2

s2+σ2 −
σ2E2

2 − e−
f 2
2 −

σ2E2
2

] }
e−

1
2

(l−τ)2

s2+σ2 (86)

4 Covariant Morlet wavelets

4.1 Strategy

We would like to generalize Morlet wavelets to four di-
mensions (one time, three space) in a way that is man-
ifestly covariant. We will do this by taking the direct
product of Morlet wavelets in time and the three space
dimensions. The natural generalization of the Gaussian
part of the one-dimensional Morlet wavelet is:

e−
1
2 x2
→ e−

1
2 (xµxµ) = e

1
2 (t2−x2−y2−z2) (87)

This clearly diverges in t. We have to fix this without
losing manifest covariance.

We will assume we start in a specific frame M, pos-
sibly the center-of-mass frame. We will define the four-
dimensional Morlet wavelet as the product of four one-
dimensional Morlet wavelets, then write our results in a
way that is Lorentz-invariant.

4.2 Construction

We take the four-dimensional mother Morlet wavelet as
the direct product of four one-dimensional mother Morlet
wavelets, one for each coordinate:

φ (t)→ φ (t) φ (x) φ (y) φ (z) (88)

We write the four dimensional mother Morlet wavelet
as the product of four one-dimensional mother Morlet
wavelets (Equation 14):

φ (t, x, y, z) =

(
e−ı f0t − e−

f 2
0
2

) (
eı f1 x − e−

f 2
1
2

)
×

(
eı f2y − e−

f 2
2
2

) (
eı f3z − e−

f 2
3
2

)
e−

t2+x2+y2+z2
2 (89)
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By scaling and displacing each component separately
we get:

φsl (t, x, y, z) = |s0s1s2s3|
− 1

2

(
e−ı f0

t−l0
s0 − e−

f 2
0
2

)
×

(
eı f1

x−l1
s1 − e−

f 2
1
2

) (
eı f2

y−l2
s2 − e−

f 2
2
2

) (
eı f3

z−l3
s3 − e−

f 2
3
2

)
×e
− 1

2

[(
t−l0
s0

)2
+

(
x−l1
s1

)2
+

(
y−l2

s2

)2
+

(
z−l3
s3

)2
]

(90)

Using (Equation 22), the Fourier transform of the
mother Morlet wavelet is:

φ̂
(
E, px, py, pz

)
=

(
e f0E − 1

) (
e f1 px − 1

) (
e f2 py − 1

)
×

(
e f3 pz − 1

)
e−

f 2
0 + f 2

1 + f 2
2 + f 2

3
2 −

E2+p2
x+p2

y+p2
z

2 (91)

The Fourier transform of the general Morlet wavelet
is:

φ̂sl
(
E, px, py, pz

)
= |s0s1s2s3|

1
2 eı(l0E−l1 px−l2 py−l3 pz)

×
(
es0 f0E − 1

) (
es1 f1 px − 1

) (
es2 f2 py − 1

) (
es3 f3 pz − 1

)
×e−

f 2
0 + f 2

1 + f 2
2 + f 2

3
2 −

s2
0E2+s2

1 p2
x+s2

2 p2
y+s2

3 p2
z

2 (92)

Now we have to promote various non-covariant bits to
covariant bits.

The scale factors enter into the inverse Morlet integral
in a slightly awkward way:∫

ds0

s2
0

ds1

s2
1

ds2

s2
2

ds3

s2
3

(93)

The simplest approach to this is to treat the four scale
factors as so many scalars.

The obvious choices for the displacement l and the
reference frequency f are to treat them as four vectors.
For the displacement a single four vector will suffice:

l = (l0, l1, l2, l3) (94)

We will need one four vector for each reference fre-
quency:

F(0)
≡ ( f0, 0, 0, 0) (95)

F(1)
≡ (0, f1, 0, 0) (96)

F(2)
≡ (0, 0, f2, 0) (97)

F(3)
≡ (0, 0, 0, f3) (98)

For convenience, we define the sum over all four F’s
as:

F ≡
3∑

n=0

F(n) = ( f0, f1, f2, f3) (99)

This is also a four vector. Note that the raw frequencies
f0, f1, f 2, f3 are themselves scalars since they are defined
with respect to the specific frame M.

To represent the sums as Lorentz invariants we define
a set of second rank tensors (with their inverses):

Σ
(n)ν
µ ≡


s−n

0 0 0 0
0 −s−n

1 0 0
0 0 −s−n

2 0
0 0 0 −s−n

3

 (100)

(
1

Σ(n)

)ν
µ

≡


sn

0 0 0 0
0 −sn

1 0 0
0 0 −sn

2 0
0 0 0 −sn

3

 (101)

We need the explicit forms for n from 0 to 2:

Σ
(0)ν
µ ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (102)

Σ
(1)ν
µ ≡


s−1

0 0 0 0
0 −s−1

1 0 0
0 0 −s−1

2 0
0 0 0 −s−1

3

 (103)

Σ
(2)ν
µ ≡


s−2

0 0 0 0
0 −s−2

1 0 0
0 0 −s−2

2 0
0 0 0 −s−2

3

 (104)

The choice of signature (1,−1,−1,−1) ensures conver-
gence.

With these definitions the mother Morlet wavelet is:

φ
(
xµ

)
=

 3∏
n=0

[
e−ıF

(n)µxµ − e−
1
2 F(n)µFµ

] e−
1
2 xµΣ

(0)ν
µ xν

(105)
and the general Morlet wavelet is:

φΣl
(
xµ

)
=

√
det

(
Σ(1))e− 1

2 (xµ−lµ)Σ(2)ν
µ (xν−lν)

×

 3∏
n=0

e−ıF
(n)µΣ

(0)$
µ Σ

(1)ν
$ (xν−lν) − e−

1
2 F(n)µΣ

(0)ν
µ F(n)

ν

 (106)

While we have worked this out in frame M, as it is
written in terms of covariant quantities it is valid in all
frames. We have therefore guaranteed Lorentz covariance
of the Morlet wavelets.

Note that the choice of frame defines a set of Morlet
wavelets; with each frame there is a distinct set of Morlet
wavelets. If we have multiple frames we wish to work
with we will need to tag each Morlet wavelet with the
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frame it comes from. Usually there is an obvious choice
of frame, i.e. the center-of-mass frame.

With these definitions, the Fourier transform of the
mother Morlet wavelet is:

φ̂ (p) =

 3∏
n=0

[
eF(n) 1

Σ(0) p
− 1

] e−F 1
2Σ(0) F− 1

2 p 1
2Σ(0) p (107)

The Fourier transform of the general Morlet wavelet
is:

φ̂Σl (p) =

√
1

det
(
Σ(1))eıpl−F 1

2Σ(0) F− 1
2 p 1

2Σ(2) p

×

 3∏
n=0

[
eF(n) 1

Σ(1) p
− 1

] (108)

4.3 Resolution of unity

Any square integrable function ψ (t, x, y, z) may be ex-
pressed as a sum over these Morlet wavelets. The covari-
ant Morlet wavelet transform is given by:

ψ̃Σl =

∞∫
−∞

d4xφ∗Σl (x)ψ (x) (109)

And the inverse is given by:

ψ (x) =
1

C f0C f1C f2C f3

∞∫
−∞

 3∏
n=0

dsn

|sn|
2


∞∫
−∞

d4lφΣl (x) ψ̃Σl

(110)
The resolution of unity and the values of the constants

of admissibility follow directly from the results for one
dimension.

The solutions for Gaussian test functions, δ functions,
and plane waves are merely the direct products of the
corresponding one-dimensional wave functions.

We have therefore reached our second and final objec-
tive: to generalize the Morlet wavelet transform to four
dimensions in a way which is manifestly covariant.

4.4 Alternative approaches

Alternative (and more sophisticated) lines of attack are
possible. For instance in [9] or in [41] two dimensional
wavelets are generated from the mother wavelet by using
displacements, rotations (in the xy plane), and a single
scale factor:

φRls (x, y) =
1
s
φ

←→R ·
(
~r − ~l

)
s

 (111)

where R is a rotation matrix (in two dimensions).

By analogy, we could generalize one-dimensional
wavelets to four dimensions by using displacements l,
Lorentz transformations:

φΛls
(
xµ

)
=

1
s2φ

[
1
s
Λν
µ (xν − lν)

]
(112)

But establishing convergence, verifying the resolution
of unity, and computing the admissibility constant for
these wavelets would be a new project. Our immediate
requirement is merely to establish that there is at least
one set of covariant Morlet wavelets.

5 Summary

The naive use of plane wave or δ function decomposition
can create artificial difficulties in the analysis of founda-
tional questions of quantum mechanics. The use of Mor-
let wavelet decomposition avoids these difficulties. With
the explicit calculation of the admissibility constant and
the demonstration of covariant Morlet wavelets, we have
eliminated two of the barriers to full use of this powerful
technology for the analysis of foundational questions in
quantum mechanics.

6 Appendix

6.1 Conventions for the Fourier transform

For the Fourier transform from time t to frequency ω we
are using:

f̂ (ω) ≡
1
√

2π

∞∫
−∞

dteıωt f (t) (113)

with inverse Fourier transform:

f (t) =
1
√

2π

∞∫
−∞

dωe−ıωt f̂ (ω) (114)

In the Fourier transform in four dimensions time and
space enter with opposite signs:

f̂
(
ω,~k

)
≡

1
4π2

∞∫
−∞

dtd~xeıωt−ı~k·~x f
(
t, ~x

)
(115)

with inverse Fourier transform:

f
(
t, ~x

)
=

1
4π2

∞∫
−∞

dωd~ke−ıωt+ı~k·~x f̂
(
ω,~k

)
(116)

Quanta | DOI: 10.12743/quanta.v1i1.5 November 2012 | Volume 1 | Issue 1 | Page 68

http://dx.doi.org/10.12743/quanta.v1i1.5


6.2 Direct calculation of the admissibility
constant

To check the results for the admissibility constant (Equa-
tion 43), we ran a numeric calculation of the values of
f from −3π → 3π. The integrand: |ω|−1

(
e fω − 1

)2
e−ω

2

is real, smooth, and positive definite, making it a perfect
candidate for numerical integration. Numerical integra-
tion produced results visually indistinguishable from the
formula for C f given by Equation 52. On a test of 100
evenly spaced points from −3π → 3π, with f = 1, the
maximum error was 2.72× 10−8 and the average absolute
error was 8.2×10−10. These residuals are easily explained
in terms of rounding.

Much of the work here was done using the program
Wolfram’s Mathematica (version 7). However a certain
amount of care is need when using this tool. An at-
tempt to have it compute directly the integral for I( f )
given by Equation 44 produces the expression given in
Equation 51 plus five additional terms: 2πerfi

(
1
2 | f |

)
−

πerfi (| f |) + ln (− f ) + ln ( f ) − ln
(

f 2
)
. This is incorrect by

inspection: the three ln terms add a value of ln (−1) = ıπ

which is nonsense, given that the original integral is real.
The other terms are real so offer no escape. The usual
moral in working with Mathematica or any math software
applies: as Walter Donovan, the villain in Indiana Jones
and the Last Crusade, said to Indiana Jones: trust no one.
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Quantenmechanik. Naturwissenschaften 1935; 23
(49): 823-828. http://dx.doi.org/10.1007/
BF01491914

[29] Schrödinger E. Die gegenwärtige Situation in der
Quantenmechanik. Naturwissenschaften 1935; 23
(50): 844-849. http://dx.doi.org/10.1007/
BF01491987

[30] Schrödinger E. The present situation in quantum
mechanics: a translation of Schrödinger’s ‘cat para-
dox’ paper. In: Quantum Theory and Measure-
ment, Wheeler JA, Zurek WH (editors), New Jersey:
Princeton University Press, 1983, pp.152-167.
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