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The notions of weak measurement, weak value,
and two-state-vector formalism provide a new
quantum-theoretical frame for extracting addi-

tional information from a system in the limit of small
disturbances to its state. Here, we provide an applica-
tion to the case of two-body scattering with one body
weakly interacting with an environment. The direct
connection to real scattering experiments is pointed
out by making contact with the field of impulsive in-
coherent neutron scattering from molecules and con-
densed systems. In particular, we predict a new quan-
tum effect in neutron-atom collisions, namely an ob-
servable momentum transfer deficit; or equivalently,
a reduction of effective mass below that of the free
scattering atom. Two corroborative experimental
findings are shortly presented. Implications for cur-
rent and further experiments are mentioned. An in-
terpretation of this effect and the associated experi-
mental results within conventional theory is currently
unavailable.
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1 Introduction

Time symmetry, and the associated microscopic reversibil-
ity, is widely acknowledged to be a fundamental property
of the basic physical laws of classical and quantum me-
chanics [1]. In contrast, the Second Law of thermody-
namics, although also being considered fundamental, is
inconsistent with this symmetry and provides an arrow
of time associated with entropy production appearing in
isolated many-body systems. However, thermodynamics
and statistical mechanics (classical or quantum), and the
associated thermodynamic limit (when the particle num-
ber N → ∞) are not under consideration in this paper.
Instead, here we are particularly interested in (few-body)
quantum dynamics in connection with quantum measure-
ments [2–4], in the realm of non-relativistic quantum
mechanics. In particular, the emphasis will be on an
experimental application in the frame of incoherent scat-
tering experiments. (An explanation from first principles
of coherent versus incoherent, being also helpful for the
neutron-proton scattering experiments considered below,
was presented by Feynman in [1, Section 3-3].)

In this context, the irreversible character of the stan-
dard (i.e. projective, strong) measurements should be
mentioned. In contrast with the unitary (and thus time-
symmetric) time evolution generated by the Schrödinger
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equation, a strong (projective) measurement [2–4] causes
a reduction of the state of the measured system, constitut-
ing an irreversible (i.e. time-oriented) process.

Environmentally induced decoherence (see e.g. the
textbooks [4, 5]) breaks time symmetry of the equations
of motion and thus provides an explanation for the ap-
pearance of time-oriented quantum processes in open
quantum systems. Nowadays decoherence plays a crucial
role in many fields of physics, chemistry and molecular
biology, in quantum information theory and also in the
currently emerging quantum information technologies,
e.g. quantum computing, communication and coding [4].

Novel insights into the measurement problem of quan-
tum mechanics, and hence also into the foundations of
quantum theory, are provided by the seminal work by
Aharonov and collaborators, commonly known as theory
of weak measurements and/or weak values; see e.g. the
textbook [6] and the review article [7]. Elegant introduc-
tory presentations are given in [8–10]. For a very recent
discussion of the basic physical aspects, see [11].

The outline of this article is as follows: In Section 2,
we begin by briefly reviewing some basic elements of
the aforementioned theoretical frame, since it plays a
central role in the physical context of the present paper.
Section 3 presents a few theoretical papers that motivated
the application of the weak measurement theory to the
scattering topic being under consideration in this paper.
In Section 4 are presented basic elements of the theory of
impulsive scattering and the specific experimental method
employed to a class of neutron scattering experiments (as
those presented in Section 6). Section 5, which is the
main theoretical part of the paper, investigates elementary
scattering in the light of weak measurement and two-state-
vector formalism [6, 8, 9, 11]. The main theoretical result
is the effect of momentum transfer deficit in impulsive
collisions, and associated aspects of it (e.g. the anomalous
reduction of effective mass of the scattering particle, or
an increased energy transfer). Two concrete neutron
scattering experiments demonstrating the experimental
applicability of the weak measurement theory, as well as
its novelty, are presented in Section 6. Finally, Section 7
provides additional remarks to the main results and a
discussion.

Here, it may be helpful to emphasize two particularly
relevant points. First, what we directly read out in a
measurement of an experiment are not (values of) the
dynamical variables of the observed system, but the out-
comes of the measuring devices of the employed instru-
ment (see subsection 7.1). To these outcomes belongs
the measured data (in Section 6) that exhibits the peculiar
phenomenon of momentum transfer deficit. It will be
demonstrated that the latter contradicts every prediction
of conventional theory even qualitatively, but it can be

interpreted straightforwardly within the theory of weak
values and two-state-vector formalism.

Second, with respect to an important point raised by
Vaidman [12], we would like to stress the following spe-
cial feature of our investigation. Until now, weak values
are measured with a different degree of freedom of the
same quantum system. Here, however, a weak value is
observed with an external quantum system. Hence, in
the present investigation, the weak value appears due to
interference of a quantum entangled wave, thus having
no analog in classical wave interference [12].

2 On weak measurement,
post-selection and
two-state-vector formalism

Weak measurement is unique in measuring non-
commuting operators and revealing new counter-intuitive
effects predicted by the new theory of weak values and
two-state-vector formalism [11, 13, 14]. The main aim
of this article is not to further develop and/or extend this
theory, but to point out certain new (and experimentally
observable) features of elementary scattering processes
predicted within the theoretical frame of weak values
and two-state-vector formalism. Especially, incoherent
scattering of single (massive) particles, like neutrons or
electrons, from nuclei and/or atoms is investigated.

As the starting point of the aforementioned theory one
usually considers the paper [15] by Aharonov, Albert
and Vaidman, and the earlier paper [16] by Aharonov,
Bergmann and Lebowitz; see also [17] for a clarifying
discussion. Here let us shortly mention a few results
needed in the following.

According to the standard theory (of ideal, projective
von Neumann measurements [18]), the final state of the
system after a measurement becomes an eigenstate of the
measured observable. This usually disturbs the state of
the system. On the other hand, by coupling a measuring
device to a system sufficiently weakly, it may be possible
to read out certain information while limiting the distur-
bance induced by the measurement to the system. As
Aharonov and collaborators originally proposed [15, 16],
one may achieve new physical insights when one fur-
thermore post-selects on a particular outcome of the ex-
periment. In this case the eigenvalues of the measured
observable are no longer the relevant quantities; rather the
measuring device consistently indicates the weak value
given by [15, 16]

Aw ≡ (Â)w =
〈ψ f |Â|ψi〉

〈ψ f |ψi〉
, (1)
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where Â is the operator of the quantity being measured,
|ψi〉 is the initial (pre-selected) state of the system, and
|ψ f 〉 is the post-selected state after the weak measurement.
Note that the number Aw may be complex.

The significance of this formula is as follows. Let us
couple a measuring device whose pointer has position
coordinate q̂ to the system’s dynamical variable Â, and
subsequently measure its conjugated momentum p̂. The
coupling interaction is taken to be the standard von Neu-
mann measurement interaction [18]

ĤvN = −g(t) q̂ ⊗ Â. (2)

The coupling factor g(t) is assumed to be appropriately
small and to have a compact support at the time of the
(impulsive) measurement; e.g. it may be proportional to
a delta function. Since it is time-dependent, the complete
Hamiltonian of the system and the measuring device rep-
resents an open quantum system. Consequently, in the
situations contemplated here the time dependence of the
coupling constant implies that energy conservation need
not apply.

The mean value 〈p̂〉 f of the pointer momentum after
the measurement is given by [15]

〈p̂〉 f − 〈 p̂〉i = +gRe[Aw], (3)

where 〈 p̂〉i is the corresponding value before measure-
ment, Re denotes the real part and g =

∫
g(t)dt.

Formula (1) implies that, if the initial state |ψi〉 is an
eigenstate of a measurement operator Â, then the weak
value post-conditioned on that eigenstate is the same as
the classical (strong) measurement result. When there is
a definite outcome, therefore, strong and weak measure-
ments agree. However, a weak measurement can yield
values outside the range of measurement results predicted
by conventional theory [15].

A weak value can also be complex, with an imaginary
part corresponding to the pointer position. In fact, the
mean of the pointer position after measurement is given
by

〈q̂〉 f = −2gvq Im[Aw], (4)

where Im denotes the imaginary part and vq is the variance
in the initial pointer spatial position [15], assuming that
〈q̂〉i = 0 before measurement.

In the simplest case where there is just one observable
Â, we assume the evolution from |ψi〉 to the point where
Â is measured is given by Û, and from this point to the
post-selection the evolution is given by V̂ . Then we can
rewrite formula (1) as:

Aw ≡ (Â)w =
〈ψ f |V̂ ÂÛ |ψi〉

〈ψ f |V̂Û |ψi〉
(5)

and the expressions (3) and (4) characterizing the pointer
shift remain valid.

The fact that one only sufficiently weakly disturbs the
system in making weak measurements implies that one
can in principle measure different (also non-commuting)
dynamical variables in succession. This theoretical ob-
servation has led to a great number of experimental
applications and discovery of several new effects; see
e.g. [19–22, 36].

The generalization of the concept of weak value to a
system described by a density operator ρ̂i (for its initial
state) was first considered by Wiseman [23]:

(Â)w =
〈ψ f |Âρ̂i|ψ f 〉

〈ψ f |ρ̂i|ψ f 〉
; (6)

cf. also [24].
Furthermore, it may be noted that there is (steadily

growing) evidence that the weak value formalism can be
extended beyond the weak coupling regime of the original
framework [15]; see e.g. [7, 25, 26]. Moreover, recently it
has been shown that measurements on macroscopic sys-
tems are weak measurements [27], which also provided
new physical inside to quantum non-locality [27, 28].

Technical and experimental merits, and associated ad-
vantages (or disadvantages) to precision metrology, of
weak values-based techniques have been discussed in
various works, e.g. in [29, 30].

Although a discussion and/or analysis of the physical
interpretation and/or meaning of the concepts of weak
values and two-state-vector formalism are beyond the
scope of this paper, a few related short remarks may be
in order.

Nowadays, the importance of weak values and associ-
ated weak measurement as a practical tool for describing
new experiments and extract new information from ex-
periments seems to be broadly acknowledged; cf. the dis-
cussions in [10]. However, various criticisms have been
provided which deny or question the novelty of these
quantum mechanical concepts. For example, in [31] it is
claimed that weak value is not an inherently quantum con-
cept but rather a purely statistical feature of pre- and post-
selection with disturbance; and furthermore, that classical
correlation alone supplies the surprising anomalies re-
vealed with weak values. For some concise comments
stressing quite the opposite, see [12, 32].

For the interpretation of the experimental findings pre-
sented below, it is relevant that weak values are novel
quantum interference phenomena, having no classical
analogue, in which post-selection plays a crucial role;
cf. [12, 32–35, 37].
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3 Some previous results and
motivation

This paper concerns the measurement of momentum and
energy transfers in real scattering experiments, the corre-
sponding predictions of conventional theory, and a new
prediction based on the formalism of weak measurement
and two-state-vector formalism. The latter point may
be best illustrated and motivated by referring directly to
some of the intriguing results presented in two recent
papers [36, 38]. Additionally, we mention here certain
interpretational issues concerning the theoretical status of
weak values [12], because they contributed to the moti-
vation of the present investigation and facilitate the inter-
pretation of the obtained results.

First, let us refer to a surprising theoretical prediction
derived by Aharonov et al. in [38], which may be shortly
described (with some simplifications) as follows.

A photon beam enters a device similar to a usual Mach–
Zehnder interferometer, with the exception that one re-
flecting mirror is sufficiently small (say, a nanoscopic
object M) for its momentum distribution to be detectable
by a suitable non-demolition measurement [39]. The two
identical beam splitters of the Mach–Zehnder interferom-
eter have nonequal reflectivity r and transmissivity t (both
real, with r2 + t2 = 1), say r > t. Now one is interested in
the momentum kicks given to the mirror M caused by the
photon reflection on M inside the interferometer, but only
for photons emerging toward one of the two detectors
(D2 in Fig. 2 of [38]). The latter condition is a specific
post-selection. The effect of the photons emerging toward
the second detector is discarded.

A straightforward calculation [38] shows the following
astonishing feature. Although the post-selected photons
collide (as all photons do, of course) with the mirror M
only from the inside of the Mach–Zehnder interferometer,
they do not push M outwards, but rather they somehow
succeed to pull it in. It is obvious that this result can-
not have any conventional theoretical interpretation. As
Aharonov et al. put it:

This is realized by a superposition of giv-
ing the mirror zero momentum and positive
momentum—the superposition results in the
mirror gaining negative momentum. [38]

Another paper by Vaidman and collaborators [36]
presents experimental and theoretical results of optical
measurements with a special interferometer being a com-
bination of two Mach–Zehnder interferometers; essen-
tially, a second Mach–Zehnder interferometer is put on
the place of one of the two reflecting mirrors of the
first Mach–Zehnder interferometer. The whole construc-
tion consists of 5 mirrors and 4 beam splitters (see [36,

Figs. 2(b) and 3]). A continuous laser beam enters the
interferometer.

Furthermore, all 5 mirrors are placed on piezoelectri-
cally driven mirror mounts and are weakly vibrating at
different frequencies (say fi) and produce very slight ro-
tational motions, which correspondingly produce slight
deflections of the photon beam. The vertical displace-
ments of the beam due to the vibrations of the mirrors
are significantly smaller than the width of the beam, and
the change in the optical path length is much smaller
than the wavelength. The photon beam coming out of the
interferometer (toward a specific detector) is measured
and Fourier analyzed. It is natural to expect that the spe-
cific frequencies appearing in the Fourier power spectrum
should be those of the mirrors the photons bounce off.

The reported experimental results are quite unexpected.
For example, in one specific setup (see [36, Fig. 3]), three
frequencies (i.e. those of mirrors A, B and C) appear in
the measured power spectrum instead of the naturally
expected one frequency (i.e. that of mirror C). Moreover,
it appears that the past of the photons is not represented
by continuous trajectories.

However, these striking results have a simple explana-
tion in the framework of two-state-vector formalism. As
Vaidman et al. propose, the intuitive picture which allows
us to understand the experimental findings is provided
by the time-symmetric two-state-vector formalism. Here
each photon observed by detector (D in [36, Fig. 3]) is
described by the backward-evolving quantum state 〈ψ f |

post-selected at D, in addition to the standard, forward-
evolving wave function |ψi〉 pre-selected at the photon
source. The formulas of two-state-vector formalism im-
ply that a photon can have a local observable effect only if
both the forward- and backward-evolving quantum waves
are non-vanishing at the considered location; see [36,
Fig. 3], in which both forward-in-time and backward-in-
time paths of traveling photons are shown.

In other terms, one may say that each photon was
present in a specific position (i.e. at a specific mirror)
only when both forward- and backward-evolving quan-
tum wave functions do not vanish at that position—this
happens only at three of the five mirrors. This provides
an explanation from first principles of the observed power
spectrum in the frame of two-state-vector formalism, thus
also illustrating the predictive power of the theory.

Responding to certain claims that question the novelty
of weak values, Vaidman states the following:

The weak value shifts exist if measured or not,
so the weak value is not defined by the statistics
of measurement outcomes. The statistical anal-
ysis (performed after the post-selection) can
just reveal the pre-existing weak values. [. . .]
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The concept of weak value arises due to wave
interference and has no analog in classical
statistics. Moreover, if weak values are ob-
served with external systems (and not with a
different degree of freedom of the observed sys-
tem as it has been done until now) then the weak
value appears due to interference of a quantum
entangled wave and it has no analog in classical
wave interference too. Therefore, weak value
is a genuinely quantum concept [12].

Concluding the above short remarks, one may say that
the new insights and predictions made possible within the
theoretical frame of weak measurement, weak values and
two-state-vector formalism are not limited to interpreta-
tional issues only. The revised intuitions can then lead
one to find novel quantum effects that can be measured in
real experiments.

4 Elementary remarks on impulsive
scattering

Throughout this paper non-relativistic quantum mechan-
ics is considered. In this section, we give an outline of
basic elements of impulsive scattering experiments. In
particular, we consider incoherent inelastic neutron scat-
tering from condensed matter (see the textbooks [40, 41])
and its specification to high momentum transfers, known
as neutron Compton scattering or deep-inelastic neutron
scattering; cf. [42–44]. (The neutron-nucleus collision is
elastic; “inelastic” simply refers to the decreased kinetic
energy of the neutron’s final state; see Eq. (8).) The initial
energy of the neutrons under consideration is roughly in
the range of meV (for cold neutrons) until about 100 eV
(for epithermal neutrons). The de Broglie wavelength of
the neutrons is roughly in the range 0.1–10 Å. In two-
body (i.e. neutron-nucleus) collisions, the scattering is
isotropic in the center-of-mass system, which is called s-
wave scattering. This is because the range of the nuclear
strong force, and also the dimension of nuclei, are some
orders of magnitude smaller than neutron’s de Broglie
wavelength.

The usual experimental method employed at pulsed
neutron sources is time-of-flight; see below.

A similar outline applies also to electron Compton-
like quasielastic scattering from atoms (or molecules) in
the gas phase; see e.g. [45]. In a conventional electron
scattering spectrometer, instead of time-of-flight, the ex-
perimental method uses the deflection of the scattered
electron in an electric field, in order to determine the
electron’s final energy. However, a new generation of
instruments provides pulsed electron beams and applies
the time-of-flight analysis; cf. [46].

4.1 Scattering experimental setup – What
is measured

First, let us give an outline of a standard time-of-flight
scattering experiment; see Fig. 1. A pulsed source of
particles, say neutrons, is used. A short pulse reaches
the monitor which triggers the measurement of time-of-
flight. A neutron scatters from the sample and reaches
the detector, which stops the time-of-flight measurement.
For a measured time-of-flight value tTOF holds

tTOF =
L0

v0
+

Lθ1
v1

+ t0. (7)

Here, L0 is the distance between source and sample, Lθ1 is
the sample–detector distance; the detector is positioned
at the scattering angle θ; v0 and v1 describe the neutron’s
velocities before and after scattering, respectively; t0 is a
(usually small) time offset arising due to electronic delays.
In a so-called direct geometry spectrometer, the energy of
the incident neutrons is chosen as constant, E0 =constant.

Neutron
Pulse

Start

Detector

Scatterer

0L
1L

θ

Figure 1: Schematic of a time-of-flight scattering experiment.

In a general scattering experiment the scattering in-
tensity is measured as a function of the neutron energy
transfer (or: energy loss)

E = E0 − E1 =
1
2

mv2
0 −

1
2

mv2
1

= ~ω =
(~k0)2

2m
−

(~k1)2

2m
(8)

(m: neutron mass) due to the neutron-atom collision, and
the corresponding neutron momentum transfer on the
struck atom

~K = ~k0 − ~k1, (9)

where

|K| = K =

√
k2

0 + k2
1 − 2k0k1 cos θ. (10)

The subscripts 0 and 1 refer to quantities before and af-
ter the neutron-atom collision, respectively. Since the
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scattering under consideration is incoherent [1], it causes
exchange of momentum between a neutron and (the nu-
cleus of) a single atom.

In the standard theory of elastic scattering from a free
atom with mass M and zero initial momentum, 〈P〉 = 0,
conservation of kinetic energy and momentum in an elas-
tic neutron-atom collision yield the simple kinematic re-
lation [43]

k1

k0
=

cos θ +

√
(M/m)2 − sin2 θ

M/m + 1
. (11)

More precisely, this relation holds for the center-of-
gravity of the measured intensity peak.

As several experimental details play a crucial role in
the theoretical framework under consideration (since they
concern pre-selection and post-selection), the following
facts should be pointed out.

(a) From the measured time-of-flight value (7), but
without using the actual value of scattering angle θ, fol-
lows the experimental value of k1 = |k1|, and conse-
quently of energy transfer E = ~ω; see Eq. 8.

(b) Momentum transfer ~K, Eq. (10), is determined
from both the scattering angle θ and the time-of-flight
value.

Summarizing, from each value of tTOF measured with
the detector at θ, the associated transfers of momentum
(~K) and energy (E = ~ω) of the neutron to the struck par-
ticle are uniquely determined. Hence a specific detector
measures one specific trajectory in the whole K–E plane
only. Clearly, this is related to the post-selection of the
theory of weak values and two-state-vector formalism. To
the pre-selection belong E0 and the initial velocity of the
sample which in most cases is at rest.

The scattering process produces an outgoing three-
dimensional wave for the entangled atom-neutron system,
which is isotropic in the center-of-mass system [40, 41].
The process is called s-wave scattering; see also below.

In the typical neutron scattering experiment, the recoil-
ing atoms of the sample are not measured. However, in
other scattering technics (as e.g. employed in high-energy
investigations), the detectors can measure most of the
particles participating in the collision process.

A specific neutron detector measures the time-of-flight
of incoming neutrons at its position, and so effectuates a
reduction of the scattering wave by post-selecting specific
components of this wave. Thus, according to Eqs. (8)
and (10), the detector’s instrumental parameters shown
in Eq. (7) (denoted by {IP}) and a confined range of time-
of-flight values determine the corresponding scattering
intensity I(K, E), i.e.

I(TOF, {IP}) ⇒ I(K, E)

(and, furthermore, the dynamical structure factor S (K, ω);
see below) of the scattering system. This constitutes a
partial result of the whole measurement, since the instru-
ment may have many detectors at various angles θ, and
also measure a broad range of time-of-flight values.

4.1.1 On momentum and energy conservation
– Two-body collision

When scattering takes place and the detector registers a
scattered neutron, the impinging neutron causes the afore-
mentioned momentum transfer +~K to the atom. Due
to momentum conservation, it follows that the neutron
receives the opposite momentum −~K.

The elastic collision of a neutron and a (free) atom with
mass M and initial momentum P results in the neutron’s
lost energy E ≡ ~ω being transferred to the struck atom:

E = E0 − E1 = ~ω =
(~K + P)2

2M
−

P2

2M

=
(~K)2

2M
+
~K · P

M
. (12)

This equation represents energy conservation. As above,
~K is the momentum transfer from the neutron to the
struck atom.

The first term in the right-hand side defines the so-
called recoil energy,

Erec = ~ωrec =
(~K)2

2M
, (13)

which represents the kinetic energy of a recoiling atom
being initially at rest. In the latter case, 〈P〉 = 0 and thus
one may write

〈E〉 =
~2〈K〉2

2M
≡ Ērec, (14)

which holds at the peak center. Thus incoherent scattering
from (a gaseous sample of) such atoms leads to a experi-
mental recoil peak centered at energy transfer Ērec, and
exhibiting a width being caused by the term ~K · P/M
which represents Doppler broadening. Both entities are
nicely illustrated in Fig. 2, which shows data of incoher-
ent inelastic (Compton) scattering from 4He atoms in the
liquid phase; see [47] for details.

Now consider the formal structure of the Doppler-term

EDoppler =
~K · P

M
≡
~KP‖

M
, (15)

where P‖ is the component of the atomic momentum paral-
lel to K. For isotropic systems (gases, liquids, amorphous
solids) the specific direction determined by K becomes
immaterial, and thus P‖ means the projection along any
direction.
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Figure 2: Schematic representation of measured dynamic
structure factor S (K, E) of liquid helium [47]. The red line is
the calculated recoil parabola, Eq. (13), for the mass of 4He,
shown as a guide to the eye. The white-blue ribbon around the
recoil parabola represent data points measured with the time-
of-flight spectrometer ARCS [48] (Adapted from [47, Fig. 1].)

4.1.2 On basic theory – Scattering interaction
and dynamic structure factor

The basic quantity to be experimentally determined in a
neutron scattering experiment is the partial differential
cross-section [40]

d2σM

dΩdω
=

k1

k0
b2

MS (K, ω), (16)

which is proportional to the measured intensity I(K, ω).
E = ~ω, and S (K, ω) is the dynamic structure factor
of the scattering system [40]. Note that its dependence
on momentum transfer ~K (rather than on initial and
final momenta) is a specific feature of the first Born ap-
proximation; bM is the so-called scattering length, i.e. a
nucleus-depending constant (M indicating the nucleus as
well as its mass) appearing in the empirically introduced
Fermi pseudo-potential

VM(r) =
2π~2

m
bMδ(r) (17)

with r being the relative distance between the two collid-
ing particles.

As already pointed out in textbooks, the standard (or
conventional) theory of neutron scattering is based on
Fermi’s golden rule which is equivalent to the first Born
approximation; both are based on the formalism of first-
order perturbation theory (see e.g [40, p. 16]). Moreover,
it should be pointed out that, in principle, this theory is
inapplicable to scattering by the singular potential (17);
the Fermi pseudo-potential is a formal artifice defined to

reproduce, in the first Born approximation, what we know
to be the correct behavior for simple s-wave scattering
(cf. [41, p. 11]).

Consider a scattering system consisting of N (identi-
cal, for simplicity) atoms. The dynamic structure factor
fulfills the relation

S (K, ω) =
1

2π

∫ ∞

−∞

e−ıω tF(K, t) dt, (18)

where F(K, t) is the so-called intermediate correlation
function given by

F(K, t) =
1
N

N∑
j,k

〈
e−ıK·r̂ j(0)eıK·r̂k(t)

〉
(19)

with 〈. . .〉 denoting a thermodynamic average [40]. This
function contains the Heisenberg operators

r̂(t) = Û†(t)r̂Û(t), (20)

where Û(t) is the unitary time evolution operator

Û(t) = e−
ı
~ Ĥct (21)

with Ĥc being the Hamiltonian of the complete N-body
scattering system—not only of a single atom [40, 41].

In the limit of sufficiently large momentum transfers
holds the incoherent approximation, in which terms with
j , k are neglected

F(K, t) =
〈
e−ıK·r̂ j(0)eıK·r̂ j(t)

〉
. (22)

Neutron-proton scattering is mainly incoherent also for
small K, due to the spin-flip mechanism described by
Feynman [1], as mentioned in the Introduction.

The following point should be emphasized. Quan-
tum correlations—or even entanglement and/or quantum
discord—between neutron and a scattering particle are
absent in the whole conventional theory of neutron scatter-
ing; see e.g. the textbook [40] and the review article [42].
Moreover, the notion of coherence length of the neutron
plays no role in conventional neutron scattering theory.
(Surely, this is not the case in neutron interferometry.)
This is essentially the consequence of the first-order per-
turbation theoretical frame of conventional theory.

4.1.3 On impulsive scattering – Impulse
approximation

The key approximation called impulse approximation
[42], applied in the so-called neutron Compton scattering
regime, is the assumption that the collisional time τ of
a neutron with a nucleus is very short. Thus the atomic
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(nuclear) position rM(t) of an atom with mass M can be
replaced by

rM(t) = rM(0) + t
P(0)
M

, (23)

where P(0) is the initial atomic momentum. This approxi-
mation assumes that the particle travels freely over short
enough times 0 ≤ t ≤ τ, and thus that its interaction with
other particles can be neglected.

In other words, it is assumed that the scattering par-
ticle recoils freely from the collision, with interparticle
interaction in the final state being negligible and the wave
function of the particle in its final state being a plane
wave [42, 44].

In a real experiment, the characteristic time τ for
this collision is extremely short, τ → 0, since the
neutron-nucleus potential VM is essentially a delta func-
tion, Eq. (17). An expression for the scattering time in
the impulse approximation is given by Sears,

τ =
M

K∆P
, (24)

where ∆P is the width of the momentum distribution
of the struck atom [42, 44]. Depending on the specific
experimental parameters (and mass of scattering atom),
τ lies roughly in the femtosecond, or attosecond, time
range [42–44].

In the context of weak measurement and two-state-
vector formalism, it is important to observe that the basic
Eqs. (18,19) depend on dynamical variables of the scat-
tering system only [40]) and no dynamical variable of
the neutron—e.g. the parameter bM is not a dynamical
variable but a c-number.

In the limit of sufficiently large momentum transfer, i.e.
in the impulse approximation, conventional theory yields
for the dynamic structure factor the simple expression
[42–44]

S M(K, ω) =

〈
δ

(
~ω − ~ωrec −

~K · P
M

)〉

=

∫
nM(P) δ

(
~ω − ~ωrec −

~K · P
M

)
dP, (25)

where n(P) is the classical distribution function of the
atomic momenta in the initial state and the delta function
represents the aforementioned energy conservation (12).
As the scatterer is initially at rest, it holds 〈P〉 = 0.

For the case of one atom with momentum-space wave
function Ξ(P) (i.e. the Fourier transform of the wave
function Ψ(r) in position space), this is given by [42–44]

nM(P) = |Ξ(P)|2. (26)

This formula physically means that here the measured
signal (intensity, dynamical structure factor) contains an
incoherent sum (superposition) over the classical prob-
ability distribution of initial-state momenta—and not a
coherent superposition of the scattering amplitudes before
taking the absolute square. In other terms, this expression
contains only the diagonal part of the full density opera-
tor |Ξ〉〈Ξ|, i.e. all non-diagonal terms are discarded. Also
this weakness is a consequence of the first-order pertur-
bation theory underlying the impulse approximation of
conventional theory.

A remarkably concise derivation of the main result,
Eq. (25), including a short explanation of incoherent and
impulse approximations, is given by Sears in the first
three pages of [44].

4.2 Conventional final-state effects, peak
shift, and effective mass

In real experiments, deviations from the impulse approx-
imation may be observed. Here, we will consider them
within the frame of conventional theory.

The aforementioned energy conservation relation (12)
for a two-body collision holds exactly in the impulse ap-
proximation, but is not completely fulfilled at momentum
and energy transfers of actual experiments, in which so-
called final-state effects may become apparent. (In fact,
this term commonly includes both initial and final state
effects; see [42, 44] and papers cited therein.) These are
caused by environmental forces on the struck particle,
which affect both initial and final states of it. Here, we
will shortly discuss this effect in the frame of conventional
theory.

If the scatterer is not completely free but partially
bound to other particles of its environment, then the probe
particle scatters on an object with higher effective mass,
as the particles of the environment have a certain mass; in
other terms, the scattering particle becomes hindered by
the environmental forces. The latter may be due to some
conventional mechanism of binding (such as ionic or van
der Waals forces; chemi- or physisorbtion). However
these forces can never cause an increase of the particle’s
mobility, or equivalently, a reduction of its effective mass.
The particle is dressed by certain environmental degrees
of freedom, which is tantamount to a small increase of its
effective mass,

Meff ≥ Mfree ≡ M. (27)

The above remarks correspond to a well understood effect,
often observed in scattering from condensed systems;
cf. [42–44].

These illustrative considerations imply that relation
(27) should be valid also in the final state of the struck
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particle. Moreover, it should hold under the conditions
of neutron Compton scattering as well as of incoherent
inelastic neuron scattering.

This effect can be also shown by referring to the afore-
mentioned energy conservation relation, see (14), here
including a small term Eint > 0 describing the atom-
environment interaction:

Ē =
~2K̄2

2M
+ Eint, (28)

where Ē and K̄ refer to the center of a measured peak
(with one detector). Note that these quantities are deter-
mined from the kinematics of the neutron, in contrast to
Eint which is a quantity of the scattering system. Let us
now try to fulfill this equation with a pair (EIA,KIA) be-
ing determined by the impulse approximation for which
holds EIA = ~2K2

IA/2M. Then Eq. (28) yields

EIA =
~2K2

IA

2Meff

+ Eint, (29)

where Eint > 0 necessarily implies Meff > M.
From the considered increase of effective mass,

Meff > M, and Eq. (29) one obtains the following ex-
perimentally testable predictions of conventional theory:

(a) Assuming K-transfer to be fixed in a specif-
ically designed experiment—a so-called constant-K
measurement—the recoil (i.e. kinetic) energy of an atom
with mass Meff will be smaller than predicted by the
impulse approximation (in which the atom is free and
has mass M). An example is given in Fig. 2 of [42],
which demonstrates this effect with the aid of an exact
calculation of scattering from a harmonic oscillator. The
envelope of the exact transition lines is shifted to a lower
energy than that of the calculated impulse approximation
line; this shift corresponds to the recoil of a fictitious
free particle with a larger effective mass than that of the
oscillator.

(b) Assuming E-transfer to be fixed in a specif-
ically designed experiment—a so-called constant-E
measurement—the momentum transfer to a recoiling
atom with mass Meff will be larger than predicted by
the impulse approximation (in which the atom is free and
has mass M).

It may be noted that various generalizations of the
impulse approximation, including initial and final-state
effects, predict similar results. For example, Stringari’s
well-known model [49] predicts a shift of the measured
recoil peak to lower E-transfer, in accordance with case
(a). Furthermore, this shift was demonstrated with deep-
inelastic neutron scattering data from liquid helium at
K = 10 Å−1 [49].

Summarizing, conventional theory cannot predict a
decrease of the scatterer’s effective mass—and/or associ-
ated deviations of E- and K-transfers—opposite to those
of cases (a) and (b) .

4.3 Neutron scattering – Weak interaction

As general (non-relativistic) scattering theory [50] shows,
scattering of an incoming neutron wave packet ψn from a
particle in the state ψA is described by

ψnψA → (ψnψA)unscatt + εΨ(n, A)scatt (30)

(up to normalization; |ε| � 1) where the two subscripts
denote the non-scattered and scattered components. This
process is represented by an ordinary unitary transfor-
mation. In the center-of-mass coordinate system, the
scattered component is given by an outgoing spherical
wave (which is called s-wave scattering). In particular,
for neutron scattering it holds

εΨ(n, A)scatt ∝ −
bM

r
exp(ıkr), (31)

where r denotes the relative spatial distance between the
two particles, bM is the scattering length of the atomic
nucleus with mass M, and k a proper wave vector. For
the (arbitrary) choice of the minus sign in this expression,
see [40].

The range of the nuclear forces is very short (of the
order of 10−15 m = 1 fm), and the associated scattering
length bM in the Fermi pseudo-potential, Eq. (17), is
of similar order, say 1–10 fm. Due to the much larger
de Broglie wavelength of the impinging neutrons (being
of the order of 1 Åfor thermal neurons), the scattering
contains only s-wave components [40, 41].

Note that usually the struck nucleus (atom) is not fully
fixed and thus exhibits some recoil, which is particularly
significant for a struck H-atom. Hence neutron and scat-
tering particle are entangled in their two-body final state.

Due to the smallness of scattering lengths of all nu-
clei [40] and the associated ultrashort range of the nu-
clear forces, the neutron-nucleus scattering (commonly
referred to as neutron-atom scattering) represents a weak
interaction, and for this reason the theoretical framework
of first-order perturbation theory is assumed to be fully
sufficient. In this context, it should be reminded that
the general van Hove formalism of time-correlation func-
tions [51], on which every conventional neutron scat-
tering theory is based (cf. textbooks [40, 41]), contains
time-dependent (Heisenberg) operators of the undisturbed
N-body scattering system only—i.e. the disturbance
caused by the neutron-system interaction is assumed in-
finitesimally weak.
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For further insight on how weak the neutron-atom inter-
action is, the following fact may be noted. Every existing
neutron beam (e.g. at the newest and most intense spal-
lation source SNS) is weak also in the sense that the
probability for two neutrons of a neutron pulse to scatter
off the same atom is practically zero.

However, in the theoretical frame of weak values and
two-state-vector formalism, the weakness of interactions
should be examined in some more detail. To yield a
numerical estimate, we take into account the discussion
by Duck, Stevenson and Sudarshan [17]. These authors
pointed out that the weak value theoretical derivations
of [15] require (among other conditions) that the state of
the weak measuring device must be representable by a
wave function, rather than by an impure density matrix.
This can be achieved with the probe beam being coherent
across its width.

In the neutron scattering experiments considered be-
low (in Section 6), the neutron’s coherence width is not
specified in the cited references. This is because this
quantity plays no role in conventional neutron scattering
theory. To determine this quantity, details of the beam’s
monochromaticity and divergence would be needed. In
order to proceed, and as a rough estimate of the worst
case, here we may assume this coherence width to be sim-
ilar to, or larger than, the neutron’s wavelength λn. Thus
the magnitude of the total scattering amplitude of the neu-
tron wave from a nucleus, which should be proportional
to bM, can be roughly estimated by the ratio

ε .
bM

λn
∼

10 fm

1 Å
= 10−4. (32)

Depending on details of the instrumental setup, usually
the neutron-beam coherence width in real experiments
should be larger than the neutron wavelength. (It may
be noted that in various experimental setups of neutron
interferometry, this coherence width can be of the order
of 1 cm.)

This crude estimate shows that the non-relativistic scat-
tering of neutrons at issue can be safely considered as
a weak interaction process. Due to the smallness of the
interaction range and the ultrashort collisional time, the
process is impulsive.

5 Elementary scattering in the light
of weak measurement and
two-state-vector formalism

5.1 On shift operator and momentum
transfer in impulsive two-body
collisions (conventional theory)

In this section, the position and momentum of the neu-
tron (probe particle) are denoted as (q, p). Similarly, the
position and momentum of the scatterer (atom, nucleus)
are denoted as (Q, P). A symbol, say X, with a hat, X̂,
represents the corresponding operator quantity. To illus-
trate the action of shift operators, let us consider here a
simple one-dimensional quantum model for momentum
exchange in a two-particle impulsive collision.

Let us furthermore assume that the two particles oc-
cupy states with approximately well defined momenta
(i.e. plane waves). The initial state of the whole system is
usually assumed to be uncorrelated:

Ψinitial = φn(p) ⊗ ΞA(P) (33)

(indices n and A refer to neutron and atom, respectively).
An impulsive scattering process may be formally de-

scribed by the (oversimplified) interaction Hamiltonian

V̂ = F(t) (q̂ − Q̂), (34)

where the function F(t) represents a non-zero force during
a short time interval τ, i.e. the duration of the collision;
e.g. we may assume that F(t) is proportional to a delta
function. Furthermore it is assumed that the integral over
F(t) ∫ τ

0
F(t) dt = ~K (35)

gives the momentum transfer ~K caused by the collision.
Neutron and atom observables commute, so [q̂, Q̂] = 0,

and the associated unitary evolution operator is

Û(τ) = e−(ı/~)
∫

V̂dt = e−(ı/~) ~K (q̂−Q̂) ≡ e−ıK q̂e+ıK Q̂.

(36)
The operator eı~K Q̂/~ shifts an atomic momentum eigen-
ket as eı~K Q̂/~|P〉 = |P + ~K〉 while the operator e−ı~K q̂/~

shifts an impinging particle (neutron) momentum eigen-
ket as e−ı~Kq̂/~|p〉 = |p − ~K〉.

Immediately after the momentum exchange, the state of
the two-particle system in the momentum representation
is

Ψfinal = Û(τ) φn(p) ⊗ ΞA(P)

= e−i~K q̂/~φn(p) ⊗ ei~K Q̂/~ΞA(P)

= φn(p + ~K) ⊗ ΞA(P − ~K). (37)
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This final state is not entangled, due to the trivial form of
V̂ . These short considerations may motivate the search
for a two-body impulsive interaction Hamiltonian, which
is presented in the following section.

Concerning the basic importance of the shift operator
in demonstrating the dynamical non-locality of quantum
mechanics, see the discussion by Popescu [52].

5.2 Weak measurement, interaction
Hamiltonian and momentum transfer

As already mentioned in connection with Eq. (15), for our
purposes it is sufficient to consider the atomic momentum
component parallel to K, which from now on we shall
denote simply by P—and the associated operator by P̂.
In other words, in the following calculations we shall
consider the dynamics along an arbitrarily chosen direc-
tion of momentum transfer, which is an one-dimensional
problem.

5.2.1 Von Neumann-type interaction
Hamiltonian

In this subsection, we provide a physically motivated
heuristic derivation of a von Neumann-type interaction
Hamiltonian for (a given amount of) momentum transfer
in an impulsive collision.

Let us start again with the one-body model Hamilto-
nian describing momentum transfer −~K ≡ +~Kn on the
neutron due to the collision with the atom:

V̂n(t) = δ(t) ~K q̂. (38)

As shown above, the associated evolution operator acting
on the space of the neutron

Ûn(τ) = e−
ı
~ ~K q̂ (39)

shifts a momentum eigenstate of the impinging particle
(neutron) as e−ı~Kq̂/~|p〉 = |p − ~K〉.

Assuming momentum conservation in the two-body
collision, it holds

− ~Kn = ~KA ≡ ~K, (40)

where ~KA is the momentum transfer on the atom due to
the collision. (We choose KA with positive sign, following
standard notation of conventional theory [40, 41].)

The scattering atom is assumed at rest in its initial
state before collision, 〈P̂〉i = 0. After the collision, one
conventionally expects that

~KA = +~K = 〈P̂〉 f = 〈P̂〉 f − 〈P̂〉i (41)

and correspondingly for the neutron momentum

~Kn = −~K = 〈p̂〉 f − 〈 p̂〉i. (42)

Hence, the aforementioned operator Ûn(τ) of the neutron,
Eq. (39), may be written as

Ûn(τ) = e−
ı
~ 〈P̂〉 f q̂. (43)

To apply the theory of weak measurement and two-
state-vector formalism, a von Neumann two-body inter-
action Hamiltonian is needed. Thus one is intuitively
guided to try a two-body generalization of the one-body
evolution operator Ûn(τ) of the form

Û(τ) = e−
ı
~ q̂ P̂. (44)

This heuristically obtained expression still has not ob-
vious context to the real experimental situations under
consideration. To achieve this, we now may proceed as
follows.

Firstly, let us refer to the aforementioned impulse ap-
proximation and Eq. (12) regarding energy conservation:

E =
(~K)2

2M
+
~K · P

M
.

Looking at this equation, one sees that the larger recoil
term (~K)2

2M may be viewed to result from a strong impul-
sive interaction (associated with momentum transfer +~K
on the atom). The theoretical treatment of this part of
the interaction is not within the scope of the present pa-
per. Since in the impulse approximation usually holds
|K| � |P|, the smaller Doppler term ~K·P

M may correspond
to a weaker interaction, in which the atomic momentum P̂
couples with an appropriate dynamical variable of the neu-
tron, say Ôn. Looking at the preceding formulas (43,44)
for the model operator effectuating momentum transfer,
it appears that this dynamical variable should be q̂, that is
Ôn = q̂ .

Secondly, in view of the theory of weak values and
two-sate-vector formalism, the weak interaction is ex-
pected to cause weak deviations from (or: additional
small contributions to) the conventionally expected large
momentum transfer ~K. This can be introduced into the
formalism by replacing P̂ with the small momentum dif-
ference P̂− ~KÎA, and also including a positive smallness
factor

0 < λ � 1

in the model interaction Hamiltonian and the associated
evolution operator. In particular, let us assume the model
interaction Hamiltonian

Ĥint(t) = +λ δ(t) q̂ ⊗ (P̂ − ~K ÎA). (45)

It may be noticed that this model Hamiltonian is not
put forward entirely on kinematical grounds, like Eq. (40),
but also on quantum dynamical grounds, e.g. the choice
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Ôn = q̂ of the canonically conjugate operator q̂ to neu-
tron’s momentum p̂.

Moreover, it should be pointed out that the plus sign in
front of this expression is not arbitrary, since it is consis-
tent with the definitions (40). This point will be addressed
explicitly in subsection 5.3.1, since it plays a decisive role
in the context of the new quantum effect of momentum
transfer deficit.

For further physical motivation of the two parts of
the model Hamiltonian of Eq. (45), it may be helpfully
to compare the above reasoning with an example by
Aharonov et al.:

Consider, for example, an ensemble of elec-
trons hitting a nucleus in a particle collider.
[. . .] The main interaction is purely electromag-
netic, but there is also a relativistic and spin-
orbit correction in higher orders which can be
manifested now in the form of a weak interac-
tion. [53, p. 3]

5.2.2 Weak value of atomic momentum
operator P̂

Let consider the atom as the system. Since the weak value
of the identity operator is (ÎA)w = 1, for the weak value
of the atomic coupling operator P̂ − ~K ÎA in the above
interaction Hamiltonian holds:

(P̂ − ~K ÎA)w = Pw − ~K. (46)

In the following, we first calculate the weak value Pw of
P̂ for some characteristic (and experimentally relevant)
final states in momentum space. The results will reveal
a striking deviation—more precisely, a deficit—from the
conventionally expected momentum transfer to the neu-
tron; to the latter belongs the pointer momentum variable
p̂ conjugated to q̂ appearing in Eq. (45).

For the calculation of the weak value, it seems natural
to use the momentum space representation, as scattering
experiments usually measure momenta (rather than the
positions of the scatterers in real space).

Let the atom initially be at rest and in a spatially con-
fined state (e.g. in a potential representing physisorption
on a surface; cf. experiments in Section 6). Then the
initial atomic wave function Ξ(P)i can often be approxi-
mated by a Gaussian GA centered at zero momentum,

Ξ(P)i ≈ GA(P).

At sufficiently deep temperature the atom will be in its
ground state, and the width of Ξ(P)i is determined by the
quantum uncertainty.

The struck atom moves in the direction of momentum
transfer ~KA = ~K; therefore, to simplify notations, in

the following calculations P represents the atomic mo-
mentum along the momentum transfer direction.

It will be instructive to consider the following three
cases for the atomic final state:

(A) The final state is a plane wave (has vanishing width
in momentum space)—as assumed in general con-
ventional theory and the impulse approximation.
Here, the result of conventional theory is reproduced.

(B) The final state has a small but non-vanishing width
in momentum space.

(C) Initial and final states have the same width in mo-
mentum space.

(A) Plane wave as final state. As in the case of the
usual impulse approximation [42] of Compton scattering
from a single scatterer, let the final state be a plane wave;
that is the momentum wave function is a delta function
δA centered at the assumed transferred momentum ~KA,

Ξ(P) f = δA(P − ~KA). (47)

The weak value of P̂ follows straightforward:

Pw =
〈Ξ f |P̂|Ξi〉

〈Ξ f |Ξi〉

=

∫
dP δA(P − ~KA) P Ξ(P)i∫
dP δA(P − ~KA) Ξ(P)i

=
~KA Ξ(~KA)i

Ξ(~KA)i
= +~KA ≡ +~K. (48)

(Recall the notations of Eq. (40).) Hence, the weak value
of the system coupling operator (P̂ − ~K ÎA) is just zero,

(P̂ − ~K ÎA)w = Pw − ~K = 0. (49)

(According to standard quantum scattering theory, the
scattered wave may acquire an additional phase factor,
say eıχ, which does not affect the preceding result because
this factor cancels out in the fractions of Eqs. (48).)

This physically means that, in this case, the new theory
yields no correction to the conventionally expected value
of momentum transfer (i.e. −~K, by assumption) shown
by the pointer of the measuring device, namely:

〈p̂〉 f − 〈 p̂〉i = −λ (P̂ − ~K ÎA)w = 0. (50)

Thus, the result of Eq. (49) is consistent with conventional
theory of the impulse approximation (or, more generally,
of incoherent neutron scattering); cf. also Eq. (37).

(B) Final state with non-vanishing width. Relaxing and
generalizing the strict impulse approximation assumption
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of case (A), let us make here the more realistic assumption
that the atomic final state is represented by a widened
delta-like symmetric function ∆A with finite (small) width,
which is centered again at the conventionally expected
momentum transfer ~KA. That is,

Ξ(P) f = ∆A(P − ~KA) (51)

for which holds again 〈Ξ f |P̂|Ξ f 〉 = ~KA. For example, a
Gaussian with (much) smaller width than the initial state
fulfils these conditions. The weak value of the atomic
momentum operator is then

Pw =
〈Ξ f |P̂|Ξi〉

〈Ξ f |Ξi〉

=

∫
dP ∆A(P − ~KA) P Ξ(P)i∫
dP ∆A(P − ~KA) Ξ(P)i

= +~KA − π(~KA)

≡ +~K − π(~KA), (52)

where the small momentum correction π(~KA) fulfills

0 < π(~KA). (53)

This can be easily seen as follows. In the nominator∫
dP ∆A(P − ~KA) P Ξ(P)i

the factor Ξ(P)i gives more weight to the left side (i.e. for
P < ~KA) of the symmetric peak ∆A(P − ~KA) than to
the right side; this leads to an average of P being smaller
than the central position ~KA of the final state ∆A.

Obviously, the correction term π(~KA) vanishes in the
plane wave (and also the impulse) approximation limit,
as already considered in the preceding case (A); i.e.

∆A → δA ⇒ π(~KA)→ 0.

Furthermore, we see that the finite width of the final
state causes a reduction of the conventionally expected
momentum transfer ~K; namely

(P̂ − ~K ÎA)w = Pw − ~K = −π(~KA) (54)

and consequently for the additional shift of the meter
pointer variable holds

〈p̂〉 f − 〈 p̂〉i = −λ (P̂ − ~K ÎA)w
= +λ π(~KA). (55)

Here, we made use of the general result given by Eq. (3);
see also Eq. (59).

(C) Final state with unchanged width. The collisional
process is here assumed to be soft enough in order to

leave the shape of the initial state unchanged. In other
words, let the final state have the same shape as the initial
state, but be centered at the transferred momentum; i.e.

Ξ(P) f = Ξ(P − ~KA)i. (56)

The weak value of the atomic momentum operator is now
as follows:

Pw =
〈Ξ f |P̂|Ξi〉

〈Ξ f |Ξi〉

=

∫
dP Ξ(P − ~KA)i P Ξ(P)i∫
dP Ξ(P − ~KA)i Ξ(P)i

= +
~KA

2
= +
~K
2
. (57)

The last equality follows immediately from (a) the two
symmetrically distributed Ξ functions around their central
position P̄ = ~KA/2 and (b) the linear term P in the
integral of the nominator. It should be noted that this
result does not depend on the width of Ξ, as long as the
two Ξ functions are not orthogonal to each other.

In other words, the correction term of the momentum
transfer is here π(~KA) =

~KA
2 .

This is a quite interesting result because it represents
a momentum-transfer deficit of 50%; i.e. the scattered
neutron measures a momentum kick being only half of
the conventionally expected value. In more detail:

(P̂ − ~K ÎA)w = +
~KA

2
− ~K = −

~K
2

and applying Eq. (3), or Eq. (59), one obtains for the
correction to the shift of the meter pointer variable:

〈 p̂〉 f − 〈 p̂〉i = −λ (P̂ − ~K ÎA)w = +λ
~K
2
. (58)

In subsection 6.2, we will present and discuss a recent
striking experimental finding being qualitatively compa-
rable with this numerical result.

The rather general scheme of the above derivations
provides evidence that the new effect under consideration
is not a specific feature of the simple time-of-flight exper-
iment at issue, but a general one of any field of scattering
physics, e.g. relativistic scattering in high-energy physics.
The immediate implication is that the general theory of
weak measurement and two-state-vector formalism may
be relevant for a very broad range of modern scattering
experiments.

5.3 Quantum momentum-transfer deficit

As the above calculations show, in all cases under consid-
eration the weak value Pw is real. Hence for the calcula-
tion of the expectation value of the meter output variable
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p̂, which is the neutron’s momentum (conjugate to q̂), the
general result of Eq. (3) applies. Here, it should be noted
the change of sign between the usually applied interaction
Hamiltonian of Eq. (2), as e.g. treated in [15, 17], and
the presently used specific form (45). Therefore, there is
a corresponding change of sign in the result of Eq. (3),
namely

〈p̂〉 f − 〈 p̂〉i = −gRe[Aw]. (59)

The preceding results of Eqs. (52) and (57) imply that
the meter variable p̂ will not take the conventionally ex-
pected value −~K = −~KA, but an anomalous value due
to the reduction term λ (P̂ − ~K ÎA)w = −λ π(~KA). In
particular, for the total momentum transfer shown by the
pointer momentum we may write:[
〈p̂〉 f − 〈 p̂〉i

]
total

=
[
〈p̂〉 f − 〈 p̂〉i

]
conventional

+
[
〈 p̂〉 f − 〈 p̂〉i

]
correction

= −~K + λ π(~KA). (60)

This result represents the new quantum effect of quantum
momentum-transfer deficit: the absolute value of momen-
tum transfer on the neutron predicted by the new theory
is smaller than that predicted by conventional theory; in
short,

| − ~K + λ π(~KA)| ≤ | − ~K|.

The weak measurement result (60) has some concep-
tual similarity with the result by Aharonov et al. discussed
in Section 3, in which the interferometer mirror received
momentum kicks only from the insight, but the strange re-
sult was that these kicks (under the proper post-selection)
somehow succeed to pull it in instead to push it out [38].

As mentioned above, the physical reason of this new
effect is the specific quantum interference being revealed
by the theory at issue, which is associated with the post
selection. As far as we know, this effect has no explana-
tion within the frame of conventional theory of scattering.
Moreover, it is in blatant contradiction with conventional
expectations of neutron scattering theory even qualita-
tively, as discussed in subsection 4.2.

5.3.1 The positive sign of the model interaction
Hamiltonian

It was pointed out above that the plus sign in front of
model interaction Hamiltonian Ĥint in Eq. (45) is nec-
essary and not due to an arbitrary choice; see subsec-
tion 5.2.1. This positive sign is critical to the presented
conclusions.

However, one might object this point and claim the
following: If one replaces +λ with a negative factor, say
−µ (where µ > 0), in the Hamiltonian (45), one may
carry through the above derivations to arrive at a positive

momentum transfer correction without any violation of
momentum conservation.

Here, we will show that this objection is incorrect. First,
the calculations of weak value (P̂ − ~K ÎA)w = −π(~KA)
remain unaffected, since the operator does not contain the
factor λ. Second, the replacement of the positive factor +λ

with the negative factor −µ, yields the new Hamiltonian

Ĥint,new(t) = −µ δ(t) q̂ ⊗ (P̂ − ~K ÎA) (61)

and, at the same time, causes a change of the sign of
the general theoretical result (59), which for the specific
correction to the pointer shift (59) under consideration
reads

〈p̂〉 f − 〈 p̂〉i = +µ (P̂ − ~K ÎA)w
= −µ π(~KA). (62)

In particular, the correction term to the pointer momentum
shift is now negative. This increases the absolute value
of the total shift:

| − ~K − µ π(~KA)| ≥ | − ~K|

and, therefore, this increase is qualitatively in contrast to
the decreased weak value of atomic momentum

(P̂)w = +~KA − π(~KA).

(Recall that ~KA = ~K, by definition.)
In simpler terms, using the new interaction Hamilto-

nian (61) we arrive at an unphysical result: The weak
value of the atomic momentum transfer is still reduced
(with respect to conventional theory), but the measuring
apparatus shows an increased momentum transfer. Obvi-
ously, this unphysical paradox is an artifact of the wrongly
chosen negative sign in the model Hamiltonian Eq. (61)—
and not a weakness of the general theory of weak values
and two-state-vector formalism. Namely, this paradox
vanishes if the correct (i.e. physically appropriate) model
Hamiltonian of Eq. (45) is applied.

Contradicting the above explanations, one might insist
that the choice of the negative factor −µ in the model
Hamiltonian (61) should be still legitimate. However,
as shown, Eq. (61) implies that the measuring system
(i.e. the scattered neutron) exhibits an increased momen-
tum transfer—which is tantamount to the aforementioned
(in Section 4) expectations of conventional theory, in par-
ticular the conventional final-state effects. But the recent
experimental results presented in Section 6 are in blatant
contrast to conventional theory.

The above considerations refer explicitly to both quan-
tum systems (i.e. atom and neutron). This is because the
model interaction Hamiltonian Ĥint in Eq. (45) contains
dynamical variables of both systems, and therefore its
physical significance cannot be discussed by considering
the scattering atom (and the weak value of P̂) only.
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6 Experimental context and results

In this section, the obtained weak measurement results
are compared with real experiments. The derivations of
the preceding section should apply to both neutron scat-
tering subfields of interest—neutron Compton scattering
and incoherent inelastic neuron scattering—as they do
not contain any specific assumption being valid in one
subfield only. The presented experimental results may
be considered as possible examples of the theoretical
analysis of Section 5; other explanations are presently
unknown, but they cannot be excluded yet.

6.1 Neutron Compton scattering from H
atoms of a solid polymer

An experimental demonstration of the new quantum ef-
fect under consideration can be found in the data of [54].
The deep-inelastic neutron scattering experiments were
carried out by Cowley and collaborators with the time-of-
flight spectrometer MARI [55] of the neutron spallation
source ISIS (Rutherford Appleton Laboratory, UK). The
sample (a foil of a solid polymer) was at room temper-
ature. Fig. 3 shows two examples of the extensive mea-
surements reported in [54]. The depicted recoil peaks are
mainly due to scattering from protons (H atoms), due to
the high scattering cross-section of H. The vertical (red)
lines show the E-transfer positions of the peaks according
to conventional theory, Eq. (13). The centroids of the
measured recoil peaks are markedly shifted to higher en-
ergy transfer than conventionally expected. As discussed
in subsection 4.2, this shift is equivalent to a smaller
effective mass of the recoiling H atom.

One might object that the shown data contain an ad-
ditional small contribution from the C recoil. However
this is located at smaller E-transfers than that of H, due
to their mass difference. Therefore the above qualitative
conclusion remains unaffected.

It may be noted that the shown neutron Compton scat-
tering peaks are very broad and asymmetric, which is due
to the (very) low resolution of the employed modified
setup of MARI [54]. This makes a quantitative analysis
to determine the peak-position impossible. Nevertheless,
visual inspection of the data shows that the centroids of
the peaks are shifted to higher energy roughly by 5-10 %
of the recoil energy, which equivalently means that the ef-
fective mass Meff of the recoiling H atoms is smaller than
MH = 1.0079 a.m.u. of a free H by the same percentage

Meff(H) ≈ 0.91 − 0.96 a.m.u. (63)

It is also interesting to look at the additional (about 50)
spectral data reported in [54]. Remarkably, all those peaks
appeared to show always positive E-transfers, i.e. with no
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Figure 3: Schematic representation of two examples of deep-
inelastic neutron scattering spectra from a solid polymer
(polyethylene, [−CH2−]n) measured with the time-of-flight
spectrometer MARI of ISIS [54]. Peak-shifts to higher en-
ergy transfers than the conventionally expected recoil energy
Erec (vertical red lines) are clearly visible. This corresponds
to a lower effective mass of the recoiling H; see the text. For
experimental details and more examples, see [54].

scatter to negative E-transfers; see [54, Fig. 12]. This un-
derlines considerably the reliability of the E-shift at issue.
However, since the main aim of that investigation was
motivated differently (i.e. to measure the cross-section
of H), this striking experimental finding remained fully
unnoticed in the discussions of [54]. Noteworthy, through-
out this section we presumed that the calibration of the
instrument MARI employed in the experiment [54] was
correct, i.e. that the applied time-of-flight method (see
subsection 4.1) used correct instrumental parameters.

6.2 Incoherent inelastic scattering from
single H2 molecules in nanopores

Another surprising result from incoherent inelastic neu-
tron scattering was observed by Olsen et al. [56] in the
quantum excitation spectrum of H2 adsorbed in multi-
walled nanoporous carbon (with pore diameter about
8–20 Å).
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The incoherent inelastic neutron scattering experiments
were carried out at the new generation time-of-flight spec-
trometer of Spallation Neutron Source SNS (Oak Ridge
Nat. Lab., USA), called ARCS [48]. In this experiment,
the temperature was T = 23 K, and the incident neutron
energy E0 was 90 meV. The latter implies that the energy
transfer cannot excite molecular vibrations (or break the
molecular bond), but only excite rotation and translation
(also called recoil) of H2 which interacts only weakly
with the substrate:

E = Erot + Etrans. (64)

The experimental two-dimensional incoherent inelas-
tic neutron scattering intensity map S (K, E) of H (after
background subtraction) is shown in Fig. 4, which is
adapted from the original paper [56]. The following fea-
tures are clearly visible. First, the intensive peak centered
at Erot ≈ 14.7 meV corresponds to the well-known first
rotational excitation J = 0→ 1 of the H2 molecule [57].
Furthermore, the wave vector transfer of this peak is
Krot ≈ 2.7 Å−1. Thus the peak position in the K–E plane
shows that the experimentally determined mass of H that
fulfills the relation Erot = (~Krot)2/2MH is (within experi-
mental error) the mass of the free H atom:

rotation: MH = 1.0079 a.m.u. (65)

namely, Meff(H) = MH. In other words, the location of
this rotational excitation in the K–E plane agrees with
conventional theoretical expectations for incoherent in-
elastic neutron scattering, according to which each neu-
tron scatters from a single H [57]. Recall that an agree-
ment with conventional theory was also observed in the
case of scattering from 4He [47]; see Fig. 2.

Moreover, the authors provide a detailed analysis of the
roto-recoil data from incoherent inelastic neutron scatter-
ing, as shown in Fig. 4, and extracted a strongly reduced
effective mass of the whole recoiling H2 molecule (left
parabola, red full line); see Eq. (13):

recoil: Meff(H2) ≈ 0.64 ± 0.07 a.m.u. (66)

This is in blatant contrast to the conventionally expected
value M(H2) = 2.01 a.m.u. for a freely recoiling H2
molecule (right parabola, broken line). (Recall that the
neutron-molecule collision does not break the molecular
H-H bond.)

An extensive numerical analysis of the data is pre-
sented in [56], being based on time-of-flight data analysis
(cf. Section 4) and the analysis of the measured data
within conventional theory [40, 57].

This strong reduction of effective mass, which is far
beyond any conceivable experimental error, corresponds
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Figure 4: Schematic representation of incoherent inelastic
neutron scattering results from H2 in carbon nanotubes, with
incident neutron energy E0 = 90 meV [56, Fig. 1]. The transla-
tion motion of the recoiling H2 molecules causes the observed
continuum of intensity, usually called roto-recoil (white-blue
ribbon), starting at the well visible first rotational excitation
of H2 being centered at E ≈ 14.7 meV and K ≈ 2.7 Å−1 (blue
ellipsoid). The K − E position of the latter is in agreement with
conventional theory. In contrast, a detailed fit (red parabola;
full line) to the roto-recoil data reveals a strong reduction of
the effective mass of recoiling H2, which appears to be only
0.64 a.m.u. The red broken line (on the right) represents the
conventional-theoretical parabola with effective mass 2 a.m.u.
For details of data analysis see [56].

to a strong reduction of momentum transfer by the factor
0.566. Namely, the observed momentum transfer deficit
is about −43% of the conventionally expected momentum
transfer. This provides first experimental evidence of the
new anomalous effect of momentum-transfer deficit in an
elementary neutron collision with a recoiling molecule.

Recall that, as explained above (see subsection 4.2),
every H2-substrate binding must increase the molecule’s
effective mass. Thus these findings from incoherent in-
elastic neutron scattering are in clear contrast to every
conventional (classical or quantum) theoretical expecta-
tion. However, they have a natural (albeit qualitative, at
present) interpretation in the frame of modern theory of
weak values and two-state-vector formalism.

Incidentally, it may be noted that in principle the same
calibration of ARCS was used in both experiments [47]
and [56].

6.2.1 Comparison with a related 1-dimensional
experiment

The above experimental results also show that the two-
dimensional spectroscopic technique, as offered by the
advanced time-of-flight spectrometer ARCS, represents
a powerful method that provides novel insights into
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quantum dynamics of molecules and condensed matter.
Clearly, this is due to the fact that K and E transfers
can be measured over a broad region of the K–E plane.
This advantage makes these new instruments superior
to the common one-dimensional ones (like TOSCA at
ISIS spallation source, UK), in which the detectors can
only measure along a specific trajectory in the K–E plane.
(TOSCA measures along two such trajectories [59].)

As an example, consider the results of [58] from molec-
ular H2 adsorbed in single-wall carbon nanotubes (which
is similar to the material of [56]) at T ≈ 20 K, investigated
with TOSCA. Also this paper reports the measurement
of the roto-recoil spectrum, but as a function of E only.
Therefore the strong anomalous effect (66) remained un-
noticed, and for the theoretical analysis of the data the
mass of H2 was fixed to its conventionally expected value
of 2 a.m.u.; see [58, p. 903].

6.2.2 Theoretical remarks

The large value of observed momentum transfer deficit in
this experiment indicates that the theoretical condition of
weakness is not fulfilled in this case. Therefore, here we
should mention the theoretical results by Oreshkov and
Brun [60] which show that weak measurements are uni-
versal, in the sense that every generalized measurement
can be decomposed into a sequence of weak measure-
ments; see remarks in subsection 7.2(J). This implies that
the striking experimental result under consideration may
still belong to the range of applicability of the new theory
of weak values and two-state-vector formalism.

In this context, a speculative semi-quantitative treat-
ment of the effect’s magnitude can be as follows. A formal
limit λ → 1—which however is theoretically treated in
various works, e.g. [37]; cf. subsection 7.2(J)—taken in
the above results shows that the special case (C) predicts
a −50% momentum transfer deficit (measured by the neu-
tron), thus being comparable with the experimental value
of −43%; see above. Additionally, the applied low ex-
citation energy of 90 meV further supports the physical
assumption that the excitation is sufficiently soft in order
that the envelope of the ground state Ξ(P)i is only slightly
deformed, and thus the special case (C) applies.

It may be noted that this assumption about the final
atomic state is very common in the context of femtosec-
ond dynamics in pump-probe optical experiments on
molecules: A pump pulse lifts the (Gaussian) ground-
state to an excited non-stationary state impulsively, keep-
ing its initial shape (or envelope) unchanged.

6.3 Consequences for instrumental
calibration

The theoretical analysis and results presented above have
considerable implications for the calibration of the as-
sociated time-of-flight spectrometers. In particular, in
neutron Compton scattering experiments it is a common
practice to use the recoil peaks of certain light atoms
(typically He or H) to achieve a refined calibration of
the spectrometer. That is, the measured (K, E)-positions
of a peak—together with the standard free-atom recoil
expression of Eq. (13), sometimes also including conven-
tional final-state effects—are used in order to fine tune the
numerical values of (some of) the instrument parameters
(L0, Lθ1, t0, θ, E0) determining the measured time-of-flight
values, Eq. (7). Obviously, such a calibration leads au-
tomatically to an (artificial) agreement of the data with
conventional theory, thus being illegitimate for testing
the new predictions of weak measurement and two-state-
vector formalism against those of conventional theory.

7 Discussion

7.1 Reconsidering what is actually
measured

In view to the above surprising experimental findings, it
may be helpful to reconsider them with the aim to point
out what is actually measured in the experiment, and what
is usually assumed (implicitly or explicitly).

First of all, it should be reminded that all experimental
results shown in the figures of Section 6 are in fact neutron
data, which are converted to H data with the aid of the
conventionally assumed theoretical relations

EH = En and ~KH = −~Kn. (67)

These relations are often considered as trivial or self-
evident, being (tacitly) based on the assumption that the
considered process is a two-body impulsive and inco-
herent (see Section 4) collision, with an additional as-
sumption concerning the (effective) mass of the scattering
particle.

The experimental data (Kn, En) measured with the
flight-of-time spectrometer is to be compared with the
differing (!) predictions of the two alternative theories
under consideration.

In the framework of the new theory (i.e. weak mea-
surement and two-state-vector formalism), it is important
to realize that, in general, the impulsive collision creates
an entangled [61] (or a least discordant [62]) neutron-H
quantum state; see also subsection 7.2(F). Very shortly
after the considered collision, the H-atom becomes ob-
served, or measured, by its close environment (i.e. ad-
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jacent atoms), which of course changes the quantum-
correlation content [62] of the neutron-H state. Later on,
the (spatial position of the) scattered neutron becomes
strongly measured by the neutron detector—which con-
cludes the experiment. In the context of the theoretical
model of Section 5, taking into account the the environ-
ment of the scattering H-atom, we have:

EH+env = En and ~KH+env = −~Kn (68)

assuming again energy and momentum conservation for
the case that the environment of the scattering H is not ne-
glected. Then, En = EH+env corresponds to a momentum
~KA transferred on the scattering system (A being here
the system H+environment). The theoretically derived
momentum transfer deficit, when interpreted in terms of
conventional theory, is equivalent to a reduced effective
mass of the whole H+environment system; i.e. the mass
of the latter appears to be smaller than the mass of a free
H-atom.

This weakness of conventional theory is further demon-
strated by the results of the experiment by Olsen et
al. [56], as presented in subsection 6.2; see also sub-
section 7.2(E). In contrast, the contradictions and/or in-
consistencies of conventional theory just disappear in the
framework of weak measurement and two-state-vector
formalism, and at the same time, the experimental find-
ings at issue are consistent with the new theoretical predic-
tion of quantum momentum transfer deficit; see Section 5.
In particular, the experimental results appear to be due
to a characteristic feature of weak measurement and two-
state-vector formalism being unknown in conventional
theory, i.e. the specific quantum interference associated
with the finite width of the final (i.e. post-selected) atomic
state in momentum space and the basic formula of the
weak value of atomic momentum.

7.2 Further remarks

(A) Until now, weak values are measured with a
different degree of freedom of the same quantum system.
Remarkably, in our approach, the two operators q̂ and P̂
occurring in the von Neumann interaction Hamiltonian
of Eq. (45) refer to two different quantum systems. Thus,
according to Vaidman [12], the concept of weak value
arises here due to the interference of a quantum entangled
wave and therefore it has no analog in classical wave
interference. This further supports the conclusion that
weak value is a genuinely quantum concept.

(B) To some people, post-selection roughly means
“throwing some data out”. In the experimental context at
issue, however, it rather means “performing a concrete

measurement on the system at all, and analyzing the mea-
sured data only”.

Since the concepts of post-selection and associated
quantum interference play a central role in this study, let
us stress the following point. Strict energy conservation
in the neutron-atom collision (see Section 4, Eq. (12))
reads

E ≡ E0 − E1 =
(~K + P)2

2M
−

P2

2M
. (69)

Let us consider the idealized case in which the numer-
ical values of both neutron energies Ei (i = 0, 1) are
sharply known—as conventional theory does by assum-
ing plane waves for the neutron’s initial and final states.
(As explained in Section 4, the detector measures a time-
of-flight value, from which E1 is derived if E0 is pre-
selected.) Then, as the initial atomic momentum P can
take a range of values around P = 0 (due to the width
of the atomic initial state Ξ(P)i), the momentum transfer
satisfying this equation can take various values too. In
other words, there are many Feynman paths starting at
|E0〉 and ending at the |E1〉, the latter being located at the
neutron detector. (These paths are interconnected with
associated atomic paths.) Thus these paths must be co-
herently superposed before the scattering probability of
the neutron is calculated. But as pointed out above (in
subsection 4.1), the formalism of conventional neutron
scattering theory fails to achieve this; e.g. its basic result
(25) for the impulse approximation contains only the di-
agonal part, Eq. (26), of the initial-state atomic density
operator (|Ξ〉〈Ξ|)i, and no explicit detail of the atomic final
state. In contrast, the theoretical approach of weak values
and two-state-vector formalism (Section 5) succeeds to
achieve this goal.

In the frame of two-state-vector formalism, however,
and also making contact with Danan’s et al. paper [36],
the physical picture is substantially different from the
conventional one. The formulas of two-state-vector
formalism imply that the scattering under consideration
is determined by the overlapping region—of momentum
space, in our case—of both the forward- and backward-
evolving quantum waves of the whole neutron+atom
system. Concerning the atomic states, this overlap is
obvious in the expressions of Pw. Additionally, looking at
Eq. (69) we see that also the backward-evolving neutron
state 〈E1| is consistent with a variety of atomic momenta
P and accompanying momentum transfers ~K. Clearly,
all associated Feynman paths connecting |E0〉 with |E1〉

contribute to the considered neutron-atom collision.

(C) The derived quantum deficit of momentum
transfer, −π(~KA), bears some resemblance to the
theoretical result by Aharonov et al. discussed in
Section 3, in which an interferometer mirror was pulled
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inwards due to proper post-selection, despite the photon
momentum pushing it in the opposite direction [38].
The innovation of the derived result in Eq. (60) in
comparison to the theoretical results of Ref. [38] is the
direct applicability of (60) to a widely known subfield
of experimental neutron physics (and possibly also to
further fields of scattering physics), as shown in Section 6.

(D) In the physical context of the incoherent neutron
scattering experiment of subsection 6.1, the following
remarks cannot be overemphasized: Conventionally
expected deviations from the impulse approximation,
Eq. (13), (widely known as final-state effects [42]) must
give peak shifts to less than ~ωrec, since they are always
caused by the atom not being free, owing to its interaction
with other atoms. Thus there is an additional resistance
to motion of the struck atom, which effectively increases
its mass and thus causes a slightly lower energy transfer
than the conventionally expected ~ωrec. Summarizing, a
peak-maximum shift to higher energies than ~ωrec seems
impossible within conventional theory; see subsection 4.2
and [42, 44, 49].) Hence the considered experimental
results, and the additional ones reported in [54] showing
the same peak-shifts to higher energy transfers, contradict
conventional theoretical expectations even qualitatively.

(E) Moreover, the results of [56] discussed in subsec-
tion 6.2 appear contradictory—in the light of conventional
theory—because of the following two main points:

(1) The observed J = 0→ 1 rotational excitation of the
H2 molecule by incoherent scattering exhibits an effective
mass of ≈ 1 a.m.u., Eq. (65), as conventionally expected,
since the neutron may be expected to exchange energy
and momentum with a single H.

(2) However, in the same experiment, the effective
mass of the observed roto-recoil response of the whole
H2 molecule is not 2 a.m.u. (because the whole molecule
undergoes a translational motion), but only ≈ 0.64 a.m.u.,
Eq. (66)—which is clearly meaningless in the frame of
conventional theory.

As explained above, in conventional theory, depending
on the specific constrains of measurement, a decrease
of effective mass is equivalent to (a) an anomalous in-
creased energy transfer, or equivalently (b) a decreased
momentum transfer. In both its forms (a) and (b), the
observed effect appears—if interpreted within the frame-
work of conventional scattering theory—to contradict the
basic laws of energy and/or impulse conservation. In con-
trast, in the theoretical frame of weak measurement, this
contradiction dissolves.

In this context, note also that exotic mass and
momentum values of weak measurements have been
already mentioned in [11, Section G.3].

(F) As emphasized above, neutron-atom (or neutron-
nucleus) entanglement [61] or quantum discord [62],
caused by their scattering interaction, play absolutely no
role in conventional theory of neutron scattering [40–42].

Moreover, in neutron Compton scattering a second
approximation is introduced by hand: The complete
N-body Hamiltonian of the scattering system is replaced
with an effective Hamiltonian of one particle being
captured in some effective Born–Oppenheimer poten-
tial [42, 43]. Obviously this assumption is tantamount
to considering all interparticle entanglement or quantum
discord (and the associated decoherence appearing within
the collisional time-window [63]) as being irrelevant.

(G) Considerable efforts have been made during the
last 25 years to compare Born–Oppenheimer potentials
calculated with quantum-chemistry methods with asso-
ciated quantities derived from several neutron Compton
scattering data sets; cf. [42] and references therein. In
the light of the present investigation, however, these com-
parisons appear to have a rather approximative character,
thus being less quantitative than claimed in the related
publications.

To be more specific, let us mention the following de-
tails. The overwhelming part of neutron Compton scatter-
ing (or deep inelastic neuron scattering) investigations are
dealing with measurements of Compton profiles (i.e. the
distribution of initial atomic momenta along a given spa-
tial direction), from which one may derive (properties of)
the associated single-particle Born–Oppenheimer poten-
tial. The preceding theoretical results, however, strongly
question the validity of the standard method of data anal-
ysis for the following reason.

As shown in Section 5, the weak measurement-
theoretical deficit −π(~KA) should depend on the
considered momentum transfer ~KA. This should
cause an anomalous distortion of the conventionally
expected Compton profile, which conventional theory
assumes to be an even function for isotropic systems.
Namely, each point of the lower-momentum Compton
peak-wing should receive a larger weak value-shift π(~K)
than a corresponding point of the higher-momentum
wing. Consequently, the widely applied symmetrization
procedure of the measured Compton profile (to remove
partially deviations from the impulse approximation;
see [42]) should introduce artificial features to the
derived Compton profile and derived Born–Oppenheimer
potential. Especially for scattering from H the Compton
peak-width is particularly large (with respect to the in-
strumental resolution) and thus the considered distortion
should be measurable. (This remark does not apply to the
data of Fig. 3; see subsection 6.1.)

Quanta | DOI: 10.12743/quanta.v5i1.48 October 2016 | Volume 5 | Issue 1 | Page 79

http://dx.doi.org/10.12743/quanta.v5i1.48


(H) The derivations of Section 5 apply to an impulsive
two-particle collision, e.g. of a neutron with an initially
localized atom at rest. Since the scattering at issue is inco-
herent—i.e. in each collision a neutron exchanges energy
and momentum with one scattering particle only—they
apply directly to condensed and/or interacting systems
(like those considered in Section 6), where the scattering
atoms are parts of a molecule, or are adsorbed on surfaces
or nanocavities, etc. Thus a scattering atom interacts with
adjacent particles of its environment which is tantamount
to a spatial confinement. The latter causes a finite width
of the initial atomic state Ξi, and to less extend of its final
state Ξ f —both appearing to play an equally important
role in the quantum interference captured in the weak
value-calculations of subsection 5.2.

Based on these physical considerations, we may
conclude that the dynamics of the scattering atom
should also depend on the dynamics of the environment
(which in general is also a quantum system), and
that the collisional process is therefore not a strict
two-body dynamical problem, as standardly assumed
in the impulse approximation of conventional theory;
see [42,43]. Especially, it is satisfying that the theoretical
frame of weak values and two-state-vector formalism
takes care of these finite widths of the initial and final
atomic states (see subsection 5.2.2), and in particular
reveals the significance of the final-state width which
plays a minor role in conventional theory of impulse
approximation [42] and its extensions.

(I) The remarks of points (G) and (H) support the
opinion that weak values are novel quantum interfer-
ence phenomena in which post-selection plays a crucial
role [12, 32, 33, 35, 37]. This opinion gets additional sup-
port by the quantum Cheshire cat effect [64, 65], which
however has found a classical analogue in a recent exper-
iment with continuous light beams [66]. In this regard,
see also the work by Di Lorenzo [67] who shows that the
quantum Cheshire cat is a consequence of quantum inter-
ference, that it is present also for intermediate-strength
measurements, and that it is a rather common occurrence
in post-selected measurements.

Further support of the quantum character of the
Cheshire cat effect is presented by the generalization
to the case that the pre- and the post-selections are
entangled with each other [68], in which case there is no
classical analogue to this new Cheshire cat scheme.

(J) Generalizing the weak measurement formalism,
Oreshkov and Brun have shown [60] that weak measure-
ments are universal, in the sense that any generalized mea-
surement can be decomposed into a sequence of weak

measurements. This important theoretical result is further
supported by the work of Qin et al. [37], who showed that
the main weak measurement results can be extended to
the realm of arbitrary measurement strength.

This finding may have important applications to fur-
ther collisional experiments than the incoherent neutron
scattering at issue. For example, energy and momentum
transfers of various particles are the primarily measured
quantities in relativistic (high-energy) collision experi-
ments too. Due to their complexity, full details of the
measurement methods and detection systems are usu-
ally not described in the related publications. However
it seems natural to believe that the above theoretical in-
vestigations can be extended to the relativistic scattering
regime. Thus one may wonder whether the anomalous
decrease of effective mass derived above can affect related
relativistic measurements.

For example, the mass of the celebrated Higgs
boson was measured in proton-proton collisions and
recently reported to be ca. 125 GeV [69]. At the same
time, various categories of data (corresponding to
various decay channels) can be post-selected in order
to determine the Higgs boson mass, and thus it would
be interesting to examine whether there might exist
significant differences between the values of the mass
correspondingly determined; cf. Fig. 1 of [69] in which
such a (small) difference is visible.

(K) As mentioned above, a discussion concerning
interpretation and/or physical meaning of the con-
cepts of weak value and two-state-vector formalism
is beyond the scope of this paper. However, it may
be helpful for non-specialized or skeptical readers
to consider Mermin’s related descriptions of some
examples and results of weak values and two-state-vector
formalism [70] using a more common scientific language.

Concluding, we feel that the theoretical formalism of
weak values, weak measurement and two-state-vector for-
malism (which is really quantum) not only sheds new
light on interpretational issues concerning fundamental
quantum theory but it also offers a new guide for our intu-
ition to predict, plan, and also carry out new experiments
and reveal novel quantum effects.
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