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The Feynman path integral does not allow a one
real path interpretation, because the quantum
amplitudes contribute to probabilities in a non-

separable manner. The opposite extreme, all paths
happen, is not a useful or informative account. In this
paper it is shown that an intermediate parsing of the
path integral, into realistic non-interfering possibili-
ties, is always available. Each realistic possibility for-
mally corresponds to numerous particle paths, but is
arguably best interpreted as a spacetime-valued field.
Notably, one actual field history can always be said
to occur, although it will generally not have an ex-
tremized action. The most obvious concerns with this
approach are addressed, indicating necessary follow-
up research. But without obvious showstoppers, it
seems plausible that the path integral might be rein-
terpreted to explain quantum phenomena in terms of
Lorentz covariant field histories.
Quanta 2016; 5: 1–11.

1 Introduction

When Feynman first developed the path integral formal-
ism [1] as a very different route to the predictions of quan-
tum theory, it would have been plausible to wonder if this
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new approach might finally provide an answer to what
is hapening between quantum measurements. Specifi-
cally, it might have pointed the way towards a Lorentz-
covariant description of an underlying reality based only
upon spacetime-local entities. (Such a description is what
is meant by the word realistic in this paper; the lack of
such an account has recently been termed the Lorentzian
quantum reality problem [2].)

The path integral has found widespread usefulness
in quantum field theory and beyond, built upon several
promising features that give some hope to resolving the
Lorentzian quantum reality problem. Not only is the
path integral based upon Lorentz-covariant components
in spacetime (namely the classical action S ), but the math-
ematics bears a passing resemblance to that of statistical
mechanics, wherein one sums over the probabilities of
microstates to find the observable probability of their
corresponding macrostate. If applicable to quantum sys-
tems, this would have meshed with Einstein’s view of the
quantum state as analogous to statistical macrostates, and
the path integral might have been viewed as a guidepost
towards a hidden-microstate description of a spacetime-
based reality.

But today, after the path integral has been utilized and
analyzed by several generations of physicists, such a hope
seems remote. True, most quantum foundations research
has ignored the path integral in favor of the traditional
Hamiltonian framework, but nevertheless there have been
several major research programs aimed at better under-
standing the implications of the path integral. These pro-
grams include Decoherent Histories [3, 4] and Quantum
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Measure Theory [5, 6]. Unless these programs have all
made some systematic unnecessary assumption, it would
seem that further analysis would be unlikely to uncover a
solution to the Lorentzian quantum reality problem.

This paper will argue that such a systematic assumption
has indeed occurred. Granted, assumptions are necessary
for any quasiclassical analysis of the path integral, sim-
ply because most of the terms in the path integral are
non-classical paths. Reading any useful implication from
this mathematics therefore requires some parsing of these
infinitely-many terms into more classical-looking groups.
But the crucial point is that there are several natural pars-
ings that one might pursue: groups that look more like
classical particle trajectories or groups that look more
like classical field histories. Following Feynman, every
major research program in path integral interpretations
has always chosen particles over fields, at least when
interpreting single-particle path integrals.

Feynman’s own leanings were clearly in the direction
of particle trajectories. In one presentation [7] he made it
clear that he viewed the path-integral analysis as a particle
theory, not a wave theory, using the particle viewpoint of
the photon path integral to explain why electromagnetic
fields are just a useful approximation. Furthermore, much
of his original motivation for the path integral was as
an application to Direct Action electromagnetism [8] (in
which the field is a fiction, and there are only particles).
Even though Feynman did give the wave perspective its
due in general introductions to the topic, his deeper-level
discussions of quantum electrodynamics were almost al-
ways couched in terms of particle paths.

Other modern research programs incorporate the very
same bias. In a recent extension of Decoherent Histo-
ries [4], with the explicit goal of finding a realistic under-
lying description, Gell-Mann and Hartle take the relevant
parsing to be “particle positions in the case of particles,
four-dimensional field configurations – both bosonic and
fermionic – in the case of quantum field theory, and histo-
ries of geometries and fields in the case of semiclassical
quantum gravity.” While this may sound like particles
and fields are being given equal consideration, a closer
look reveals that single-electron experiments are always
parsed into particle trajectories; a field-based parsing is
never even considered.

After a discussion of the relative merits of underlying
classical fields versus underlying classical particles in
Section 2, the following analysis will sketch out the basics
of a field-based interpretation of the single-particle path
integral. Unlike the standard particle viewpoint, which
can easily be shown to not yield a realistic interpretation,
the first-order view of a field viewpoint reveals no obvious
showstoppers for an eventual solution to the Lorentzian
quantum reality problem.

2 Fields versus Particles

Whether or not field viewpoints are superior to particle
viewpoints is not important; all that matters is that they
are at least of comparable plausibility, in which case
both perspectives should be considered. To date, it is
not clear that this has occurred. And thanks to classical
electromagnetism and general relativity, classical fields
hardly need defense as a plausible realistic ontology.

The case for fields in a quantum context is even
stronger when one looks at path-integral formulations
of quantum field theory, where every particle species ac-
tually corresponds to a quantum field, and in every case
these fields have a strong classical analog. For example,
the classical Dirac-field analog for an electron [9] allows
for classical accounts of some of the curious behavior of
spin- 1

2 systems [10, 11].
The particle assumption is particularly surprising in

the case of single-photon experiments, as the closest clas-
sical analog to a photon is unarguably a classical elec-
tromagnetic field. And most single-electron experiments
have a nearly-perfect single-photon analog; almost any
single-electron path integral problem can be reframed as
a photon problem. Applying particle-based logic to (say)
a basic interferometer experiment would conclude that it
is nonclassical for a photon to pass through both arms of
an interferometer. Indeed, this indication that there are
two real paths is often the point at which particle-based
interpretations of the path integral conclude that no realis-
tic interpretation is conceivable. And yet such behavior is
entirely classical in the context of electromagnetic fields,
for which traveling down both arms of an interferometer
is not only acceptable, but expected.

While this example may bring to mind realistic fields,
there are certainly plenty of other examples that bring to
mind realistic particle trajectories. For example, one can
send a photon through a single beamsplitter followed by
detectors on each output port. This leads to an end result
(one detector firing) that is certainly far more reminiscent
of a classical particle than it is a classical field.

But notably, all such examples only seem like particle
behavior at the very beginning and the very end of the
experiment – at preparation or measurement. And the
beginning and end of experiments have a special role
when using path integrals; they are precisely the points
at which boundary conditions are imposed by the path
integral mathematics. Since these boundary conditions
have to be imposed regardless of how one parses the
integral, that constraint can make anything look like a
particle at that special point, even fields. (Consider a field
constrained to be emitted from a local point; it would look
like a dispersed field everywhere except at the constraint.)
The initial and final constraints on the path integral, then,
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might imply that it is unwise to restrict ones attention to
classical particle trajectories based on phenomena evident
at these special points alone.

And even in this beamsplitter example, there is a clas-
sical field history that can explain the outcome. Every
beamsplitter not only has two output ports, but also two
input ports. If a known wave is heading towards a beam-
splitter, another unknown electromagnetic wave could be
incident on the other input port. The two fields could then
classically interfere in a way that would force all the field
onto single output port. While this would be a dubious dy-
namical explanation, it is certainly a valid classical field
history, violating no physical law except the empirically-
motivated Sommerfeld radiation condition [12]. (And
even the empirical justification for this condition cannot
be extended down to single-photon intensities, due to the
uncertainty principle.)

These examples have shown that there is every reason
to consider classical field histories, even when interpret-
ing single-particle path integrals. The following sections
will now demonstrate the promise of such a viewpoint.

3 The Single-Particle Path Integral

For any experiment where a single particle undergoes two
consecutive position measurements at spacetime locations
(x0, t0) and (x1, t1) respectively, the path-integral formu-
lation of quantum theory predicts that the unnormalized
joint probability distribution over all pairs of possible
positions (keeping the measurement times fixed) is

P(x0, x1) =

∣∣∣∣∣∣∣ ∑
x0→x1

exp(ıS/~)

∣∣∣∣∣∣∣
2

. (1)

Here the sum is the infinitesimal limit of a discretized set
(Q) of all possible spacetime trajectories from (x0, t0) to
(x1, t1), and S is the classical action of the particle on that
trajectory. Typically, one is more interested in condition-
ing these probabilities on the known value x0 = xi and
then computing the conditional probability density over
the actual outcome x1 = x f . This is easily accomplished
via the usual conversion between joint and conditional
probabilities

P(x f |xi) =
P(xi, x f )∫ ∞

−∞
P(xi, x1)dx1

. (2)

This procedure leads to an automatically-normalized prob-
ability distribution over x f , and is provably equivalent [1]
to the probabilities predicted by Hamiltonian quantum me-
chanics. Furthermore, this framework is more evidently
time-symmetric than standard dynamical quantum me-
chanics, because here the time-symmetry is automatically

built into the formalism rather than just a special conse-
quence. (Especially when couched in terms of joint prob-
abilities, all path-integral predictions must necessarily be
as symmetric as the underlying Lagrangian density that
produces the action S ; no such inherent time-symmetry
can be generically deduced from Hamiltonian-evolution
combined with Born-like rules that generate conditional
probabilities.)

There are further advantages and generalizations of the
path integral, but the remainder of this paper will focus
on the above two-position-measurement framework. The
central question is whether or not the above mathematics
might allow a realistic interpretation, in which exactly
one intermediate spacetime-based history can always be
said to occur.

3.1 The Statistical Framework

The path integral does not posit any law-like dynamics (or
even stochastic dynamics) that takes initial states to later
states; all paths seem to initially be on an equal footing.
This brings to mind the analysis of instantaneous states
in statistical mechanics.

In statistical mechanics (absent dynamics), one con-
siders a space of possible microstates µ, consistent with
known information, and assigns a (usually equal) proba-
bility P(µ) to each allowable microstate. This allows one
to deduce the probability of any observable macrostate by
simply calculating

∑
P(µi)/Z, where µi is the subspace

of microstates consistent with that macrostate, and Z is
the partition function

∑
P(µ). As this mathematics bears

a passing resemblance to Eqs. 1 and 2, statistical me-
chanics might be viewed as a framework for a realistic
interpretation of the path integral.

The attraction of this classical analysis should be clear.
In the case of statistical mechanics, there is always one
real microstate, and the fact that it is not known natu-
rally leads to a probabilistic description. Absent this
precise knowledge, multiparticle descriptions of mechan-
ical systems encode known correlations using a high-
dimensionality configuration space, but there is no school
of thought that takes such a space to be real (ontologi-
cal). In statistical mechanics, this state is clearly a state
of knowledge (epistemic), underpinned by one real mi-
crostate that exists in ordinary three-dimensional space.

3.2 One Real Trajectory?

A naive extension of this statistical approach to the path in-
tegral might note that the sum in Eq. 1 is over trajectories,
and extend this logic to a one real trajectory interpreta-
tion. These trajectories would then lie in four-dimensional
spacetime, and one would expect to calculate probabil-
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ities by summing over all such trajectories consistent
with the endpoints (which would map to the observable
macrostate).

But even though this endpoint-constrained sum does
indeed appear in Eq. 1, there are three obvious mathemat-
ical barriers to such a realistic interpretation. The first
is that the term being summed over, exp(ıS/~), can be
negative, and therefore cannot be associated with a prob-
ability of a trajectory. This breaks the analogy to P(µ).
The second problem is closely related, in that this term is
not even a real number. The third and final problem is that
the probabilities generated by Eq. 1 do not result from
a simple sum of probabilities, but a square of the total.
Every trajectory therefore contributes to the observable
probabilities, and one cannot simply dismiss all-but-one
of them as not being real.

It is perhaps not widely appreciated that the latter two
problems can be easily solved in an elegant manner, sim-
ply by changing the kinematical possibility space. This
is closely related to the central point of this paper; the
choice of what one considers a realistic history can dra-
matically change ones assessment of this mathematics.
This partial-solution to the above problems (originally
due to Sinha and Sorkin [13]) is explained in detail in
Section 3.3.

3.3 Two Real Trajectories?

By explicitly squaring the sum, it is a trivial matter to
rewrite Eq. 1 in terms of pairs of trajectories, path A and
path B, that both go from the same x0 to the same x1

P(x0, x1) =
∑
A∈Q

exp(ıS A/~)
∑
B∈Q

exp(−ıS B/~)

=
∑

(A,B)∈R
exp[ı(S A − S B)/~]. (3)

Here S A is shorthand for the action of the particle on
trajectory A, etc. Again Q is the set of all paths from
x0 → x1, and now R is the set of all path-pairs. Notice
how the square of Eq. 1 has been subsumed into the
expanded kinematics of Eq. 3.

This expression would be unchanged if A and B were
swapped, because there is no pair of trajectories for which
the reverse pair does not appear in the original sum. Dou-
bling this expression by adding the A↔ B version (and
then dividing by two) then yields a purely real expression

P(x0, x1) =
∑

(A,B)∈R
cos

S A − S B

~
. (4)

The total sum here is non-negative, because any given
path appears in both A and B. For terms where any given
path appears twice, one gets cos(0) = 1, and these positive

values will at least cancel any potentially-negative cross-
terms. (Indeed, this was all derived from Eq. 1, which is
explicitly positive.)

Unfortunately, this does not lead to a two real tra-
jectories interpretation of the path integral, for the sole
remaining reason that the individual terms in Eq. 4 can be
negative. Therefore, they cannot be probabilities. Perhaps
this is not surprising, as this is also the essential problem
with assigning realistic probabilities to Wigner functions
in phase-space formulations of quantum mechanics. Nev-
ertheless, having resolved some of the earlier problems
in this manner, the choice of kinematics might be seen as
crucial to whether or not a realistic interpretation can be
found.

It should be noted that if the terms in Eq. 4 were
somehow never negative, a realistic intermediate account
would be available – but it would imply a very curious de-
scription of how a particle gets from x0 to x1. After every
measurement (at point x0), this mathematics would indi-
cate that the particle would split into two pieces, and these
pieces would take usually-different paths to the same des-
tination x1. Such a conclusion would raise significant
foundational questions about these new half particles.

This is roughly how far Quantum Measure Theory [5]
has analyzed realistic interpretations of the path integral
before introducing fundamental changes to logic and prob-
ability (in an effort to interpret Eq. 4, especially in light
of three-path interference experiments). This paper pro-
poses that such a dramatic step should not be taken unless
all other avenues are exhausted.

For example, if three-path interference is so problem-
atic, why not postulate an ontology consisting of three
real paths? From there, one would quickly get forced to
4-path, 5-path, many-path ontologies, which seems to be
unexplored territory. Perhaps these avenues have not been
explored because many-path ontologies already appear
so strange, as indicated by the half particle discussion.
However, later we will see how many-path ontologies
can be reinterpreted as a single field, a far more familiar
construct.

3.4 Many Real Trajectory-Pairs

In the previous subsection we saw the importance of
choosing the kinematical possibility space, and how dif-
ferent choices can solve (some) seemingly intractable
interpretation problems. With this in mind, one can
consider splitting the sum in Eq. 4 into distinct pieces,
P(x0, x1) =

∑
i(Fi + Gi), where each term Fi or Gi itself

contains a sum over many trajectory pairs. This, at least,
has the correct form of the standard statistical framework.

Furthermore, negative probabilities can be eliminated
if the groupings are chosen such that Fi > 0 and Gi = 0.
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In other words, Fi is found by taking some subset ai of
possible trajectory pairs (A, B) ∈ ai ⊂ R, and summing
cos[(S A − S B)/~] over these path-pairs. By design, the
result must be strictly positive (Fi > 0). Similarly, G j is
derived from another subset b j ⊂ R of possible trajectory
pairs, where the corresponding sum over (A, B) ∈ b j is
exactly zero. As long as every pair of particle trajectories
is represented in one of these sets, these expressions will
be mathematically identical to the ones above (and the G
terms will all cancel)

P(x0, x1) =
∑

i

 ∑
(A,B)∈ai

cos
S A − S B

~

 . (5)

It is a logical certainty that such a parsing must always be
possible, as Eq. 1 indicates that P(x0, x1) is positive. The
G j terms disappear by design; they sum to zero. A simi-
lar parsing is (implicitly) assumed by some path-integral
analyses in order to get rid of the wildly non-classical
paths. Those paths are far away from the δS = 0 ex-
tremization condition for classical particles, and with ~
non-zero, such paths have phases that almost always ex-
actly cancel. These non-possibilities can then be lumped
into a group like G j and ignored. The only new step here
is to note that the negative amplitude terms can always be
grouped together into strictly positive partial sums.

The obvious conclusion of this analysis is that the kine-
matical possibility space could be assigned to the collec-
tion of path-pairs ai as a whole. If this step is made, then
a realistic interpretation of the path integral is indeed pos-
sible. In every experiment, one particular set of path-pairs
ai really happens between measurements, but it is never
clear which one, even after the final measurement. Due
to this uncertainty, one assigns a probability

P(ai) = Fi =

 ∑
(A,B)∈ai

cos
S A − S B

~

 > 0 (6)

to each distinct set, then sums over all possibilities
∑

i Fi

and normalizes just as in statistical mechanics. This gives
the correct joint probability for the macrohistory (x0, x1),
even though there is only one real microhistory ai.

This proves that it is indeed possible to have a realis-
tic (statistical mechanics-like) interpretation of the path
integral, but at the expense of having the fundamental pos-
sibility space consist of many particle trajectory-pairs, not
merely one. Interpreting such a realistic account would
seem to require a quite unusual perspective on what is
happening between measurements (much stranger than
even the half-particle trajectories discussed at the end of
Section 3.3), but there is at least an existence proof that
such an account is possible.

However, there is still room for improvement, because
there are still so many ways in which any net positive sum

like the one in Eq. 4 can be parsed into sets of path-pairs ai

and bi. In Section 3.5, we will demonstrate that a further-
restricted parsing can reframe the relevant kinematical
space as disjoint sets of single paths.

3.5 Many Real Trajectories

Although the previous section technically supplies a way
to realistically parse the path integral, one concern is how
to make sense of a many-path-pair ontology. The most
problematic case is when a given single-path appears in
multiple different sets ai, in different combinations with
other paths. To eliminate this concern, consider a different
parsing of Eq. 4, into sets of single paths, ci ⊂ Q. Every
path in the original sum in Eq. 1 must show up in one set
ci, and only one set. Then Eq. 4 can be rewritten as

P(x0, x1)=
∑

i

∑
A∈ci

∑
B∈ci

cos
SA − SB

~
+
∑
B<ci

cos
SA − SB

~

 .
(7)

It turns out to be relatively simple to force the second
term in this expression – the one for which the path pair
(A, B) spans two different sets ci – to always sum to zero.
(For now, one can leave aside the outer sum over the
different sets i, just considering the sums over A∈ci and
B<ci.) Setting ~ = 1 for simplicity, this second term will
necessarily sum to zero so long as∑

A∈ci

cos S A

∑
B<ci

cos S B +
∑
A∈ci

sin S A

∑
B<ci

sin S B = 0. (8)

Because every path in Q is exactly one set ci, this can
be rewritten in terms of only paths in the set ci and two
overall constants C ≡

∑
B∈Q cos S B and D ≡

∑
B∈Q sin S B∑

A∈ci

cos SA(C −
∑
A∈ci

cos SA)+
∑
A∈ci

sin SA(D−
∑
A∈ci

sin SA) = 0.

(9)
Enforcing this condition for each set ci will therefore elim-
inate cross-set interference. For example, any group of
paths for which both

∑
A∈ci cos S A = 0 and

∑
A∈ci sin S A =

0 would be permitted. This is not an available option for
every set ci, because then C and D would both have to
be zero, but there seems to be no reason why a general
parsing could not use many sets that fall into this sim-
ple category. (These sets would then correspond to the
unimportant terms Gi from Section 3.4.)

The constraint by Eq. 9 on each given set ci could even
be relaxed further, by reintroducing the sum over different
sets (i) from Eq. 7. This would replace Eq. 9 with a single
interrelated constraint between all sets; either way, the
second term in Eq. 7 could be ignored when calculating
probabilities, and it would simplify down to

P(x0, x1)=
∑

i

∑
A∈ci

∑
B∈ci

cos
S A − S B

~

 . (10)
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This double-sum is a familiar expression from Section
3.3, so we can undo the squaring analysis of that section
to recover the simple and promising

P(x0, x1)=
∑

i

∣∣∣∣∣∣∣∣
∑
A∈ci

exp(ıS A/~)

∣∣∣∣∣∣∣∣
2

. (11)

This almost looks like the original path integral formula,
but thanks to the above parsing of possibilities into groups
of paths ci, it now is represented as a linear sum over
strictly positive terms! Clearly, a classical probability
interpretation is again available: between measurements,
one set of paths ci is always taken (subject to the con-
straint by Eq. 9), but it is unclear which one. The proba-
bility of each set is now calculated via a familiar method,
using only the paths that appear in the set ci.

Note that the constraint by Eq. 9 does not eliminate
interference; it only eliminates interference between
distinct-possibility sets. Interference is still evidently pos-
sible between paths within a given set. And because of the
appearance of many-path interference in well-established
phenomena (say, triple-slit experiments), there is no es-
caping the conclusion that each set ci must contain many
paths. There is no way to reduce ci down to a single path
or two, in agreement with the earlier analysis.

The remaining task, then, is to somehow find a natural
way to interpret each many-path set ci as a distinct physi-
cal possibility. The particle story is clearly unwieldy; this
would imply that each particle splits up into many pieces
at x0, only to recombine at x1. Alternatively, one could
consider that these path-sets ci are a representation of a
single, spacetime-valued field.

4 Paths to Field

The preceding analysis proves that it is possible to assign
a classical-ignorance interpretation to the path integral,
essentially no different than the framework of classical
statistical mechanics as described in Section 3.1. The
most straightforward reading of Eq. 11 is that there are
many non-interfering possibilities that may occur, and
each single possibility corresponds to some set of trajec-
tories ci. The probability of each trajectory-set can be
assigned a positive value, and one of these sets can be said
to really happen. Just as in statistical mechanics, the other
possibilities are only needed to normalize the (subjective)
probabilities one assigns to ci, not for any interference-
like process. (Interference may be happening with a given
set of trajectories ci, but there is no longer any interefer-
ence between sets, because the positive probabilities of
each set combine as a simple classical sum.)

The only key difference between this reading and clas-
sical statistical mechanics is that here one is assigning

probabilities to entire microhistories rather than instan-
taneous microstates. Still, given that it might require the
combination of many particle trajectories to parse the path
integral into the attractive form of Eq. 11, what physical
microhistory might the set ci represent? For example, a
high order reflection off of a diffraction grating seems to
have many separated paths that are interfering. In such
cases, a given set ci incorporating this interference is nec-
essarily associated with a group of trajectories spanning
a sizable region of space. The most straightforward inter-
pretation of such a many path set ci would then be that of
an extended field, not that of a subdivided particle.

If this assessment is correct, the task is then to map
the relevant parameters of the set ci onto a continuous,
spacetime-valued field. One template for how this might
work (albeit in reverse) is the connection between the
standard complex wavefunction and the collection of pos-
sible paths that particle might take in Bohmian mechan-
ics [14, 15]. Here the density of paths maps to the field
amplitude, and the direction of the paths (at any given
point) maps to the gradient of the phase. Although this
map requires that the paths never cross, it may be the
case that one can always build each set ci out of non-
intersecting paths, allowing a similar map to work here.

Note that even if this Bohmian-style approach was
successful, it would not simply reproduce the Bohmian
interpretation of the standard wavefunction. The most ob-
vious difference, for a given set ci corresponding to some
final boundary constraint x1, is that all of the paths come
together at the point where the particle is measured. The
corresponding complex field, then, would continuously
build up in amplitude as it approaches this measurement
point, unlike the standard wavefunction. A closer connec-
tion might be drawn to a recent two-boundary approach to
Bohmian mechanics [16], but even here there are several
key differences at the ontological level.

If it turned out that intersecting paths were sometimes
required in order to preserve the condition given by Eq. 9,
there are certainly other ways to map a set of paths onto
a spacetime-valued field. One simple extension would
be to average the path-velocities at a given point to re-
cover the phase gradient; another would be to allow some
small finite number of overlapping paths, with each set
corresponding to different field values. (Instead of a two-
component complex field, one could utilize a 4- or 8-
component field as well.) The crucial point is that there
is no need to recover the standard quantum wavefunction
ψ, as the probabilities are already built into the above
framework. What one is aiming to recover here is a realis-
tic field-based description of what is happening between
measurements, and this will certainly not look like ψ (at
least not at measurement).
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x0

x1

Figure 1: A representation of one possible way that atoms at
x0 and x1 might exchange a photon. The thin lines comprise a
single set of path integral trajectories, corresponding to one
particular set c1. These trajectories are straight except for at
the mid-plane (dotted line), and can be jointly reinterpreted as
a single field (such that the trajectories are normal to the phase
fronts). The phase fronts of the corresponding field are noted
with thick lines. In this case, the phase of the field must be
discontinuous at the mid-plane, where the original trajectories
change slope.

For a rough outline of what this field-interpretation
might amount to, consider the example of a free particle
sequentially detected at x0 and x1 – perhaps a photon
exchanged between atoms at these locations. One set
of possible paths that connect these locations is given
by the thin solid lines in Figure 1; we can call this set
c1. In this case, the lines are straight except for at the
plane equidistant from x0 and x1. Interpreting these lines
as representing the phase gradient of a field, the lower
half would correspond to a spherical wave diverging from
x0, and the upper half would correspond to a spherical
wave converging onto x1. The discontinuity in the slope
of the lines at the equidistant plane would have to corre-
spond to a (spatially non-uniform) phase shift in this field,
converting the diverging wave into a converging wave.

Given that it has an intermediate phase anomaly, the
field in Figure 1 does not solve any deterministic wave
equation, so it cannot result from an action-extremized
Lagrangian. This is a general feature of such interme-
diate fields: there is typically no solution to Maxwell’s
equations subject to two localized constraints. But the
whole point of the path integral mathematics is that non-
action-extremized paths are still relevant, so it would be
quite strange to dismiss this field solution on the grounds
that it was not action-extremized in its own right. (An
equivalent argument would be to dismiss the thin lines in
Figure 1 as being nonclassical because they bend in the

x0

x1

Figure 2: Another possible set of paths corresponding to the
same observed events as Figure 1, only this time the corre-
sponding field has two distinct phase anomalies.

middle; it hardly seems surprising that nonclassical trajec-
tories would correspond to a nonclassical field.) The key
point, however, is that even with an intermediate phase
anomaly, the field in Figure 1 can still provide a localized
(spacetime-based) account of what is happening between
the emission and absorption of the electromagnetic en-
ergy.

Figure 1 merely represents one set of paths; other dis-
tinct sets are possible as well. Figure 2 demonstrates
a different set (say, c2) where the corresponding field
undergoes two phase anomalies. Figure 3 shows yet an-
other set (c3), where the paths are curved; this indicates
a continuous-phase-anomaly in the corresponding field.
Crucially, only one of these sets need be ascribed any
reality; given the condition by Eq. 9, there is no net in-
terference between these sets, just within each set. The
probability of each corresponding field is positive, and
the probabilities sum linearly, as shown in Eq. 11.

For the example shown in Figure 3 one can also
imagine filling the space between the atoms with some
continuously-varying index material, such that each of
the thin-line paths in this particular set c3 corresponds to
a term with exactly the same action S A. In this case, one
would certainly expect the corresponding probability of
c3 to be maximum in Eq. 11, dominating all other path
sets. And notably, the corresponding field in Figure 3
would then be the classical field expected in this exact
situation: the wave would literally be focused onto the
point x1 by the intermediate material. (One can also con-
vert Figure 1 and Figure 2 into such classical scenarios
by putting appropriate lenses on the dotted lines.)

In general, if there is a large set of paths with the same
action (or actions that differ by integral multiples of 2π~,
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x0

x1

Figure 3: Another possible set of paths corresponding the same
observed events as Figure 1, only here the corresponding field
has a continuously-distributed set of phase anomalies.

as for a diffraction grating), the overwhelming probability
of such a set points to an overwhelming probable inter-
mediate field configuration – the very classical field that
would traditionally be used to describe such cases. If this
is not the case, and there is no classical field, then there
is no one obvious intermediate field solution. Neverthe-
less, the above analysis shows that in these cases there
are always many possible intermediate field solutions, it
just happens that none of them look particularly classical
(due to phase anomalies). Summing over the probabilities
of each of these intermediate options yields the precise
joint probability that the field goes from x0 to x1, as per
Eq. 11.

These examples are mostly meant to be illustrative; a
deeper quantitative analysis is certainly required to make
further progress. But for now, the remainder of this paper
will focus on larger, big-picture questions, to see whether
such further effort might plausibly be thought to succeed.

5 Discussion

The previous sections raised various unresolved technical
questions, including how to generally parse the paths
into sets that obey the condition given by Eq. 9, and
exactly how to map each set of paths to a field. But the
largest potential concerns at this point are likely not these
technical details, but instead big-picture issues that would
have to be addressed to turn this proof-of-principle into a
full-fledged interpretation. Some of these concerns have
evident solutions; others will require substantial work in
order to resolve. These are now addressed in turn:

What about multiple particles? The path integral ap-
proach naturally scales to multiple particles, where the

action S is now simply a function of all of the particles,
not just one. Instead of summing over only one set of
paths Q, one jointly sums over Q1, Q2, etc. for each par-
ticle. (There is also a natural, classical way to introduce
configuration-space constraints on a collection of such
paths.) In this multiparticle case, ci would refer to a set
of paths for each particle, where the paths for each parti-
cle would correspond to a different field. (Entanglement
issues will be addressed shortly; for now note that multi-
particle path-integral analysis naturally gives the correct
probabilities even for Bell-inequality violating scenarios,
as explicitly shown in [13, 17].)

What about identical particles? Having a different field
for each particle is awkward for identical particles. For
example, it would seem that the collection of all photons
should map to something comparable to the classical elec-
tromagnetic field, not a different field for each photon.
(Certainly, this would be natural in the high-field limit.)
Substantial work remains to be done to show whether
or not this goal is attainable. Fortunately, the path inte-
gral does not sum over different path-permutations for
identical particles, so there is not an essential difference
between the set of paths for a single particle and the
(larger) set of paths for many identical particles. It seems
plausible that if one starts with an ontology consisting
of many paths that map to a single field, increasing the
number of particles on those paths need only correspond
to increasing the energy density of the very same field
configuration, because interference between distinct sets
ci has already been forced to zero.

Why is the probability of a field configuration related
to a sum of paths? One might expect that for an ontology
where only the field is real (not particles on paths), one
should be able to find the probability rule directly from
the proposed field configuration instead of the paths ci.
Since we know that anomaly-free field histories map to
the high-field classical limit (say, Maxwell’s equations),
the probability of a given field history should be inversely
related to some measure of the size of its nonclassical
phase anomaly. Zero-anomaly cases would be the most
likely (recovering classical field theory), but since that is
generally not an option, some anomaly is usually forced
by the boundary constraints. It seems reasonable that
fields with smaller anomalies (via some measure) should
be more probable than fields with large anomalies.

Looking at Eq. 10 with this point in mind, it seems
evident that this comparison of every path-pair in ci is
one way to (inversely) quantify the phase anomaly of
the corresponding field. Consider that the unitless action
S/~ acts like a phase in quantum theory, and the S that
appears in this equation is the classical action (without
anomalies). Comparing the phase between all pairs of
paths, as in

∑
cos[(S A − S B)/~], would therefore sup-
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ply an inverse-measure of the minimum phase anomaly
needed to make the total field coherent at the final bound-
ary constraint. (This term is obviously maximized if
no anomaly is needed, if every representative path is in
phase.) Ideally, one might even find some master princi-
ple to more carefully justify this supposition, in analogy
to the fundamental postulate of statistical mechanics.

Indeed, simple anomaly-based models of quantum phe-
nomena have already been developed [18–20]. In these
approaches, some intermediate anomaly takes the initial
condition to the final condition, and a measure of this
anomaly determines the probability of the entire history.
If a full field-based version of these models was suc-
cessfully developed, and was compatible with the above
arguments, this would have crucial implications for both
quantum foundations and quantum field theory.

There is no single consistent way to group the paths.
Even though any given future measurement constraint has
a set of paths that can be parsed into realistic-possibility
sets ci, different future measurements will lead to different
sets. For example, in a double-slit experiment, a position
measurement immediately after the slits (before interfer-
ence could occur) would only have sets ci in which every
path passed through the same slit. But delaying the time
of the position measurement (after potential interference)
would lead to sets ci where the paths passed through both
slits before converging onto the measurement point. If
each ci is interpreted as a field, the former case would
yield a realistic field history that really did pass through
only one slit, while the latter case would yield a realistic
field history that really did pass through both slits.

This issue has been discussed in explicit detail in [18],
where it is shown that this dependence on the future mea-
surement is not a problem but instead a crucial feature
of the Lagrangian Schema framework already assumed
by the path integral. True, if one tried to translate this
account back into the standard Newtonian Schema, where
the future is determined by initial conditions and (pos-
sibly stochastic) dynamical laws, it looks quite strange.
But the Feynman path integral is predicated on a different
sort of logic, where entire histories are examined all at
once, and those histories are constrained in both the past
and future. Taking away the ability for the future mea-
surement to constrain the past is equivalent to denying the
applicability of the path integral in the first place, because
the future boundary constraint is a mathematical necessity
for any path-integral-style analysis.

Does not any spacetime-based account of entanglement
imply nonlocal causation, voiding the goal of Lorentz
invariance? This class of concerns arises from various
quantum no-go theorems, as well as examination of how
entanglement works in cases such as Bohmian mechanics
[14, 15]. But here again, the role of the future constraint

(built into the path integral mathematics) resolves the
problem. Given a future constraint that can at least be
partially chosen by an external experimenter (such as the
type of measurement to perform, or when to perform it),
any past events that are constrained by that future setting
explicitly violate the independence assumptions behind
every quantum no-go theorem [18]. (Formally, this falls
under what is usually termed the retrocausal loophole.)

While it is still true that there is a net-nonlocal influ-
ence in such future-boundary models, it is not the direct,
instantaneous influence that one sees in Bohmian mechan-
ics. Instead, it is closer to a zigzag influence, always on
contiguous time-like paths through spacetime (see [21]
for a clear recent discussion.) These influences can indeed
be Lorentz invariant, as nowhere do they require a direct
spacelike interaction. And even this zigzag picture should
probably be set aside in favor of a Lagrangian-style, all-
at-once analysis. As carefully described in [18], entan-
glement scenarios with future boundaries can be framed
in terms of a knowledge-updating agent rather than any
literal transmission at the ontological level. If learning
about a local constraint tells one something about the
global possibility space (namely informs an agent which
field configurations are possible elsewhere), then updat-
ing the relevant probabilities can have the same apparent
effect as quantum steering. If all possible field configura-
tions have a Lorentz-covariant description, and only one
actual configuration happens, this problem is resolved.

Measurement is still treated as a special interaction.
From the above discussion, it is clear that the future mea-
surement must literally be imposed as a boundary con-
straint in order to make this analysis work. But this might
raise concerns similar to the usual measurement problem
in ordinary quantum theory. Specifically, the concern
here is that some interactions are treated differently from
others, with some ill-defined measurements imposed as
boundary conditions while other interactions are not.

In standard quantum mechanics, this problem is indeed
serious, because the decision of whether to collapse the
wavefunction or to entangle it with the measurement ap-
paratus leads to two incompatible descriptions, with no
obvious middle ground. The most intractable aspect of
this problem comes about because entangled states live
in a large configuration space that typically cannot be
mapped onto the separable results of a collapse.

But for this one-real-field parsing of the path integral,
configuration space plays the same epistemic role as in
classical statistical mechanics. Any spacetime-based de-
scription of a large region that includes a system and a
measurement apparatus can always be split up into equiv-
alent separate descriptions of the system, the device, and
the correlations between them.
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Having taken this deep conflict between spacetime and
configuration space off the table, there seem to be plenty
of ways to resolve the remaining issues. In classical
physics there are many examples of a middle ground
between boundary constraints and interactions – say, elec-
tromagnetic fields interacting with conductors, or lower-
entropy systems interacting with higher-entropy thermal
reservoirs. In both of these cases, one ends up with es-
sential differences depending on whether the interacting
systems have a comparable number of possible states.
This offers a potential resolution for the path integral:
interactions between vastly different-entropy systems can
naturally be imposed as effective boundary constraints on
the smaller entropy system, while interactions between
comparable systems can merely imply correlations. For
further discussion and some technical examples, see [19].

6 Conclusions

The most important result of the above analysis is a proof-
of-principle demonstration that the Feynman path integral
is formally compatible with a realistic, Lorentz-covariant
account of what is happening between measurements.
Crucially, this can be done without having to modify
probability theory in any way, unlike most other path-
integral-motivated research [4, 5].

The fact that this simple result has remained unnoticed
for so long is perhaps attributable to the fact that most
foundational research has been focused on Hamiltonian-
based versions of quantum theory, and the exceptions
have all implicitly assumed that evident single-particle
behavior must be explained in terms of realistic particles.
If one uses realistic fields to explain such behavior, a stan-
dard probabilistic account can seemingly be recovered:
one Lorentz-covariant field history occurs between any
two measurements, and adding the (positive) probabilities
of each possible field yields the correct joint probability.

Extensive work remains to turn this proof-of-principle
into a full-fledged interpretation, especially where it
comes to measurements other than position. But before
such work begins, it is certainly worth taking a step back
and considering what this result might mean for the sum
over all paths concept in the first place. True, this well-
known prescription (combined with the usual rules for
summing and squaring amplitudes) does indeed seem to
give the correct quantum results for a single particle. But
if we can better reframe the ontology in terms of a re-
alistic field, perhaps we have been drawing the wrong
lessons from the single-particle path integral. Indeed, it
is the application of sum-over-everything to field theory
that causes so many mathematical difficulties: the lack
of a natural measure on the space of field histories, the

infinities and renormalization problems that ensue in that
domain, etc.

It is therefore notable that the above analysis implies
that the relevant possibility space might be much smaller.
Many of the above sets of paths ci can correspond to
zero-probability cases, and need never be summed over
at all. (The question of which paths end up in such zero-
probability sets depends on the particular future mea-
surement, but as discussed in the previous section, this
is a benefit of the Lagrangian Schema implied by the
path integral mathematics.) Furthermore, each probabil-
ity would be associated with a possible (spacetime-based)
field history, with no mathematical implication that many
contradictory events were somehow happening at once.
As in classical statistics, one could not normalize these
probabilities without considering the full space of all al-
lowable histories, but so long as the probabilities of the
wildly-anomalous histories dropped off fast enough, there
would be no need to include them. This raises the in-
triguing possibility that there is no need to sum over all
field configurations – the very step that leads to so many
technical problems.

The biggest implication for quantum foundations
would be the availability of an explicit between-
measurement account, entirely in terms of spacetime-
local fields. This would also be true for entanglement
experiments: no real configuration space would be re-
quired, justifying the ψ-epistemic view of entangled states
[18, 21]. Such a framework might even provide a new
and generally unexplored path to quantum gravity. After
all, block-universe field-history accounts are evidently
more compatible with general relativity than are canon-
ical quantization approaches where time plays a special
role. Instead of trying to force general relativistic space-
time into quantum mechanical configuration space, one
could instead hope to use this approach to bring quantum
phenomena back into ordinary spacetime.

In conclusion, by simply changing our perspective on
the kinematical space of possibilities, grouping certain
particle trajectories into single field histories (that need
not obey any particular field equations), a realistic in-
terpretation of the Feynman path integral does appear
to be possible. Such an interpretation is not available
to Hamiltonian-based formulations of quantum theory,
not only because of the role of the future boundary con-
straint, but also because of the Lagrangian all at once
style of analysis of entire histories. The benefit of such
a perspective, if fully developed, would be a reformula-
tion of quantum theory in terms of generally covariant,
spacetime-based quantities – perhaps allowing the path
integral to live up to its original promise, after all.
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