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Time-symmetric quantum mechanics can be
described in the Weyl–Wigner–Moyal phase
space formalism by using the properties of the

cross-terms appearing in the Wigner distribution of a
sum of states. These properties show the appearance
of a strongly oscillating interference between the pre-
selected and post-selected states. It is interesting to
note that the knowledge of this interference term is
sufficient to reconstruct both states.
Quanta 2015; 4: 27–34.

1 Introduction

Time-symmetric quantum mechanics is an alternative for-
mulation of quantum mechanics exhibiting fascinating
and unconventional features whose potentialities have
not yet been fully exploited; see [1–5], or the book [6]
by Aharonov and Rohrlich. The present paper is a first
step towards a formulation of time-symmetric quantum
mechanics in terms of phase space concepts such as the
Wigner distribution, and the ambiguity transform (the
latter is essentially a Fourier transform of the Wigner
distribution and is very much used in radar theory). To
the best of our knowledge there are very few papers dis-
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cussing the phase space approach (which is well-known
in conventional quantum mechanics) in the context of
time-symmetric quantum mechanics; exceptions to this
state of affairs are our previous works [7, 8], and Gray’s
Conference Proceedings note [9]. The advantage of the
phase space approach is that it allows to calculate weak
values using the classical observable; a problem that then
arises (and which we will study in a forthcoming paper)
is that the correspondence between a classical observable
a and its quantization Â is by no means obvious: while
it is true that most physicists rely on the Weyl scheme,
there might be other physically meaningful ways to quan-
tize a classical observable; for instance in [10, 11] we are
advocating the use of Born–Jordan quantization, which
predates Weyl quantization.

We will also focus on the reconstruction problem,
which can roughly be stated as follows: knowing the
interference between the pre-selected and post-selected
states, can we reconstruct these states? We will see that
knowing the cross-Wigner distribution of the pre-selected
and post-selected states, suffices to uniquely determine
both states. While this result is at first sight surprising, it
is well-known in time-frequency analysis [12, 13] that it
is possible to reconstruct a signal from the knowledge of
its short-time Fourier transform with arbitrary window;
the latter is closely related to the cross-Wigner transform.

Parts of this work (in particular the reconstruction for-
mula Eq. 53) have been announced without motivations
and proofs in previous work [7, 8]. We also mention that
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Lobo and Ribeiro [14] discussed weak values in the quan-
tum phase space using methods that are very different
from the Weyl–Wigner–Moyal formalism employed here.

1.1 Notation

We will work with systems having n degrees of free-
dom. Position or momentum variables are denoted
x = (x1, ..., xn) and p = (p1, ..., pn), respectively. The
corresponding phase space variable is (x, p). The scalar
product p1x1 + · · ·+ pnxn is denoted by px. When integrat-
ing we will use, where appropriate, the volume elements
dnx = dx1 ···dxn, dn p = dp1 ···dpn. The unitary ~-Fourier
transform of a square-integrable function Ψ(x) is

Ψ̃(p) =
(

1
2π~

) n
2

∫
e−

ı
~ pxΨ(x)dnx. (1)

We denote by x̂ = (x̂1, ..., x̂n) and p̂ = ( p̂1, ..., p̂n) the
operators defined by x̂ jΨ = x jΨ, p̂ jΨ = −ı~∂x jΨ.

1.2 The notion of weak value

In time-symmetric quantum mechanics the state of a sys-
tem is represented by a two-state vector 〈Φ| |Ψ〉 where the
state 〈Φ| evolves backwards from the future and the state
|Ψ〉 evolves forwards from the past. To make things clear,
assume that at a time ti an observable Â is measured and a
non-degenerate eigenvalue was found: |Ψ(ti)〉 = |Â = α〉;
similarly at a later time tf a measurement of another ob-
servable B̂ yields |Φ(tf)〉 = |B̂ = β〉. Such a two-time state
〈Φ| |Ψ〉 can be created as follows [1,15]: Alice prepares a
state |Ψ(ti)〉 at initial time ti. She then sends the system
to an observer, Bob, who may perform any measurement
he wishes to. The system is returned to Alice, who then
performs a strong measurement with the state |Φ(tf)〉 as
one of the outcomes. Only if this outcome is obtained,
does Bob keep the results of his measurement.

Let now t be some intermediate time: ti < t < tf .
Following the time-symmetric approach to quantum me-
chanics at this intermediate time the system is described
by the two wavefunctions

Ψ = Ui(t, ti)Ψ(ti) , Φ = Uf(t, tf)Φ(tf) (2)

where Ui(t, t′) = e−ıĤi(t−t′)/~ and Uf(t, t′) = e−ıĤf (t−t′)/~

are the unitary operators governing the evolution of the
state before and after time t. Consider now the superpo-
sition of the two states |Ψ〉 and |Φ〉 (which we suppose
normalized); the expectation value

〈Â〉Ψ+Φ =
〈Ψ + Φ|Â|Ψ + Φ〉

〈Ψ + Φ|Ψ + Φ〉
(3)

of the observable Â in this superposition is obtained using
the equality

N〈Â〉Ψ+Φ = 〈Â〉Φ + 〈Â〉Ψ + 2 Re〈Φ|Â|Ψ〉 (4)

where N = 〈Ψ + Φ|Ψ + Φ〉. By definition, if 〈Φ|Ψ〉 , 0,
the complex number

〈Â〉Φ,Ψ =
〈Φ|Â|Ψ〉
〈Φ|Ψ〉

(5)

is the weak value of Â.

1.3 What we will do

In the discussion above we have been working directly in
terms of the wavefunctions Ψ and Φ; now, a different kind
of state description which is very fruitful, particularly in
quantum optics, is provided by the Wigner distribution
[11, 16–21]

WΨ(x, p) =
(

1
2π~

)n
∫

e−
ı
~ pyΨ

(
x + 1

2y
)
Ψ∗

(
x − 1

2y
)

dny;

(6)
the latter is directly related to the mean value of the ob-
servable 〈Â〉Ψ = 〈Ψ|Â|Ψ〉 by Moyal’s formula [11, 17–19,
22]

〈Â〉Ψ =

"
a(x, p)WΨ(x, p)dn pdnx (7)

where a(x, p) is the classical observable whose Weyl quan-
tization is given by the Weyl–Moyal formula

Â =
(

1
2π~

)n
"

â(x, p)e
ı
~ (xx̂+pp̂)dn pdnx. (8)

Here, we use the terminology classical observable in a
very broad sense; a can be any complex integrable func-
tion, or even a tempered distribution that is an element
of S′(R2n), dual of the Schwartz space S(R2n) of rapidly
decreasing functions. A direct calculation shows that we
have

WΨ+Φ = WΦ + WΨ + 2 Re WΨ,Φ (9)

where the cross-term WΨ,Φ is given by

WΨ,Φ(x, p) =
(

1
2π~

)n
∫

e−
ı
~ pyΨ

(
x + 1

2y
)
Φ∗

(
x − 1

2y
)

dny.

(10)
The appearance of the term WΨ,Φ shows the emergence
at time t of a strong interference between the pre-selected
and the post-selected states |Ψ〉 and |Φ〉. It is called the
cross-Wigner distribution of Ψ,Φ, see [17,18,23] and the
references therein. We are going to exploit the properties
of WΨ,Φ to give an alternative working definition of the
weak value 〈Â〉Φ,Ψ, namely

〈Â〉Φ,Ψ =
1
〈Φ|Ψ〉

"
a(x, p)WΨ,Φ(x, p)dn pdnx (11)

(see Eq. 20); here a(x, p) is the classical observable whose
Weyl quantization is the operator Â. Eq. 11 is justified by
an extension of the averaging formula (Eq. 7) to pairs of
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states: see Eq. 19, well-known in harmonic analysis. This
allows us to interpret the function

ρΦ,Ψ(x, p) =
WΨ,Φ(x, p)
〈Φ|Ψ〉

(12)

as a complex probability distribution. We thereafter notice
that the cross-Wigner distribution can itself be seen, for
fixed (x, p), as a weak value, namely that of Grossmann
and Royer’s parity operator T̂GR(x, p):

WΨ,Φ(x, p) = (π~)n〈T̂GR(x, p)〉Ψ,Φ〈Φ|Ψ〉 (13)

(see Eq. 36). Using this approach we prove the following
Theorem 2: if WΨ,Φ is known, we can reconstruct (up
to an unessential phase factor) the wave function Ψ (and
hence the state |Ψ〉) with the use of

Ψ(x) =
2n

〈Φ|Λ〉

"
WΨ,Φ(y, p)T̂GR(y, p)Λ(x)dn pdny

(14)
where Λ is an arbitrary square-integrable function such
that 〈Φ|Λ〉 , 0.

2 Weak Values in the Wigner
Picture

2.1 The cross-Wigner transform

The cross-Wigner distribution is defined for all square-
integrable functions Ψ,Φ; it satisfies the generalized
marginal conditions∫

WΨ,Φ(x, p)dn p = Ψ(x)Φ∗(x) (15)∫
WΨ,Φ(x, p)dnx = Ψ̃(p)Φ̃∗(p) (16)

provided that Ψ and Φ are in L1(Rn) ∩ L2(Rn); these
formulas reduce to the usual marginal conditions for the
Wigner distribution when Ψ = Φ. While WΨ is always
real (though not non-negative, unless Ψ is a Gaussian),
WΨ,Φ is a complex function, and we have W∗

Ψ,Φ = WΦ,Ψ.
The cross-Wigner distribution is widely used in signal
theory and time-frequency analysis [17, 23]; its Fourier
transform is the cross-ambiguity function familiar from
radar theory [17, 24, 25]. Zurek [26] has studied WΨ,Φ

when Ψ + Φ is a Gaussian cat-like state, and has shown
that it is accountable for sub-Planck structures in phase
space due to interference.

We now make the following elementary, but important
remark: multiplying both sides of Eq. 9 by the classical
observable a(x, p) and integrating with respect to the x, p
variables, we get, using Moyal’s formula (Eq. 7),

||Φ + Ψ||〈Â〉Ψ+Φ = 〈Â〉Φ + 〈Â〉Ψ

+2
"

a(x, p) Re WΨ,Φ(x, p)dn pdnx. (17)

Comparing with Eq. 4 we see that

Re〈Φ|Â|Ψ〉 =

"
a(x, p) Re WΨ,Φ(x, p)dn pdnx. (18)

It turns out that in the mathematical theory of the Wigner
distribution [17, 18] one shows that the equality above
actually holds not only for the real parts, but also for the
purely imaginary parts, hence we always have

〈Φ|Â|Ψ〉 =

"
a(x, p)WΨ,Φ(x, p)dn pdnx. (19)

An immediate consequence of this equality is that we
can express the weak value 〈Â〉Φ,Ψ in terms of the cross-
Wigner distribution and the classical observable a(x, p)
corresponding to Â in the Weyl quantization scheme

〈Â〉Φ,Ψ =
1
〈Φ|Ψ〉

"
a(x, p)WΨ,Φ(x, p)dn pdnx. (20)

We emphasize that one has to be excessively careful when
using formulas of the type (Eq. 20) (as we will do several
times in this work): the function a crucially depends
on the quantization procedure which is used (here Weyl
quantization); we will come back to this essential point
later, but here is a simple example which shows that
things can get wrong if this rule is not observed: let
Ĥ = 1

2 (x̂2 + p̂2) be the quantization of the normalized
harmonic oscillator H(x, p) = 1

2 (x2 + p2) (we assume
n = 1). While it is true that

〈Ĥ〉Φ,Ψ =
1
〈Φ|Ψ〉

"
H(x, p)WΨ,Φ(x, p)dpdx (21)

it is in contrast not true that

〈Ĥ2〉Φ,Ψ =
1
〈Φ|Ψ〉

"
H(x, p)2WΨ,Φ(x, p)dpdx. (22)

Suppose for instance that Ψ = Φ is the ground state of
the harmonic oscillator: ĤΨ = 1

2~Ψ. We have

〈Ĥ2〉 − 〈Ĥ〉2 = 0;

however use of Eq. 22 yields the wrong result

〈Ĥ2〉 − 〈Ĥ〉2 =
1
4
~2.

The error comes from the inobservance of the prescription
above: Ĥ2 is not the Weyl quantization of H(x, p)2, but
that of H(x, p)2 − 1

4~
2 as is easily seen using the McCoy

[27] rule

x̂r ps =
1
2s

s∑
k=0

(
s
k

)
p̂s−k x̂r p̂k (23)

and Born’s canonical commutation relation [x̂, p̂] = ı~

(see Shewell [28] for a discussion of related examples).
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2.2 A complex phase space distribution

Let us now set

ρΦ,Ψ(x, p) =
WΨ,Φ(x, p)
〈Φ|Ψ〉

; (24)

using the marginal conditions given by Eqs. 15,16 we get∫
ρΦ,Ψ(x, p)dn p =

Φ∗(x)Ψ(x)
〈Φ|Ψ〉

(25)∫
ρΦ,Ψ(x, p)dnx =

Φ̃∗(p)Ψ̃(p)
〈Φ|Ψ〉

(26)

hence the function ρΦ,Ψ is a complex probability distribu-
tion ∫

ρΦ,Ψ(x, p)dn pdnx = 1. (27)

The weak value is given in terms of ρΦ,Ψ by

〈Â〉Φ,Ψ =

∫
a(x, p)ρΦ,Ψ(x, p)dn pdnx (28)

which reduces to Eq. 7 in the case of an ideal measure-
ment, namely Φ = Ψ. The practical meaning of these
relations is the following [5]: the readings of the pointer
of the measuring device will cluster around the value

Re〈Â〉Φ,Ψ =

∫
Re(a(x, p)ρΦ,Ψ(x, p))dn pdnx (29)

while the quantity

Im〈Â〉Φ,Ψ =

∫
Im(a(x, p)ρΦ,Ψ(x, p))dn pdnx (30)

measures the shift in the variable conjugate to the pointer
variable. In an interesting paper [29] Feyereisen discusses
some aspects of the complex distribution ρΦ,Ψ.

2.3 The cross-Wigner transform as a weak
value

Let T̂ (x0, p0) = e−
ı
~ (p0 x̂−x0 p̂) be the Heisenberg operator;

it is a unitary operator whose action on a wavefunction Ψ

is given by

T̂ (x0, p0)Ψ(x) = e
ı
~

(
p0 x−1

2 p0 x0

)
Ψ(x − x0). (31)

It has the following simple dynamical interpretation [18,
21]: T̂ (z0) is the time-one propagator for the Schrödinger
equation corresponding to the translation Hamiltonian
Ĥ0 = x0 p̂−p0 x̂. An associated operator is the Grossmann–
Royer reflection operator (or displacement parity opera-
tor) [18, 30, 31] given by

T̂GR(x0, p0) = T̂ (x0, p0)R∨T̂ (x0, p0)† (32)

where R∨ changes the parity of the function to which it is
applied: R∨Ψ(x) = Ψ(−x); the explicit action of T̂GR(z0)
on wavefunctions is easily obtained using Eq. 31 and one
finds

T̂GR(x0, p0)Ψ(x) = e
2ı
~ p0(x−x0)Ψ(2x0 − x). (33)

Now, a straightforward calculation shows that the Wigner
distribution WΨ is (up to an unessential factor), the ex-
pectation value of T̂GR(x0, p0) in the state |Ψ〉; in fact
(dropping the subscripts 0)

WΨ(x, p) =
(

1
π~

)n
〈T̂GR(x, p)Ψ|Ψ〉. (34)

More generally, a similar calculation shows that the cross-
Wigner transform is given by

WΨ,Φ(x, p) =
(

1
π~

)n
〈T̂GR(x, p)Φ|Ψ〉 (35)

and can hence be viewed as a transition amplitude. Taking
Eq. 5 into account we thus have

WΨ,Φ(x, p) = (π~)n〈T̂GR(x, p)〉Ψ,Φ〈Φ|Ψ〉; (36)

this relation immediately implies, using definition (24) of
the complex probability distribution ρΦ,Ψ, the important
equality

ρΦ,Ψ(x, p) = (π~)n〈T̂GR(x, p)〉Ψ,Φ (37)

which can in principle be used to determine ρΦ,Ψ.
As already mentioned, the cross-ambiguity function

AΨ,Φ is essentially the Fourier transform of WΨ,Φ; in fact

AΨ,Φ = FσWΨ,Φ , WΨ,Φ = FσAΨ,Φ (38)

where Fσ is the symplectic Fourier transform: if a =

a(x, p) then Fσa(x, p) = ã(p,−x) where ã is the ordinary
2n-dimensional ~-Fourier transform of a; explicitly

Fσa(x, p) =
(

1
2π~

)n
"

e−
ı
~ (xp′−p′x)a(x′, p′)dn p′dnx′.

(39)
Both equalities in Eq. 38 are equivalent because the sym-
plectic Fourier transform is involutive, and hence its own
inverse. While the cross-Wigner distribution is a measure
of interference, the cross-ambiguity function is rather a
measure of correlation. One shows [11, 17, 18, 23] that
AΨ,Φ is explicitly given by

AΨ,Φ(x, p) =
(

1
2π~

)n
∫

e−
ı
~ py

Ψ
(
y + 1

2 x
)
Φ∗

(
y − 1

2 x
)

dny.

(40)
The cross-ambiguity function is easily expressed using
the Heisenberg operator instead of the Grossmann–Royer
operator as

AΨ,Φ(x, p) =
(

1
2π~

)n
〈T̂ (x, p)Φ|Ψ〉. (41)
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The following important result shows that the knowl-
edge of the classical observable a allows us to determine
the weak value of the corresponding Weyl operator using
the weak value of the Grossmann–Royer (respectively the
Heisenberg) operator:

Theorem 1. Let Â be the Weyl quantization of the classi-
cal observable a. We have

〈Â〉Φ,Ψ =
(

1
π~

)n
"

a(x, p)〈T̂GR(x, p)〉Φ,Ψdn pdnx (42)

and

〈Â〉Φ,Ψ =
(

1
2π~

)n
"
Fσa(x, p)〈T̂ (x, p)〉Φ,Ψdn pdnx.

(43)

Proof. In view of Moyal’s formula (Eq. 19) we have

〈Φ|Â|Ψ〉 =

"
a(x, p)WΨ,Φ(x, p)dn pdnx (44)

that is, taking Eq. 35 into account

〈Φ|Â|Ψ〉 =
(

1
π~

)n
"

a(x, p)〈T̂GR(x, p)Φ|Ψ〉dn pdnx

(45)
hence Eq. 42; Eq. 43 is obtained in a similar way, first
applying the Plancherel formula to the right-hand side of
Eq. 44, then applying the first identity given by Eq. 38,
and finally using Eq. 41. �

Notice that the formulas above immediately yield the
well-known [11, 17, 18, 21] representations of the opera-
tor Â in terms of the Grossmann–Royer and Heisenberg
operators:

Â =
(

1
π~

)n
"

a(x, p)T̂GR(x, p)dn pdnx (46)

and

Â =
(

1
2π~

)n
"
Fσa(x, p)T̂ (x, p)dn pdnx. (47)

3 The Reconstruction Problem

3.1 Lundeen’s experiment

In 2012, Lundeen and his co-workers [32] determined
the wavefunction by weakly measuring the position, and
thereafter performing a strong measurement of the mo-
mentum. They considered the following experiment on
a particle: a weak measurement of x is performed which
amounts to applying the projection operator Π̂x = |x〉〈x| to
the pre-selected state |Ψ〉; thereafter they perform a strong
measurement of momentum, which yields the value p0,

that is Φ(x) = e
ı
~ p0 x. The result of the weak measurement

is thus

〈Π̂x〉Ψ,Φ =
〈p0|x〉〈x|Ψ〉
〈p0|Ψ〉

=

(
1

2π~

) n
2 e−

ı
~ p0 xΨ(x)
Ψ̃(p0)

(48)

where Ψ̃ the Fourier transform of Ψ. Since the value of
p0 is known we get

Ψ(x) =
1
k

e
ı
~ p0 x〈Π̂x〉Ψ,Φ (49)

where k = (2π~)
n
2 Ψ̃(p0); Eq. 49 thus allows to determine

Ψ(x) by scanning through the values of x. Thus, by re-
ducing the disturbance induced by measuring the position
and thereafter performing a sharp measurement of mo-
mentum we can reconstruct the wavefunction pointwise.
In [33] Lundeen and Bamber generalize this construction
to mixed states and arbitrary pairs of observables. Using
the complex distribution ρΨ,Φ(x, p) defined above it is
easy to recover Eq. 49 of Lundeen et al. In fact, choose
a(x, p) = Πx0(x, p) = δ(x − x0); its Weyl quantization

Π̂x0Ψ(x) = Ψ(x0)δ(x − x0)

is the projection operator: Π̂x0 |Ψ〉 = Ψ(x0)|x0〉. Using the
elementary properties of the Dirac delta function together
with the marginal property 25, Eq. 28 becomes

〈Π̂x0〉Φ,Ψ =

∫
δ(x − x0)ρΦ,Ψ(x, p)dn pdnx

=

∫
ρΦ,Ψ(x0, p)dn p

=
Φ∗(x0)Ψ(x0)
〈Φ|Ψ〉

which is Eq. 48 since Φ(x0) = e
ı
~ p0 x0 ; Eq. 49 follows.

3.2 Reconstruction: the
Weyl–Wigner–Moyal approach

It is well-known [17,18] that the knowledge of the Wigner
distribution WΨ uniquely determines the state |Ψ〉; this
is easily seen by noting that WΨ is essentially a Fourier
transform and applying the Fourier inversion formula,
which yields

Ψ(x)Ψ∗(x′) =

∫
e
ı
~ p(x−x′)WΨ

[
1
2 (x + x′), p

]
dn p; (50)

one then chooses x′ such that Ψ(x′) , 0, which yields the
value of Ψ(x) for arbitrary x. The same procedure applies
to the cross-Wigner transform (Eq. 10); one finds that

Ψ(x)Φ∗(x′) =

∫
e
ı
~ p(x−x′)WΨ,Φ

[
1
2 (x + x′), p

]
dn p. (51)
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Notice that if we choose x′ = x we recover the generalized
marginal condition (Eq. 15) satisfied by the cross-Wigner
distribution.

Thus, the knowledge of WΨ,Φ and Φ is in principle
sufficient to determine the wavefunction Ψ. Here is a
stronger statement which shows that the state |Ψ〉 can
be reconstructed from WΨ,Φ using an arbitrary auxiliary
state |Λ〉 non-orthogonal to |Φ〉:

Theorem 2. Let Λ be an arbitrary vector in L2(Rn) such
that 〈Φ|Λ〉 , 0. We have

Ψ(x)〈Φ|Λ〉 = 2n
"

e
2ı
~ p(x−y)WΨ,Φ(y, p)Λ(2y− x)dn pdny

(52)
that is

Ψ(x) =
2n

〈Φ|Λ〉

"
WΨ,Φ(y, p)T̂GR(y, p)Λ(x)dn pdny;

(53)
equivalently,

Ψ(x) = 2n 〈Ψ|Φ〉

〈Φ|Λ〉

"
ρΨ,Φ(y, p)T̂GR(y, p)Λ(x)dn pdny.

(54)

Proof. By a standard continuity and density argument it
is sufficient to assume that Ψ,Φ,Λ are in S(Rn). Using
Eq. 51 we have

Ψ(x)〈Φ|Λ〉 =

"
e
ı
~ p(x−x′)WΨ,Φ( 1

2 (x+x′), p)Λ(x′)dn pdnx′.

Setting y = 1
2 (x + x′) we get Eq. 52 and hence Eq. 53 in

view of the explicit formula for the Grossmann–Royer
parity operator (Eq. 33). �

Here is an example: viewing 〈Φ|Λ〉 as the distributional
bracket 〈Λ,Φ∗〉 we may choose Λ(x) = δ(x − x0). This
yields 〈Λ,Φ∗〉 = Φ∗(x0) and the right-hand side of Eq. 52
is just the integral∫

e
ı
~ p(x−x′)WΨ,Φ( 1

2 (x + x′), p)dn p

hence we recover Eq. 51 as a particular case.

4 Discussion

We have been able to give a complete characterization of
the notion of weak value in terms of the Wigner distribu-
tion, which is intimately related to the Weyl quantization
scheme through Moyal’s formula (Eq. 7). There are how-
ever other possible physically meaningful quantization
schemes; the most interesting is certainly that of Born–
Jordan [34, 35] mentioned in the introduction; the latter

plays an increasingly important role in quantum mechan-
ics and in time-frequency analysis [7, 8, 10, 11, 36–38],
and each of these leads to a different phase space formal-
ism, where the Wigner distribution has to be replaced by
more general element of the Cohen class [39, 40]. Un-
expected difficulties however arise, especially when one
deals with the reconstruction problem; these difficulties
have a purely mathematical origin, and are related to the
division of distributions (for a mathematical analysis of
the nature of these difficulties, see [38]). The reconstruc-
tion problem for general phase space distributions will be
addressed in a forthcoming publication. It should also be
mentioned that Hiley and Cohen have proposed in [41]
an approach to retrodiction from the perspective of the
Einstein–Podolsky–Rosen–Bohm experiment; it is possi-
ble that this approach could be studied from the point of
view of the techniques developed here.
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