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described in the Weyl-Wigner-Moyal phase

space formalism by using the properties of the
cross-terms appearing in the Wigner distribution of a
sum of states. These properties show the appearance
of a strongly oscillating interference between the pre-
selected and post-selected states. It is interesting to
note that the knowledge of this interference term is
sufficient to reconstruct both states.
Quanta 2015; 4: 27-34.

Time-symmetric quantum mechanics can be

1 Introduction

Time-symmetric quantum mechanics is an alternative for-
mulation of quantum mechanics exhibiting fascinating
and unconventional features whose potentialities have
not yet been fully exploited; see [IH5], or the book [6]]
by Aharonov and Rohrlich. The present paper is a first
step towards a formulation of time-symmetric quantum
mechanics in terms of phase space concepts such as the
Wigner distribution, and the ambiguity transform (the
latter is essentially a Fourier transform of the Wigner
distribution and is very much used in radar theory). To
the best of our knowledge there are very few papers dis-
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cussing the phase space approach (which is well-known
in conventional quantum mechanics) in the context of
time-symmetric quantum mechanics; exceptions to this
state of affairs are our previous works [7,[8], and Gray’s
Conference Proceedings note [9]]. The advantage of the
phase space approach is that it allows to calculate weak
values using the classical observable; a problem that then
arises (and which we will study in a forthcoming paper)
is that the correspondence between a classical observable
a and its quantization A is by no means obvious: while
it is true that most physicists rely on the Weyl scheme,
there might be other physically meaningful ways to quan-
tize a classical observable; for instance in [10,[I1]] we are
advocating the use of Born—Jordan quantization, which
predates Weyl quantization.

We will also focus on the reconstruction problem,
which can roughly be stated as follows: knowing the
interference between the pre-selected and post-selected
states, can we reconstruct these states? We will see that
knowing the cross-Wigner distribution of the pre-selected
and post-selected states, suffices to uniquely determine
both states. While this result is at first sight surprising, it
is well-known in time-frequency analysis that it
is possible to reconstruct a signal from the knowledge of
its short-time Fourier transform with arbitrary window;
the latter is closely related to the cross-Wigner transform.

Parts of this work (in particular the reconstruction for-
mula Eq.[53)) have been announced without motivations
and proofs in previous work [7,[8]]. We also mention that
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Lobo and Ribeiro [[14] discussed weak values in the quan-
tum phase space using methods that are very different
from the Weyl-Wigner—Moyal formalism employed here.

We will work with systems having n degrees of free-
dom. Position or momentum variables are denoted
x = (x1,...,xy) and p = (py, ..., pn), respectively. The
corresponding phase space variable is (x, p). The scalar
product pyx; +---+ p,Xx, is denoted by px. When integrat-
ing we will use, where appropriate, the volume elements
d"x =dxy---dx,,d"p = dpy---dp,. The unitary h-Fourier
transform of a square-integrable function W(x) is

) = ()" [ et

We denote by £ = (Xy,....,%,) and p = (py, ..., py) the
operators defined by £;¥ = x;¥, p;¥ = —1hd,, Y.

(1)

In time-symmetric quantum mechanics the state of a sys-
tem is represented by a two-state vector (®| [V) where the
state (®| evolves backwards from the future and the state
|'¥) evolves forwards from the past. To make things clear,
assume that at a time #; an observable A is measured and a
non-degenerate eigenvalue was found: [P(#;)) = 1A = a);
similarly at a later time # a measurement of another ob-
servable B yields |D(#)) = |B = B). Such a two-time state
(®| |¥) can be created as follows [[1,/15]: Alice prepares a
state [¥(#)) at initial time #. She then sends the system
to an observer, Bob, who may perform any measurement
he wishes to. The system is returned to Alice, who then
performs a strong measurement with the state |O(#;)) as
one of the outcomes. Only if this outcome is obtained,
does Bob keep the results of his measurement.

Let now ¢ be some intermediate time: # < f < f.
Following the time-symmetric approach to quantum me-
chanics at this intermediate time the system is described
by the rwo wavefunctions

V= Uit )¥(®) , © = Ui, )P (1) (2)

where Ui(t, ') = e H=/ and Up(t, 1) = e Hit=1"/h

are the unitary operators governing the evolution of the
state before and after time 7. Consider now the superpo-
sition of the two states [¥) and |®) (which we suppose
normalized); the expectation value

(¥ + DAY + D)

Arvso = — G o+ o)

3)

of the observable A in this superposition is obtained using
the equality

NA)wio = (Ao + (A)w + 2R(DIANY)  (4)
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where N = (¥ + ©|¥ + @). By definition, if (O[¥) # 0,
the complex number

(DIA|P)

AA =
(Ao (DY)

)

is the weak value of A.

In the discussion above we have been working directly in
terms of the wavefunctions ¥ and ®@; now, a different kind
of state description which is very fruitful, particularly in
quantum optics, is provided by the Wigner distribution
[TIL[16H21]

Wy(x, p) = (ﬁ)n fe‘él’y\y (x + %y) b (x - %y) d"y;
(6)
the latter is directly related to the mean value of the ob-
servable (A)y = (P|A|¥) by Moyal’s formula [[11,17-19\
22|

(A = f f a(x, Wl p)d'pd's  (7)

where a(x, p) is the classical observable whose Weyl quan-
tization is given by the Weyl-Moyal formula

A= (ﬁ)n ff&(x, P)et TP g gl .

Here, we use the terminology classical observable in a
very broad sense; a can be any complex integrable func-
tion, or even a tempered distribution that is an element
of 8’'(R?"), dual of the Schwartz space S(R>") of rapidly
decreasing functions. A direct calculation shows that we
have

)

Wyio = Wo + Wy + 2Re Wy g 9)

where the cross-term Wy ¢ is given by

Wy o(x, p) = (ﬁ)n fe_fl't””‘l’ (x + %y) o (x - %y) d"y.

(10)
The appearance of the term Wy ¢ shows the emergence
at time ¢ of a strong interference between the pre-selected
and the post-selected states [¥) and |®). It is called the
cross-Wigner distribution of ¥, @, see [[17,/18,23] and the
references therein. We are going to exploit the properties
of Wy ¢ to give an alternative working definition of the
weak value (A)cp,q/, namely

. 1

A =— , D)WA ,p)d" pd" 11

Aow = s ff a(x, )Wy o(x, p)d"pd"x  (11)
(see Eq.[20); here a(x, p) is the classical observable whose

Weyl quantization is the operator A. Eq.|11|is justified by
an extension of the averaging formula (Eq.[7) to pairs of
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states: see Eq.[I9] well-known in harmonic analysis. This
allows us to interpret the function

Wy o(x, p)
(DY)
as a complex probability distribution. We thereafter notice
that the cross-Wigner distribution can itself be seen, for
fixed (x, p), as a weak value, namely that of Grossmann

and Royer’s parity operator 7gr(x, p):

Wy o(x, p) = (ah) (TGr(x, p))w.o(PI¥)

(see Eq.[36). Using this approach we prove the following
Theorem Q]: if Wy ¢ is known, we can reconstruct (up
to an unessential phase factor) the wave function ¥ (and
hence the state |¥)) with the use of

on )
(D|A) ff Wy o(y, p)Tor(Y, p)A(x)dnpdn(!iél-)

where A is an arbitrary square-integrable function such
that (D|A) # 0.

pow(x,p) = (12)

(13)

Y(x) =

The cross-Wigner distribution is defined for all square-
integrable functions ¥, ®; it satisfies the generalized
marginal conditions

f Wapo(x, p)d"p = PO () (15)

[ Weoteprs =t ao
provided that ¥ and @ are in L'(R") N L*(R"); these
formulas reduce to the usual marginal conditions for the
Wigner distribution when ¥ = ®. While Wy is always
real (though not non-negative, unless ¥ is a Gaussian),
Wy ¢ is a complex function, and we have W‘i’,@ = Woy.
The cross-Wigner distribution is widely used in signal
theory and time-frequency analysis [[17,23]]; its Fourier
transform is the cross-ambiguity function familiar from
radar theory [[17,24,25]]. Zurek [26] has studied Wy ¢
when W + @ is a Gaussian cat-like state, and has shown
that it is accountable for sub-Planck structures in phase
space due to interference.

We now make the following elementary, but important
remark: multiplying both sides of Eq.[9]by the classical
observable a(x, p) and integrating with respect to the x, p
variables, we get, using Moyal’s formula (Eq. [7),

I© + ¥IKA w10 = (Ao + (A)w

+2 ff a(x, p) Re Wy ¢(x, p)d" pd" x. 17
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Comparing with Eq. @] we see that

Re(DIAY) = f f a(x, p)Re Wy o(x, p)d"pd"x. (18)

It turns out that in the mathematical theory of the Wigner
distribution [17,/18]] one shows that the equality above
actually holds not only for the real parts, but also for the
purely imaginary parts, hence we always have

@) = [[ atepWrotppdx. 19)
An immediate consequence of this equality is that we
can express the weak value <A>Q\}l in terms of the cross-

Wigner distribution and the classical observable a(x, p)
corresponding to A in the Weyl quantization scheme

n 1
Do = g f f a(x, p)Wepo(x, p)d'pd'x.  (20)

We emphasize that one has to be excessively careful when
using formulas of the type (Eq. (as we will do several
times in this work): the function a crucially depends
on the quantization procedure which is used (here Weyl
quantization); we will come back to this essential point
later, but here is a simple example which shows that
things can get wrong if this rule is not observed: let
H = %(fc2 + p?) be the quantization of the normalized
harmonic oscillator H(x, p) = %(x2 + p?) (we assume
n = 1). While it is true that

1

(H)oy = @

f H(x, p)Weo(x, p)dpdx (1)

it is in contrast not true that

1

A? =—
(H Yo w @)

f H(x, p* Weo(x, p)dpdx. (22)

Suppose for instance that ¥ = © is the ground state of
the harmonic oscillator: ¥ = %h‘l’. We have

(H*) —(H)* = 0;
however use of Eq.[22|yields the wrong result
n N 1
(H?y - (AY* = -1
4
The error comes from the inobservance of the prescription

above: H? is not the Weyl quantization of H(x, p)?, but
that of H(x, p)> — %h2 as is easily seen using the McCoy

[27] rule
1 (s
S — As—k ar Ak
X'p s ; (k)P X p

(23)

and Born’s canonical commutation relation [, p] = 1%
(see Shewell [28]] for a discussion of related examples).
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Let us now set

Wy a(x, p)

pPow(X,p) = o (24)

using the marginal conditions given by Egs. we get

. DF()P()

fpdw(x, p)d'p = o (25)
. D (P¥(p)

f P, p)d'x = = (26)

hence the function pg w is a complex probability distribu-
tion

f pow(x, p)d"pd'x = 1. (27)
The weak value is given in terms of pg w by
o = [ ateppostepdpd's  28)

which reduces to Eq.[/|in the case of an ideal measure-
ment, namely ® = W. The practical meaning of these
relations is the following [5]]: the readings of the pointer
of the measuring device will cluster around the value

Re(AYpw = f Re(a(x, p)pow(x, p))d'pd'x  (29)

while the quantity

(Ao = f Im(a(x, ppos(r. p)d"pd'x  (30)

measures the shift in the variable conjugate to the pointer
variable. In an interesting paper [29] Feyereisen discusses
some aspects of the complex distribution pg .

Let f’(xo, po) = e~ 7 (PoA=%0D) pe the Heisenberg operator;
it is a unitary operator whose action on a wavefunction ¥
is given by

L
T (x0, po)P(x) = (=g ")\I«x - X0). (31)

It has the following simple dynamical interpretation [|18|
21]: T'(zo) is the time-one propagator for the Schrodinger
equation corresponding to the translation Hamiltonian
Hy = xo P—poX. An associated operator is the Grossmann—
Royer reflection operator (or displacement parity opera-
tor) [18},30,[31]] given by

Tar(x0, po) = T(x0, po)RY T (x0, po)’ (32)
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where RY changes the parity of the function to which it is
applied: RVW¥(x) = W(—x); the explicit action of Tgr(z0)
on wavefunctions is easily obtained using Eq.[31]and one
finds

Tr(x0, po)¥(x) = €7 PP (20 — ). (33)

Now, a straightforward calculation shows that the Wigner
distribution Wy is (up to an unessential factor), the ex-
pectation value of Tor(x0, po) in the state [¥); in fact
(dropping the subscripts 0)

We(x,p) = (&) (Tar(x. p¥I¥).  (34)

More generally, a similar calculation shows that the cross-
Wigner transform is given by

W o(x.p) = (F) (Tor(x. p)oI¥) (35

and can hence be viewed as a transition amplitude. Taking
Eq. [§]into account we thus have

W o(x, p) = () (TGr(x, P))w.o{D|P); (36)

this relation immediately implies, using definition (24)) of
the complex probability distribution pg y, the important
equality

pow(x, p) = () (TGr(x, p))w.o (37)

which can in principle be used to determine pg .
As already mentioned, the cross-ambiguity function
Ay ¢ is essentially the Fourier transform of Wy ¢; in fact

Ay o =FoWoo , Wyo = FrlAvoe (38)

where ¥ is the symplectic Fourier transform: if a =
a(x, p) then Fya(x, p) = a(p, —x) where a is the ordinary
2n-dimensional #i-Fourier transform of a; explicitly

Foa(x, p) = (ﬁ)n f f e HOP P Dg(x’, p')d"p'd Y.

(39)
Both equalities in Eq. [38]are equivalent because the sym-
plectic Fourier transform is involutive, and hence its own
inverse. While the cross-Wigner distribution is a measure
of interference, the cross-ambiguity function is rather a
measure of correlation. One shows [11,/17,/18,[23]] that
Ay ¢ is explicitly given by

Ay o(x, p) = (ﬁ)n fe_%p’“l’ (y + %x) o* (y - %x) d"y.

(40)
The cross-ambiguity function is easily expressed using
the Heisenberg operator instead of the Grossmann—Royer
operator as

Avo(x. p) = (55) (T (x. p)OI). (1)
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The following important result shows that the knowl-
edge of the classical observable a allows us to determine
the weak value of the corresponding Weyl operator using
the weak value of the Grossmann—Royer (respectively the
Heisenberg) operator:

Theorem 1. Let A be the Weyl quantization of the classi-
cal observable a. We have

o = ()" [[ atexFentrppawd'prs @2
and

(Ao = (55" f Foralx, pXT(x, p)owd pd"x.
43)

Proof. In view of Moyal’s formula (Eq.[I9) we have

(DIANY) = f f a(x, p)Wy o(x, p)d" pd" x (44)

that is, taking Eq. [35]into account

@id1) = () [[ atepxFanc proreraps
(45)
hence Eq. @2} Eq.@43]is obtained in a similar way, first
applying the Plancherel formula to the right-hand side of
Eq.[#4] then applying the first identity given by Eq.[3§]
and finally using Eq. 1] |

Notice that the formulas above immediately yield the
well-known [[11},/17,|18}21]] representations of the opera-
tor A in terms of the Grossmann—Royer and Heisenberg
operators:

A= (&) [[ aeptaeparpas o

and

~

A:(ﬁ)n f Foa(x, p)T(x, p)d’ pd"x. (47)

In 2012, Lundeen and his co-workers [32] determined
the wavefunction by weakly measuring the position, and
thereafter performing a strong measurement of the mo-
mentum. They considered the following experiment on
a particle: a weak measurement of x is performed which
amounts to applying the projection operator IT, = |x)(x] to
the pre-selected state [V'); thereafter they perform a strong
measurement of momentum, which yields the value py,

Quanta | DOI:|10.12743/quanta.v4i1.46

that is ®(x) = e, The result of the weak measurement
is thus

(L = PGP _

1 \2 e 7P p(x)
7 48
(pol'¥) ( ) (%)

2k W(po)

where P the Fourier transform of W¥. Since the value of
po is known we get
| I

Y(x) = f"” (w0 (49)
where k = (27rh)%‘i’(p0); Eq. 49| thus allows to determine
Y(x) by scanning through the values of x. Thus, by re-
ducing the disturbance induced by measuring the position
and thereafter performing a sharp measurement of mo-
mentum we can reconstruct the wavefunction pointwise.
In [33] Lundeen and Bamber generalize this construction
to mixed states and arbitrary pairs of observables. Using
the complex distribution py ¢(x, p) defined above it is

easy to recover Eq. 49| of Lundeen ez al. In fact, choose
a(x, p) = I, (x, p) = 6(x — xp); its Weyl quantization

I, W(x) = W(x0)8(x — xo)

is the projection operator: f[xOI‘I’> = W(xg)|xo). Using the
elementary properties of the Dirac delta function together
with the marginal property [25] Eq. 28] becomes

(yYow = f 8(x = x0)po,w(x, p)d" pd"x

= f pow(xo, p)d'p
_ O (x0)'¥(x0)
(DY)

which is Eq. 48| since ®(xg) = ei?0%; Eq. follows.

It is well-known [[17/18]] that the knowledge of the Wigner
distribution Wy uniquely determines the state |\¥); this
is easily seen by noting that Wy is essentially a Fourier
transform and applying the Fourier inversion formula,
which yields

PP (x) = f PO Wy (x + X, pld'p; (50)

one then chooses x” such that W(x") # 0, which yields the
value of W(x) for arbitrary x. The same procedure applies
to the cross-Wigner transform (Eq. [I0); one finds that

YD (x') = f e Wy o[ 1(x + X)), pld"p. (51)
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Notice that if we choose x' = x we recover the generalized
marginal condition (Eq. satisfied by the cross-Wigner
distribution.

Thus, the knowledge of Wy ¢ and @ is in principle
sufficient to determine the wavefunction . Here is a
stronger statement which shows that the state |'¥') can
be reconstructed from Wy ¢ using an arbitrary auxiliary
state |A) non-orthogonal to |D):

Theorem 2. Let A be an arbitrary vector in L*(R") such
that (®|A) # 0. We have

P(DIA) = 2" f f P W oy, Ay -0 pd'y
(52)
that is

on .
Y(x) = @ f Wy oy, p)TGr(y, p)A(x)d" pd"y;

(53)
equivalently,
YD
P(x) = ECD: A; f f pw.os PYTorY, pPAX) pd'y.

(54)

Proof. By a standard continuity and density argument it
is sufficient to assume that W, @, A are in S(R"). Using
Eq.[51] we have

W(x)(DIA) = f f PO Wy (3 (x+x'), P A" pd"x .

Setting y = %(x + x") we get Eq.|52|and hence Eq. in
view of the explicit formula for the Grossmann—Royer

parity operator (Eq. [33). m]

Here is an example: viewing (®|A) as the distributional
bracket (A, ®*) we may choose A(x) = d(x — xp). This
yields (A, @*) = ®*(x¢) and the right-hand side of Eq.[52]
is just the integral

fe;’p(x_x,)Ww,qn(%(X +x'), p)d"p

hence we recover Eq. [51]as a particular case.

We have been able to give a complete characterization of
the notion of weak value in terms of the Wigner distribu-
tion, which is intimately related to the Weyl quantization
scheme through Moyal’s formula (Eq.[7). There are how-
ever other possible physically meaningful quantization
schemes; the most interesting is certainly that of Born—
Jordan [34,/35]] mentioned in the introduction; the latter

Quanta | DOI:|10.12743/quanta.v4i1.46

plays an increasingly important role in quantum mechan-
ics and in time-frequency analysis [7,8,(10,(11,(36H38],
and each of these leads to a different phase space formal-
ism, where the Wigner distribution has to be replaced by
more general element of the Cohen class [39,/40]. Un-
expected difficulties however arise, especially when one
deals with the reconstruction problem; these difficulties
have a purely mathematical origin, and are related to the
division of distributions (for a mathematical analysis of
the nature of these difficulties, see [38]]). The reconstruc-
tion problem for general phase space distributions will be
addressed in a forthcoming publication. It should also be
mentioned that Hiley and Cohen have proposed in [41]
an approach to retrodiction from the perspective of the
Einstein—Podolsky—Rosen—Bohm experiment; it is possi-
ble that this approach could be studied from the point of
view of the techniques developed here.

Maurice de Gosson has been funded by the grant P-27773
of the FWF Austrian Science Fund.
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