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We investigate the reason for the quantum
speedup (quantum algorithms require fewer
computation steps than their classical coun-

terparts). We extend the representation of the quan-
tum algorithm to the process of setting the problem,
namely choosing the function computed by the black
box. The initial measurement selects a setting at ran-
dom, Bob (the problem setter) unitarily changes it
into the desired one. With reference to the observer
dependent quantum states of relational quantum me-
chanics, this representation is with respect to Bob and
any external observer, it cannot be with respect to Al-
ice (the problem solver). It would tell her the func-
tion computed by the black box, which to her should
be hidden. To Alice, the projection of the quantum
state due to the initial measurement is retarded at
the end of her problem solving action, so that the
algorithm input state remains one of complete igno-
rance of the setting. By black box computations, she
unitarily sends it into the output state that, for each
possible setting, encodes the corresponding solution,
acquired by the final measurement. Mathematically,
we can ascribe to the final measurement the selection
of any fraction R of the random outcome of the ini-
tial measurement. This projects the input state to
Alice on one of lower entropy where she knows the
corresponding fraction of the problem setting. Given
the appropriate value of R, the quantum algorithm
is a sum over classical histories in each of which Al-

ice, knowing in advance one of the R-th parts of the
setting, performs the black box computations still re-
quired to identify the solution. Given a quantum al-
gorithm, this retrocausality model provides the value
of R that explains its speed up; in the major quan-
tum algorithms, R is 1

2 or slightly above it. Conversely,
given the problem, R = 1

2 always yields the order of
magnitude of the number of black box computations
required to solve it in an optimal quantum way.
Quanta 2016; 5: 34–52.

1 Foreword

Consider the following problem. Bob, who is the problem
setter, chooses one of the four functions fb (a) shown in
Table 1. Then he gives Alice, who is the problem solver, a
black box (oracle) that, given a value of the argument a in
the input, produces the value of fb (a) in the output. Alice
does not know which of the four functions is the one com-
puted by the black box. She is to determine whether the
function is constant or balanced (with the same number
of zeros and ones) by performing function evaluations
(oracle queries). Classically, Alice must perform two
function evaluations, quantumly just one. Here, we refer
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Table 1: Tabular representation of the functions fb (a) that are
evaluated by the black box in the Deutsch’s problem.

a f00 (a) f01 (a) f10 (a) f11 (a)
0 0 0 1 1
1 0 1 0 1

to the seminal quantum algorithm that yields a quantum
computational speedup, devised in 1985 by Deutsch [1].
Although there is a significant body of literature on the
relationship between speedup and other quantum features,
such as quantum entanglement and discord (see Section
3), no fundamental physical explanation nor unified math-
ematical mechanism is known for the speedup.

As the present issue of Quanta is dedicated to Richard
Feynman and our subject is quantum computation, we
should like to remember Feynman’s pioneering contribu-
tion to the development of this new branch of science. We
do this by recalling the seminal works that gave rise to
the discipline of quantum computation. In 1969, Finkel-
stein [2] noted that computation should be possible in the
quantum framework and introduced the notion of quan-
tum unit of information, namely quantum bit or qubit. In
1982, Feynman [3] pointed out the essential difference
between quantum and classical computation, showing
that the simulation of a quantum process on a classical
computer has to involve in general an amount of time
× physical resources exponentially higher than that in-
volved in the quantum process itself. This was the origin
of the notion of quantum computational efficiency, now
usually called speedup. In [3], Feynman also introduced
the universal quantum simulator, a lattice of spin systems
with freely specifiable nearest neighbor interactions that
can be considered the first theoretical model of a quantum
computer. The development of the notion of reversible
classical computation was parallel. Bennett [4] showed in
1982 that classical computation can be ideally reversible
in the limit of zero speed. His work was in the wake
of the 1961 Landauer’s principle [5] that quantifies the
generation of heat necessarily consequent to the erasure
of information. Still in 1982, Fredkin and Toffoli [6] de-
veloped the first theoretical model of logically reversible
classical computation, in fact based on the well known
Fredkin and Toffoli gates. Independently of Deutsch,
Feynman produced in 1985 the quantum version of this
algorithmic form of reversible computation, published
in the following year [7]. The seminal idea of it was
already present in [3], in fact with reference to Fredkin
and Toffoli 1982 work. In 1985, Deutsch provided the
first example of a quantum algorithm that requires fewer
function evaluations than classically possible.

With this, the full fledged notion of quantum compu-
tation was born thanks to the insights of very few indi-
viduals. As it might happen with revolutionary science,
the scientific community at large has been initially slow
in expressing an interest for the new discipline. We had
the fortune of contributing, with Mario Rasetti, to the
organization of the first international meetings on quan-
tum communication and computation held in Turin in
the years 1992–1998. They were workshops patronized
by Elsag Bailey (an Italian information and communica-
tions technology company) and the Institute for Scientific
Interchange, Turin, Italy. We believe that those annual
workshops have been instrumental to propagating the new
discipline of quantum information throughout the scien-
tific community. All the fathers of the discipline, with
the sad exception of Feynman, the theoretical and experi-
mental physicists and computer scientists responsible for
the major developments of those years attended the work-
shops in question. The group pictures of the workshop
participants [8] show the explosion of interest for the new
science in the years 1993 through 1997.

2 Introduction

The usual physical representation of quantum algorithms
is limited to the process of solving the problem. We ex-
tend it to the process of setting the problem, namely of
choosing the function fb (a) out of the set of functions.
This amounts to choosing the function suffix b, which
we call the problem setting, out of the set of the possi-
ble problem settings σB ≡ {00, 01, 10, 11} (here we use
Deutsch algorithm as an example).

For reasons that will soon become clear, we assume
that the initial state of the quantum register B that contains
the setting is a mixture of all the possible settings. Its
density operator is thus

ρ̂B =
1
4

(|00〉 〈00|B + |01〉 〈01|B + |10〉 〈10|B + |11〉 〈11|B)
(1)

At time t0, Bob measures the content of register B, obtain-
ing a setting at random, say b = 10. The state of register
B is consequently projected on |10〉 〈10|B. Assume that
Bob wants b = 01. He unitarily transforms this state into
|01〉 〈01|B, at time t1.

Register A, meant to contain the argument of the func-
tion to be computed by the black box and eventually the
solution of the problem, at time t1 is in any sharp state,
say |0〉 〈0|A. The input state of the quantum algorithm at
time t1 is thus |01〉 〈01|B ⊗ |0〉 〈0|A.

Alice, with one function evaluation preceded and fol-
lowed by suitable transformations, unitarily transforms it
into the output state |01〉 〈01|B ⊗ |1〉 〈1|A, at time t2. The
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solution of the problem, 1 when the function is balanced
as in the present case and 0 when it is constant, is in
register A. Alice acquires the solution by measuring the
content of A.

We note that this extended representation immediately
calls for another extension, this time concerning the ac-
tors (observers) on the stage. We have to resort to the
relational quantum mechanics of Rovelli [9], where quan-
tum states are observer dependent. A quantum state can
be sharp to an observer and a quantum superposition, or
a mixture, to another one. The present representation
is with respect to Bob, the problem setter, and any other
observer who does not act on the problem solving process.
It cannot be with respect to Alice, the problem solver. The
input state of the quantum algorithm |01〉 〈01|B ⊗ |0〉 〈0|A
would of course tell us that the content of register B is 01,
namely that the function chosen by Bob is f01 (a). Since
Alice is an observer, we assume that the state in question
would tell her the same.

Throughout this work, we take for granted the legiti-
macy of the assumption that Alice (or Bob, or the external
observer), although an abstract entity, knows what we
would know in her (his) place. We assume that this is a
legitimate way to take the sizes to a quantum process that
necessarily involves the notion of observer.

In the present case, Alice would know that the function
is balanced without performing any function evaluation.
Of course the suffix of the function should be hidden to Al-
ice because to her it is inside the black box. We physically
represent this concealment by retarding the projection of
the quantum state induced by the initial Bob’s measure-
ment at the end of the unitary part of Alice’s problem
solving action. As well known, these projections can be
retarded or advanced at will along a unitary evolution that
respectively follows or precedes the measurement.

The input state of the quantum algorithm to Alice,
immediately after the preparation of the desired problem
setting, remains

1
4

(|00〉 〈00|B + |01〉 〈01|B + . . .) ⊗ |0〉 〈0|A . (2)

In fact the maximally mixed state of register B remains
unaltered under any unitary transformation applying to
it. The two bit entropy of this state represents Alice’s
complete ignorance of Bob’s choice.

The output state to Alice is

1
4

(|00〉 〈00|B ⊗ |0〉 〈0|A + |01〉 〈01|B ⊗ |1〉 〈1|A + . . .), (3)

that is still a mixture of all the possible problem settings,
each multiplied by the corresponding solution. Thus, also
the solution, considered in itself, is completely undeter-
mined. Alice’s final measurement projects this state on

the solution corresponding to the problem setting chosen
by Bob, namely on 1

2 (|01〉 〈01|B + |10〉 〈10|B) ⊗ |1〉 〈1|A,
with probability one. In fact the solution is unpredictable
to Alice but is already 1 to any other observer.

Alice’s final measurement also triggers the retarded
projection induced by the initial Bob’s measurement,
which cannot go past the unitary part of Alice’s action.
This further projects the above state on |01〉 〈01|B⊗|1〉 〈1|A,
which tells Alice both the problem setting and the solution.
The two projections commute and should be considered
simultaneous.

We note that either the projection of the quantum state
induced by the initial Bob’s measurement or that induced
by the final Alice’s measurement zeroes the entropy of
the solution, depending on which one is performed first.
This work is an exploration of the assumption that this
zeroing shares in a complementary and non-redundant
way between initial and final measurement.

We assume that the complete measurements behave in
a contextual way, namely each would be sensitive to the
other. We also assume that they reduce (in all the possible
ways in quantum superposition as we will see) to partial
measurements such that, together, select whatever has
been selected by the complete measurements and, each
by itself, reduce the entropy of the solution in a com-
plementary and non-redundant way. For Occam razor,
we exclude any redundancy between the two partial mea-
surements, what implies that the information provided
by either one is not provided by the other. In Newton’s
formulation, Occam razor states:

We are to admit no more causes of natural things than
such that are both true and sufficient to explain their
appearances [10].

To reconstruct the selections performed by the com-
plete measurements, we should propagate forward in time,
employing the time-forward unitary transformation, the
projection of the quantum state due to the partial Bob’s
measurement, until it selects part of the outcome of Al-
ice’s measurement. Similarly, we should propagate back-
ward in time, employing the inverse of the time-forward
unitary transformation, the projection due to Alice’s par-
tial measurement, until it selects part of the random out-
come of Bob’s measurement.

We will see that everything boils down to ascribing to
the final Alice’s measurement the selection of part of the
random outcome of the initial Bob’s measurement, say
the R-th part of the information that specifies it.

This quantum feedback leaves the input state of the
quantum algorithm to Bob and any external observer
unaltered. It projects that to Alice on a state of lower
entropy where she knows the R-th part of the informa-
tion that specifies the problem setting in advance, before
performing any function evaluation.
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Given a value of R different from 0 and 1, there are
many ways of taking the R-th part of the information that
specifies the problem setting. There is thus the need of rec-
onciling the notion of Alice’s advanced knowledge with
this multiplicity. We also need to provide an operational
interpretation of this notion. We kill two birds with one
stone by applying to quantum computation Feynman’s
path integral formulation of quantum mechanics [11].
Given the appropriate choice of the value of R, it turns
out that the quantum algorithm can be seen as a sum over
classical histories in each of which Alice knows in ad-
vance one of the possible R-th parts of the problem setting
and performs the function evaluations still necessary to
find the solution of the problem. The sum is over all the
possible ways of taking this R-th part.

Incidentally, let us notice the many ways the present in-
terpretation of the speedup draws on Feynman’s findings,
including his and Wheeler’s work on the symmetry of
physical phenomena under time-reversal [12]. As things
are now, the interplay between the path integral formu-
lation of quantum mechanics and the current form of
quantum retrocausality is at the complex systems level;
investigating whether it can be brought to a fundamental
level would seem to be an interesting prospect.

Given an oracle problem and a value of R, the present
retrocausal interpretation of the speedup yields a number
of function evaluations required to solve the problem.
Conversely, given a quantum algorithm, it yields the value
of R that explains its speedup.

We have compared the present interpretation of the
speedup with the major quantum algorithms discovered
so far. In all the quantum algorithms that solve the prob-
lem with a single function evaluation, as that of Deutsch,
we have R = 1

2 . This also applies to Grover quantum
search algorithm for database size 4, Deutsch–Jozsa al-
gorithm, and the algorithms of Simon and the Abelian
hidden subgroup. The latter algorithm [13] has unified
about ten historical algorithms, among which the famous
Shor’s factorization algorithm. In Grover algorithm, when
database size goes past 4, first R goes slightly above 1

2
then it goes back to 1

2 for database size tending to infinity.
In the corresponding sample of problems, R = 1

2 al-
ways corresponds to an existing quantum algorithm and
yields the order of magnitude of the number of function
evaluations required to solve the problem in an optimal
quantum way. If this held in general, we would have
a very powerful tool, the way of assessing the order of
magnitude of the number of function evaluations (oracle
queries) required to solve a generic oracle problem in an
optimal quantum way.

3 Positioning the work

The present work is the further development of the ap-
proach followed in [14–16]. We have further clarified the
retrocausal interpretation of the speedup and developed
a procedure for computing the number of function eval-
uations required to solve a generic oracle problem with
quantum retrocausality R = 1

2 .
This retrocausal interpretation is in line with the tenet

of time-symmetric quantum mechanics of Aharonov and
collaborators [17–19], which states that the complete de-
scription of the quantum process between initial and final
measurement requires knowledge not only of the outcome
of the initial measurement, but also of that of the final one.
This naturally implies that the latter outcome has back in
time implications on the upstream process. As a matter
of fact, the form of quantum retrocausality utilized in the
present work has been inspired by the work of Dolev and
Elitzur [20] on the non-sequential behavior of the wave
function highlighted by partial measurement.

More specifically, the notion of advanced knowledge
is in line with the finding that apparently random events
in quantum mechanics are caused by events in the fu-
ture [21]. Aharonov and collaborators analyzed a se-
quence of weak and strong measurements performed on
an Einstein–Podolsky–Rosen pair, and concluded that
“the most reasonable resolution seems to be that of the
two-state vector formalism, namely, that the choice of
the experimenter has been encrypted within the weak
measurement’s outcomes, even before the experimenters
themselves know what their choice will be” [21]. Extend-
ing the notion of advanced knowledge to the two-state
vector formalism would be an interesting prospect.

The work has points of contact with those of Morikoshi
who highlighted the problem-solution symmetry of
Grover’s and the phase estimation algorithms, and noted
that it may be relevant for the explanation of the speedup
[22]. He further showed that Grover algorithm violates
a temporal Bell inequality [23]. There should be a con-
nection between this violation and the form of quantum
retrocausality we are dealing with.

Besides [14–16], we are not aware of literature relat-
ing the speedup to quantum retrocausality. There are of
course other approaches to the problem of finding a com-
mon reason for the variety of speedups found until now.
An exemplification is as follows.

Jozsa and Linden showed that the presence of multi-
partite entanglement with number of parties increasing
unbounded with problem size is necessary for achieving
exponential speedup in pure state quantum computing.
They also conjectured that there could be exponential
speedup in the absence of entanglement in mixed state
quantum computing [24].
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The notion of quantum discord was introduced inde-
pendently in [25] and [26]. Discord is a measure of
non-classical correlations between two subsystems of
a quantum system that are not necessarily entangled. It
coincides with entanglement in pure state quantum com-
puting. Discord could be of high practical interest, since
it shows the possibility of achieving a speedup in mixed
state quantum computing, which is the realistic form of
computation in the presence of noise.

Gross and collaborators showed that, contrary to the
topical thought at the time, quantum states can be too
entangled to be useful for the purpose of computation
[27].

At present, no single reason behind the speedup was
found from the standpoint of entanglement or discord.
The speedup appears to always depend on the exact nature
of the problem while the reason for it varies from problem
to problem [26].

With respect to the above approaches, the novelty of the
present one is replacing entanglement by the retrocausal-
ity measure R, a possibly more fundamental quantum
feature as it might explain entanglement [28]. Here the
unifying feature is the permanence of R in a right sur-
rounding of 1

2 , where the number of queries required to
solve the oracle problem varies a little. If this were true in
general, beyond the sample of quantum algorithms exam-
ined, given an oracle problem we would know the order
of magnitude of this number. This should be the object
of further research, the present work is an exploration.

One of the main approaches to the study of the speedup
is that of quantum computer science, which classifies the
hardness of computational problems given a mathemati-
cal abstraction of the physical mechanism that performs
the computation, typically the universal quantum Tur-
ing machine. For example, Aaronson studied the class
of problems efficiently solvable with a quantum com-
puter given a capability of postselecting measurement
outcomes, and demonstrated that this class coincides with
the well known classical complexity class PP (Proba-
bilistic Polynomial-time), as well as the closure of either
class under intersection [29]. Physically, the ability to
postselect on a measurement yielding a specific outcome
means that the computation process is to satisfy a con-
straint placed in its future, what can be seen as a form of
retrocausality. One might wonder whether the retrocausal
interpretation of the speed up could provide a more direct
physical interpretation of complexity classes.

We eventually cite tree size complexity [30] and con-
textually based [31] arguments. In the former, a measure
of the complexity of the multiqubit state is shown to be
related to the speedup of a variety of quantum algorithms.
The latter addresses the relation between speedup and the
contextual character of quantum mechanics. It has led

to identifying a form of fault tolerant quantum computa-
tion (by magic states) that is specially resilient to noise.
Also the present retrocausal interpretation of the speedup
could be considered a contextually based argument. The
reduction of the initial and final measurements of a quan-
tum process to partial non-redundant measurements is of
course contextual in character.

4 The seminal Deutsch algorithm

Let us review the usual representation of Deutsch algo-
rithm, limited to the process of solving the problem. We
need two quantum registers: A, of basis vectors |0〉A and
|1〉A, and V , of basis vectors |0〉V and |1〉V . We use ket vec-
tors instead of density operators as in the original Deutsch
algorithm.

Bob chooses one of the four functions in Table 1, say
f01 (a), and gives Alice the black box that computes it.
Alice knows Table 1 but does not know which is the func-
tion chosen by Bob. She is to find whether it is constant
or balanced through function evaluations. She prepares
register A with the value of a for which she wants to per-
form function evaluation. The black box computes the
value of f01 (a) and adds it modulo two to the former con-
tent of register V . Being logically reversible, modulo two
addition can be implemented unitarily. In the introduction
we omitted register V because transformations are unitary
also without it, but they are more difficult to explain.

For reasons that will soon become clear, the input state
of the quantum algorithm is

|ψ〉 =
1
√

2
|0〉A

(
|0〉V − |1〉V

)
. (4)

Alice applies to register A the Hadamard transform ĤA,
which transforms |0〉A into 1√

2
(|0〉A + |1〉A) and |1〉A into

1√
2

(|0〉A − |1〉A), producing the state

ĤA |ψ〉 =
1
2

(|0〉A + |1〉A)
(
|0〉V − |1〉V

)
, (5)

then asks the black box to compute the value of the func-
tion. Let Û f be the corresponding unitary transformation
(defined in the Hilbert space of all registers). We have

Û f ĤA |ψ〉 =
1
2

(|0〉A − |1〉A)
(
|0〉V − |1〉V

)
. (6)

Function evaluation is performed in quantum parallelism
for each term of the input state superposition. It leaves
the term |0〉A

(
|0〉V − |1〉V

)
, appearing in the input state 5,

unaltered. In fact, here the argument of the function, the
content of register A, is 0. The computation of f01 (0)
yields 0 that module two added to the former content
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of register V leaves everything unaltered. Function eval-
uation instead changes the term |1〉A

(
|0〉V − |1〉V

)
into

|1〉A
(
|1〉V − |0〉V

)
= − |1〉A

(
|0〉V − |1〉V

)
. In fact now we

have to module two add f01 (1) = 1 and this changes |0〉V
into |1〉V and |1〉V into |0〉V .

Then Alice applies a second time the Hadamard trans-
form to register A, obtaining the output state

ĤAÛ f ĤA |ψ〉 =
1
√

2
|1〉A

(
|0〉V − |1〉V

)
. (7)

Eventually she measures the content of register A, namely
the observable Â of eigenstates |0〉A and |1〉A and eigen-
values respectively 0 and 1. She reads the eigenvalue
1, which tells her that the function is balanced (the final
content of register A is 0 when the function is constant
and 1 when it is balanced).

Thus the problem of checking whether the function
given by Bob is constant or balanced is always solved
with just one function evaluation quantumly, against two
classically.

The mathematics of the speedup in this quantum algo-
rithm is obvious, in the sense that we have it under the
eyes. However, the mathematics of different quantum
algorithms is different from one algorithm to another as
there is no known universal scheme. The mechanism of
the speedups, provided there is such one, is not known.

4.1 Time-symmetric and relativized
representations

To start with, we extend the representation of Deutsch
algorithm to the process of choosing the black box. To
this end, we should add an imaginary quantum register
B of basis vectors |00〉B, |01〉B, |10〉B, and |11〉B. This
register contains the problem setting, namely the suffix b
of the function chosen by Bob. The previous black box,
which computed fb (a) for a well determined value of b
and any value of a, is replaced by a universal one that
computes fb (a) for any values of b and a. Registers A
and V have the same role as before.

For reasons that will soon become clear, we assume
that register B is initially in the maximally mixed state

ρ̂B =
1
4
(
|00〉 〈00|B + |01〉 〈01|B + |10〉 〈10|B + |11〉 〈11|B

)
.

(8)
As we will need a detailed representation of quantum
states and operators, for reasons of encumbrance we rep-
resent all states as ket vectors, not matrices. To this end,
we move to the random phase representation [32] of the
maximally mixed state of register B that is

|ψ〉B =
1
2
(
eıϕ0 |00〉B + eıϕ1 |01〉B + eıϕ2 |10〉B + eıϕ3 |11〉B

)
,

(9)

where the ϕi are independent random phases with uniform
distribution in [0, 2π]. We will be dealing with a trivial
application of the random phase representation: we can
always think that the quantum state evolves as a pure state
with the ϕi fixed phases. Only when we have to compute
its von Neumann entropy, we should remember that the
ϕi are random variables. The von Neumann entropy of
state |ψ〉B, as that of ρ̂B, is 2 bits.

By the way, ρ̂B is the mathematical average over all
the ϕi of the outer product |ψ〉B 〈ψ|B; reading state |ψ〉B is
also simple: it is a mixture of pure states with the phases
ϕ0, ϕ1, ϕ2, ϕ3 all different, in fact a dephased quantum
superposition.

The overall initial state of the three registers, at time t0,
is thus

|ψ〉 =
1
√

8

(
eıϕ0 |00〉B + eıϕ1 |01〉B + eıϕ2 |10〉B

+ eıϕ3 |11〉B
)
|0〉A

(
|0〉V − |1〉V

)
. (10)

In order to prepare register B in the desired prob-
lem setting, at time t0 Bob measures its content,
namely the observable B̂ of eigenstates the basis vectors
|00〉B , |01〉B , . . . and eigenvalues respectively 00, 01, . . .
Note that B̂ commutes with Â. The measurement outcome
is completely random. Say it comes out the eigenvalue
b = 10. The state immediately after measurement is

P̂B |ψ〉 =
1
√

2
|10〉B |00〉A

(
|0〉V − |1〉V

)
, (11)

where P̂B is the projection of the quantum state induced
by Bob’s measurement. Then Bob applies to register
B a unitary transformation ÛB that changes the random
measurement outcome into the desired problem setting,
say b = 01. At time t1 we will have

ÛBP̂B |ψ〉 =
1
√

2
|01〉B |0〉A

(
|0〉V − |1〉V

)
. (12)

State 12 is the input state of the quantum algorithm in
the representation extended to the process of setting the
problem. There are of course many ÛB that change |10〉B
into |01〉B. For simplicity of exposition, we choose the
one that bit by bit changes zeros into ones and ones into
zeros

ÛB ≡ |11〉 〈00|B + |10〉 〈01|B + |01〉 〈10|B + |00〉 〈11|B .
(13)

The output state of the extended representation of the
quantum algorithm is

ĤAÛ f ĤAÛBP̂B |ψ〉 =
1
√

2
|01〉B |1〉A

(
|0〉V − |1〉V

)
. (14)
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Of course, input and output states are the same as in the
usual representation of the quantum algorithm up to the
presence of the ket |01〉B.

We note that this extension immediately calls for an-
other one, this time concerning the actors (observers) on
the stage. We resort to relational quantum mechanics
where quantum states are observer-dependent. State 12 is
with respect to Bob, the problem setter, and any other ob-
server who does not act on the problem solving process.
It cannot be with respect to Alice, the problem solver.
The sharp state |01〉B would tell her, before she starts her
search for the solution, that the function chosen by Bob
is f01 (a). She would know that it is balanced without
performing any function evaluation. The suffix of the
function should be hidden to Alice because to her it is
inside the black box. To physically represent this fact, it
suffices to retard the projection P̂B until the end of the
unitary part of Alice’s action, at time t2.

To her, the state of register B in the input state of the
quantum algorithm is still maximally mixed. In fact ÛB

leaves state 10 unaltered up to an irrelevant permutation
of the independent random phases. Thus, disregarding
the permutation, state 10 is the input state to Alice.

We started with register B in a maximally mixed state
to represent the fact that, to Alice, the problem setting is
physically hidden.

Summing up, states 10 through 14 are the representa-
tion of the quantum algorithm with respect to Bob. In
the representation with respect to Alice, the input state,
which coincides with the initial state, is

ÛB |ψ〉 = |ψ〉 =
1
√

8

(
eıϕ0 |00〉B + eıϕ1 |01〉B + eıϕ2 |10〉B

+eıϕ3 |11〉B
)
|0〉A (|0〉V − |1〉V ). (15)

The two bit entropy of the state of register B represents
Alice’s complete ignorance of the problem setting. The
output state is

ĤAÛ f ĤAÛB |ψ〉 =
1
√

8

[ (
eıϕ0 |00〉B + eıϕ3 |11〉B

)
|0〉A

+
(
eıϕ1 |01〉B − eıϕ2 |10〉B

)
|1〉A

]
(|0〉V − |1〉V ), (16)

We can see that, for each possible problem setting (value
of b contained in register B), Alice has built the corre-
sponding solution of the problem s (b) in register A.

Eventually, at time t2, she acquires the solution by read-
ing the content of register A, namely by measuring Â. We
should keep in mind that the output state 16 is with respect
to Alice. The same state with respect to Bob and any other
observer is 1√

2
|01〉B |1〉A

(
|0〉V − |1〉V

)
. The measurement

outcome is unpredictable to Alice, it is already 1 to any
other observer. Thus Alice’s measurement must select the

eigenvalue 1 with probability one, projecting state 16 on

P̂AĤAÛ f ĤAÛB |ψ〉 =
1
√

2

(
eıϕ1 |01〉B − eıϕ2 |10〉B

)
⊗ |1〉A

(
|0〉V − |1〉V

)
, (17)

where P̂A is the projection induced by the final Alice’s
measurement. State 17 is further projected on

1
√

2
|01〉B |1〉A

(
|0〉V − |1〉V

)
(18)

by the retarded projection induced by the initial Bob’s
measurement. We note that inverting the order of the two
projections leaves the end result unaltered. As a matter of
fact, since the projection due to Bob’s measurement can-
not be retarded beyond the unitary part of Alice’s action,
we should see the two projections as simultaneous. In
this way Alice, by measuring Â, also acquires the content
of register B. In fact state 18, with register B in the sharp
state |01〉B, tells Alice that the problem setting chosen by
Bob is b = 01. This state is common to the representation
with respect to Alice and to that with respect to Bob.

In view of what will follow, we note that Alice’s mea-
surement of Â in the output state with respect to her is
equivalent to the measurement of B̂. In fact either mea-
surement projects state 16 on state 18, where the sharp
states of registers B and A tell Alice both the setting and
the solution of the problem.

4.2 Quantum feedback

The random phase representation of the reduced density
operator of register A in the output state 16 is

|ψ〉A =
1
√

2

(
eıΦ0 |0〉A + eıΦ1 |1〉A

)
, (19)

where Φ0 and Φ1 are independent random phases with
uniform distribution in [0, 2π]. The usual density matrix
representation is

ρ̂A =
1
2

(|0〉A 〈0|A + |1〉A 〈1|A) . (20)

Here, EA, the entropy of |ψ〉A or ρ̂A, is 1 bit. The zeroing
of EA can be due to either the projection of the quantum
state associated with the measurement of B̂ in the initial
state 10, retarded at the end of the unitary part of Alice’s
action, or that associated with the measurement of Â in
the output state 16 (we have seen that the two projections
should be considered simultaneous). The present work is
an exploration of the assumption that the zeroing of EA

shares between the two measurements.
To this end, we assume that the two complete mea-

surements reduce to partial measurements that obey the
following two Occam conditions:
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(1) together, they select whatever was selected by the
complete measurements, and

(2) each performed alone, contribute in a complemen-
tary and non-redundant way to the zeroing of EA. By this
we mean that no information provided by either partial
measurement is provided by the other.

The assumption that the two partial measurements con-
tribute equally to the zeroing of EA, namely that R = 1

2 ,
explains the speedup of the present quantum algorithm.

We should reduce the initial Bob’s measurement and
the final Alice’s measurement to two partial measure-
ments submitted to (1) and (2), and the condition of
equally contributing to the zeroing of EA.

We have seen that the measurement of Â in the rela-
tivized output state 16 is equivalent to that of B̂. Thus we
can move to the problem of reducing two measurements
of B̂, one performed by Bob in the initial state 10 and
the other by Alice in the output state 16, to two partial
measurements, say of B̂i and B̂ j, satisfying Occam condi-
tions. In the most general terms, B̂i and B̂ j are Boolean
functions of B̂, such as: B̂0, the content of the left cell of
register B, B̂1, the content of the right cell, XOR

(
B̂0, B̂1

)
,

the exclusive or between the two former contents, etc.
We provide an example of reduction of the complete

measurements to such partial measurements. We keep the
assumption that the initial measurement of B̂ randomly se-
lects the eigenvalue b = 10 and that Bob, by ÛB, changes
it into b = 01. Let b ≡ b0b1; we assume that the eigen-
value b0 = 1 is selected at time t0 by the measurement
of B̂0 in the initial state and that the eigenvalue b1 = 1 is
selected at time t2 by the measurement of B̂1 in the output
state.

To reconstruct the selections performed by the com-
plete measurements, we should propagate forward in time,
by ĤAÛ f ĤAÛB, the projection induced by the former
measurement and backward in time, by its inverse, the
projection induced by the latter measurement. The two
propagations can be performed in any order, the recon-
struction is the same.

Let us perform the backward propagation first. The
measurement of B̂1 in the output state 16, which as-
sumedly selects b1 = 1, projects this state on

|χ〉 =
1
2

(
eıϕ1 |01〉B |1〉A + eıϕ3 |11〉B |0〉A

) (
|0〉V − |1〉V

)
.

(21)
We advance at time t0 the two ends of this projection. The
result is the projection of the initial state 10 on

Û†BĤ†AÛ†f Ĥ†A |χ〉 =
1
2

(
eıϕ3 |00〉B + eıϕ1 |10〉B

)
⊗ |0〉A (|0〉V − |1〉V ). (22)

The permutation of the independent random phases is
irrelevant. At this point the measurement of B̂0 in state

22, which assumedly selects b0 = 1, projects it on

|ξ〉 =
1
√

2
|10〉B |0〉A

(
|0〉V − 1V

)
. (23)

Of course, the state 23, under ĤAÛ f ĤAÛB, evolves into
state 18, the final state common to both representations (to
Bob and to Alice). We have reconstructed the selections
performed by the complete measurements. Furthermore,
the reduction of EA induced by either partial measure-
ment, performed alone, is half bit and no information
acquired by either partial measurement is acquired by the
other. Conditions (1) and (2) are satisfied.

One can see that, eventually, everything boils down to
ascribing the selection of one of the two bits (the right
one in present assumptions) of the random outcome of
the initial measurement to the final measurement. We are
not sending a message backward in time. Each of the
bits that specify the outcome of the initial measurement
is independently and randomly selected. We are just
ascribing half of these random selections to the final rather
than the initial measurement.

We note that sharing between Bob’s and Alice’s mea-
surements the zeroing of EA does not affect Bob’s free-
dom of choosing the function computed by the black box.
We should keep in mind that the probability that Alice’s
measurement of B̂ in state 16 selects b = 01, or that
the measurement of B̂1 selects b1 = 1 (the right digit of
01), is one. This means that the measurement of B̂1 just
reads the right digit of the problem setting b = 01 freely
chosen (determined) by Bob, without possibly altering
it, or affecting Bob’s freedom of choosing it. This goes
along with the fact that the backward propagation of the
projection due to the measurement of B̂1 in the output
state does not determine any part of Bob’s choice, but the
right digit of the random outcome of Bob’s measurement
b = 10, which is before that choice.

The kind of retrocausation discussed above has been
invoked in various articles to explain Einstein–Podolsky–
Rosen non-locality, see for example [28]. It has no con-
sequence in the representation of the quantum algorithm
with respect to Bob and any external observer. To them,
it leaves the input state of the algorithm, namely state
12, unaltered. It just tells that, say, the left digit of the
random outcome of Bob’s measurement b = 10 has been
randomly selected by Bob’s measurement and the right
digit has been randomly selected back in time by the
future Alice’s measurement, which is an apparently in-
consequential fact.

Things change dramatically in the representation with
respect to Alice who is the problem solver.

We have seen that the projection induced by Alice’s
measurement of B̂1 in the output state 16 must propagate
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backward in time through the inverse of ĤAÛ f ĤAÛB until
t0, where it selects the right digit of the random outcome
of Bob’s measurement 10. Let us see the value of this
backward propagation at time t1, immediately after the
application of ÛB and before that of ĤAÛ f ĤA. This time
we should advance the two ends of the projection of state
16 on state 21 by the inverse of ĤAÛ f ĤA. The result is
the projection of state 15, the input state of the quantum
algorithm with respect to Alice, on

Ĥ†AÛ†f Ĥ†A |χ〉 =
1
2

(
eıϕ1 |01〉B + eıϕ3 |11〉B

)
⊗ |0〉A

(
|0〉V − |1〉V

)
. (24)

This is an outstanding consequence. State 24, the input
state to Alice under the assumption that the selection of
the solution equally shares between Bob’s and Alice’s
measurements, tells her, before she performs any function
evaluation, that the suffix of the function chosen by Bob
is either b = 01 or b = 11, namely that b ∈ {01, 11}. We
can say that Alice knows in advance that b ∈ {01, 11},
since this knowledge comes from the projection of the
quantum state induced by her future measurement.

We are at a fundamental level where knowing is doing
(David Finkelstein, private communication). Alice is the
problem solver, her knowing in advance that b ∈ {01, 11}
would simply mean that the quantum algorithm requires
the number of function evaluations classically required to
identify the solution starting from that knowledge. This
interpretation seems to exactly fit a Feynman’s sum over
classical histories representation of the quantum algo-
rithm. The quantum algorithm can be seen as a sum over
classical histories in each of which Alice knows in ad-
vance one of the possible halves of the information that
specifies the problem setting and performs the function
evaluations classically required to find the solution. This
also accounts for there being a plurality of ways of taking
half of the information: all these possibilities are taken in
quantum superposition.

In the present case, the number of function evaluations
required to discriminate between f01 (a) and f11 (a) is just
one. The value of the function for the argument a = 0
does the job as can be seen from the tables of the two
functions in question in Table 1. Since it is 0, the function
must be f01 (a), what implies that it is balanced.

Let us see this in more detail. A classical history is
a classical trajectory of the quantum registers, namely a
causal sequence of sharp register states. For example

eıϕ1 |01〉B |0〉A |0〉V
ĤA
→ eıϕ1 |01〉B |0〉A |0〉V

Û f
→ eıϕ1 |01〉B |0〉A |0〉V

ĤA
→ eıϕ1 |01〉B |1〉A |0〉V . (25)

The left-most state is one of the elements of the input
state superposition 15. The state after each arrow is one

of the elements of the superposition generated by the
unitary transformation of the state before the arrow; the
transformation in question is specified above the arrow.

In history 25, the problem setting is b = 01. Alice
performs function evaluation for a = 0 (second and third
state). This behavior is justifiable by two instances of
Alice’s advanced knowledge. One is b ∈ {01, 11}B, the
other b ∈ {01, 10}B. The value of the function for a = 0
in either case tells that the function in the black box is
f01 (a) and thus that it is balanced.

5 Generalization

We have shown that R = 1
2 explains the speedup of

Deutsch algorithm. Implicit in this demonstration is a
capability to compute the number of function evaluations
required to solve Deutsch’s problem with retrocausality
R = 1

2 . Now we make this capability explicit, while ex-
tending it to the generic oracle problem. In other words,
given a generic oracle problem (with no need to know
the quantum algorithm that solves it), we show how to
compute the number of function evaluations required to
solve it with retrocausality R = 1

2 according to the present
model.

We focus on R = 1
2 for the conjecture that this value of

R always yields the order of magnitude of the number of
function evaluations required to solve the problem in an
optimal quantum way. This is the case of all the quantum
algorithms examined in this work. We will further discuss
the plausibility of this conjecture in Section 9.

A generic oracle problem can be formulated as follows.
We have a set of functions fb : {0, 1}n → {0, 1}m with
m ≤ n. The suffix b ranges over the set of all the problem
settings σB. Bob chooses one of these functions (a value
of b) and gives Alice the black box (oracle) that computes
it. Alice knows the set of functions but does not know
which is the function chosen by Bob. She is to find a
certain feature of the function (for example, whether it is
constant or balanced in the algorithm of Deutsch, or its
period in that of Shor) by performing function evaluations
(oracle queries). We call the feature in question, which is
the solution of the problem and a function of b, s (b).

5.1 Time-symmetric representation to
Alice

Provided that a register B contains the problem setting b
and a register A will eventually contain the solution s (b),
the most general form of the input and output states of
the unitary part Û of Alice’s problem-solving action, in
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the representation of the quantum algorithm to her, is

|in〉BAW =
1
√

c

 ∑
b ∈ σB

eıϕb |b〉B

 |00 . . .〉A |ψ〉W , (26)

|out〉BAW = Û |in〉BAW

=
1
√

c

∑
b ∈ σB

eıϕb |b〉B |s (b)〉A |ϕ (b)〉W , (27)

where c is the cardinality of σB, |ψ〉W and |ϕ (b)〉W are
normalized states of a register W, which stands for any
other register or set of registers.

Û should not change the problem setting. It suffices
that register B is the control register of all function eval-
uations, what means that the content of register B af-
fects the output of function evaluation while remaining
unaltered through it, and the unitary transformations be-
fore and after each function evaluation do not apply to
B. Correspondingly, Û sends the input into the output
independently term by term and keeping the value of b
unaltered

∀b : Û |b〉B |00 . . .〉A |ψ〉W = |b〉B |s (b)〉A |ϕ (b)〉W .

(28)
Given the oracle problem, namely all the pairs b and s (b),
and provided that one is free to add suitable garbage
qubits to register W, it should not be difficult to put the
input and output states in a form compatible with the
existence of such a Û between them. In the following, we
assume that states 26 and 27 are of this form. We will see
that we do not need to know the form of Û to the end of
ascertaining the number of function evaluations required
to solve the oracle problem with quantum retrocausality
R = 1

2 ; it suffices to know all the pairs b and s (b).
Note that, for Eq. 28, the projection of the quantum

state induced by any measurement on the content of reg-
ister B in the output state, advanced by Û†, becomes the
projection induced by performing the same measurement
in the input state. Conversely, the projection induced by
any measurement on the content of B in the input state,
retarded by Û, becomes the projection induced by per-
forming the same measurement in the output state. This
goes along with the fact that the reduced density operator
of register B remains the same throughout Û. Its random
phase representation is

|ψ〉B =
1
√

c

∑
b ∈ σB

eıϕb |b〉B , (29)

and the usual density matrix representation is

ρ̂B =
1
c

∑
b ∈ σB

|b〉 〈b|B . (30)

5.2 Quantum feedback

Given Eqs. 26 and 27, we show how to share the selection
of the solution between initial and final measurements and
derive the corresponding Alice’s advanced knowledge in
the case R = 1

2 .
It is simpler to assume that ÛB is the identity. In this

way we can think that the initial Bob’s measurement is
performed in state 26. Of course, its selection of a value
of b also determines that of s (b).

We reformulate Occam conditions (1) and (2) for the
particular case R = 1

2 . We should reduce in all the pos-
sible ways the two measurements of B̂, one on the part
of Bob in the input state and the other on the part of Al-
ice in the output state (see Section 4.2), to two partial
measurements, of B̂i and B̂ j, such that:

(1′) together, they select whatever is selected by the
complete measurements, and

(2′) each performed alone, they contribute in an equal
and non-redundant way to the selection of the solution.

Let EA be the von Neumann entropy of the solution,
namely of the trace over registers B and W of state
|out〉BAW . Point (2′) implies the following two conditions

∆EA(B̂i) = ∆EA(B̂ j), (31)

where ∆EA(B̂i) is the reduction of EA due to the measure-
ment of B̂i, ∆EA(B̂ j) is the reduction of EA due to the
measurement of B̂ j, and

no partial measurement outcome provides
enough information to select the solution

(32)

In fact the cases are two: if both outcomes provided
enough information, then there would be redundant infor-
mation, what is forbidden by the no-redundancy condition.
If only one did, then the two partial measurements would
not contribute equally to the selection of the solution,
what is forbidden by the equality condition. Condition
32 is redundant when b is an unstructured bit string as in
Deutsch algorithm, it is not when b is structured.

Alice’s measurement of B̂ j (as any measurement of a
Boolean function of B̂), performed alone, must induce a
projection of the output state 27 on a state of the general
form

|χ〉 =
1
√

c′

∑
b ∈ σ′B

eıϕb |b〉B |s (b)〉A |ϕ (b)〉W , (33)

where σ′B is a subset of σB of cardinality c′. Alice’s
advanced knowledge is obtained by advancing by Û† the
two ends of this projection at the input of the quantum
algorithm, at time t1 immediately after the preparation of
the problem setting (which here is the outcome of Bob’s
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measurement). Even without knowing Û†, we know that,
for Eq. 28, this projects the input state 26 on

1
√

c′

 ∑
b ∈ σ′B

eıϕb |b〉B

 |00 . . .〉A |ψ〉W . (34)

In particular, it projects the maximally mixed state 29 of
register B on the state of lower entropy

1
√

c′

∑
b ∈ σ′B

eıϕb |b〉B , (35)

which represents Alice’s advanced knowledge, namely
Alice knows in advance that b ∈ σ′B. For short we say
that Alice’s measurement of B̂ j projects σB on σ′B.

Still for Eq. 28, the same projection can be obtained
by measuring B̂ j in the input state. We also note that,
mathematically, nothing changes if we assume to start
with that the two complete measurements reduce to two
partial measurements, of B̂i and B̂ j, both performed in the
input state. Conditions (1′) and (2′) define the same pairs
of partial observables B̂i and B̂ j no matter whether B̂ j is
measured in the input or output state. In fact moving the
measurement from the output to the input state leaves all
selections and reductions of the entropy of the solution
unaltered.

This latter way of assessing Alice’s advanced knowl-
edge highlights a symmetry hidden in the former one.
We are left with two partial measurements of the content
of register B that satisfy conditions (1′) and (2′), both
performed in the input state. We can lose the memory
of which partial measurement is performed by Alice and
which by Bob. Evidently, either partial measurement can
be the one performed by Alice. Therefore, given a pair
of partial measurements, of B̂i and B̂ j, in the input state
26 that satisfy conditions (1′) and (2′), either partial mea-
surement performed alone projects the maximally mixed
state 29 of register B on an instance of Alice’s advanced
knowledge. By the way, in this sense we can say that,
with quantum retrocausality R = 1

2 , Alice knows half of
the problem setting in advance.

It is important to note that register W, which we have
considered for generality and could be necessary to con-
struct the quantum algorithm, is not involved in the defi-
nition of the pairs B̂i and B̂ j. Let us recall the conditions
their measurements (which can be both performed in the
input state 26) are submitted to: (i) together, they select
a value of b, (ii) the information acquired by either mea-
surement is not acquired by the other, (iii) they satisfy
Eq. 31, and (iv) they satisfy requirement 32. Conditions
(i), (ii) and (iv) only involve the input state of register
B, namely state 29. Also condition (iii) does not involve
register W, as the reductions of the entropy of the solution

∆EA(B̂i) and ∆EA(B̂ j) concern the trace of the output state
27 over registers B and W.

Therefore, to the end of determining B̂i and B̂ j, we
can work with |in〉BA and |out〉BA, the traces over W of
|in〉BAW and |out〉BAW ; it suffices to drop |ψ〉W and the
|ϕ (b)〉W . States |in〉BA and |out〉BA, in turn, can be written
solely on the basis of the pairs b and s (b), namely of the
oracle problem.

Since the quantum algorithm can be seen as a sum
over classical histories in each of which Alice knows in
advance one of the possible halves of the problem setting
and performs the function evaluations still necessary to
identify the solution, given an oracle problem, we can
know the number of function evaluations required to solve
it with quantum retrocausality R = 1

2 .

5.2.1 Example of application

We apply the present procedure to Deutsch’s problem. Of
course, we should ignore Deutsch algorithm.

Given the problem, namely all the pairs b and s (b),
we write down |in〉BA and |out〉BA (of course we obtain
the traces over register V of states 15 and 16). We do
not need to know Û. It suffices to know that there can be
a unitary transformation between input and output that
satisfies Eq. 28. Under conditions (1′) and (2′), |in〉BA and
|out〉BA define the pairs of partial observables B̂i and B̂ j

we are looking for, in particular it is easier to think that
they are both measured in |in〉BA. It is not a constructive
definition, however finding the pairs in question will be
easy in all the cases examined in this work. In the case of
Deutsch’s problem they are any two of the three partial
observables: B̂0, B̂1, and B̂X ≡ XOR

(
B̂0, B̂1

)
. These

partial observables are Boolean functions of B̂ and the
measurements of any two of them satisfy conditions (1′)
and (2′) with ∆EA(B̂i) = ∆EA(B̂ j) = 1

2 bit.
Given a problem setting, say b = 01, either partial

observable, B̂i or B̂ j, corresponds to an instance of Al-
ice’s advanced knowledge as follows. We should as-
sume that its measurement selects the eigenvalue that
matches with the problem setting. With problem setting
b ≡b0b1 = 01, this implies that the measurement of B̂0
selects b0 = 0, that of B̂1 selects b1 = 1, and that of B̂X se-
lects XOR (b0, b1) = 1. The corresponding projections of
σB are respectively on {00, 01}B, {01, 11}B, and {01, 10}B.
Thus the instances of Alice’s advanced knowledge are
b ∈ {01, 00}B, b ∈ {01, 11}B, and b ∈ {01, 10}B, as obvi-
ous in hindsight. For any of these instances, Alice can
solve the problem with a single function evaluation.

We call the present procedure the advanced knowledge
rule. Given a generic oracle problem, this rule defines the
number of function evaluations required to solve it with
quantum retrocausality R = 1

2 . The importance of this
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rule depends on the confidence that can be placed in the
assumption that retrocausality R = 1

2 is always attainable.
This is the case in all the quantum algorithms examined
in the present work. Whether it is the case in general
should be the object of further work, the present one is an
exploration.

6 Grover Algorithm

Bob hides a ball in one of N = 2n drawers (equivalently,
he marks an item in an unstructured database of size
N). Alice is to locate it by opening drawers. In the
classical case, to be a priori certain of locating the ball,
Alice should plan to open O (N) drawers, in the case of
Grover [33] quantum search algorithm O

(√
N
)
.

The problem, an oracle one, is formalized as follows.
Let b and a, belonging to {0, 1}n, be respectively the
number of the drawer with the ball and that of the drawer
that Alice wants to open. Checking whether the ball is
in drawer a amounts to evaluating the function fb (a) :
{0, 1}n → {0, 1}, which is 1 if a = b and 0 otherwise.

Bob chooses one of the functions fb (a) (that is a value
of b) and gives Alice the black box that computes it. Alice
is to find the value of b chosen by Bob by performing
function evaluations for appropriate values of a.

We will distinguish between n = 2 and n > 2. The
speedup of Grover’s algorithm with n = 2 is explained by
R = 1

2 . When n goes past 2, R slightly goes above 1
2 , to

go back to 1
2 for n→ ∞.

6.1 Grover algorithm with n = 2

6.1.1 Time-symmetric representation to Alice

The input and output states of the quantum algorithm to
Alice are respectively

ÛB |ψ〉 = |ψ〉 =
1
√

8

(
eıϕ0 |00〉B + eıϕ1 |01〉B + eıϕ2 |10〉B

+eıϕ3 |11〉B
)
|00〉A

(
|0〉V − |1〉V

)
, (36)

=̂AÛ f ĤAÛB |ψ〉 =
1
√

8

(
eıϕ0 |00〉B |00〉A + eıϕ1 |01〉B |01〉A

+eıϕ2 |10〉B |10〉A + eıϕ3 |11〉B |11〉A
) (
|0〉V − |1〉V

)
. (37)

The function of registers B, A, and V is as in Deutsch
algorithm. ÛB unitarily transforms the random outcome
of Bob’s measurement into the desired problem setting,
ĤA is the Hadamard transform on register A, Û f is func-
tion evaluation, and =̂A is a unitary transformation on
register A that is called inversion about the mean. Note
that we could write the input and output states of registers
B and A only on the basis of the pairs b and s (b), and

without knowing Grover algorithm. The state of register
V is irrelevant for the determination of Alice’s advanced
knowledge.

Measuring Â in the output state 37 yields the number
of the drawer with the ball chosen by Bob.

6.1.2 Quantum feedback

We apply the advanced knowledge rule to Grover’s prob-
lem with n = 2. This yields the number of function
evaluations required to solve the problem with quantum
retrocausality R = 1

2 . The pairs of partial observables are
the same as in Deutsch algorithm: all the pairs among B̂0,
B̂1, and B̂X . One can see that they satisfy conditions (1′)
and (2′) with ∆EA(B̂i) = ∆EA(B̂ j) = 1 bit.

Suppose that the problem setting chosen by Bob is b =

01, namely Bob hides the ball in drawer 01. The instances
of Alice’s advanced knowledge are: b ∈ {01, 00}B, b ∈
{01, 11}B, and b ∈ {01, 10}B. In other words, Alice knows
in advance that the ball is in one of a pair drawers (one
of which with the ball in it). This allows her to locate the
ball by opening either drawer (that is by performing just
one function evaluation).

All the above could be derived solely from |in〉BA and
|out〉BA, the traces over register V of states 36 and 37,
which can be written solely on the basis of the pairs b
and s (b). One does not need to know Grover algorithm.
However, it is of course in agreement with the n = 2 in-
stance of Grover algorithm. This means that the speedup
of this instance is explained by quantum retrocausality
R = 1

2 .
The present instance of Grover algorithm can be seen

as a sum over classical histories in each of which Alice
knows in advance that the ball is in a pair of drawers and
locates it by opening either drawer. An example history
is

eıϕ1 |01〉B |00〉A |0〉V
ĤA
→ eıϕ1 |01〉B |11〉A |0〉V

Û f
→ eıϕ1 |01〉B |11〉A |0〉V

=̂A
→ eıϕ1 |01〉B |01〉A |0〉V . (38)

The problem setting is b = 01. Alice performs function
evaluation for a = 11 (second and third state). Therefore,
we must assume that Alice’s advanced knowledge is b ∈
{01, 11}B. Since the output of function evaluation is zero
(the content of register V remains unaltered), she finds
that the number of the drawer with the ball is b = 01.

6.2 Grover algorithm with n > 2

We should make a clarification to start with. If n > 2,
the original Grover algorithm does not provide the solu-
tion of the problem with absolute certainty. For this, one
has to resort to the revision of Grover algorithm made
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by Long [34] (see also [35]). Long’s algorithm can be
tuned to provide the solution of Grover’s problem with
certainty with any number of function evaluations pro-
vided it is above the minimum number required by the
optimal quantum algorithm, which is

K =
π

4 arcsin(2−
n
2 )
≈
π

4
2

n
2 . (39)

Incidentally, this is also the number required by Grover
algorithm, which however does not provide the solution
with certainty when n > 2.

With R = 1
2 , the number of function evaluations re-

quired by the present retrocausality model would be
2

n
2 − 1 ≈ 2

n
2 . In fact, Alice knows in advance Rn of

the n bits that specify the number of the drawer with the
ball, thus n

2 bits for R = 1
2 . This means that she must open

in the worst case 2
n
2 − 1 drawers (if all were empty, then

she would know that the ball is in the only drawer left).
We note anyhow that also the number of function eval-

uations foreseen by the advanced knowledge rule, for
R = 1

2 , is that of an existing quantum algorithm, which is
in fact Long’s algorithm tuned on 2

n
2 − 1 function evalua-

tions.
When n goes past 2, Alice’s advanced knowledge

should increase over the n
2 bits of the case R = 1

2 , so
that the problem can be solved with ≈ π

4 2
n
2 function eval-

uations rather than ≈ 2
n
2 . This increase must be slight:

an increase of just one bit would halve the required num-
ber of function evaluations. Correspondingly, R should
slightly go above 1

2 . It should also be noted that, for
n→ ∞, we have R = 1

2 again.

7 Deutsch–Jozsa algorithm

Deutsch–Jozsa [36] algorithm is a generalization of the
seminal Deutsch algorithm that yields an exponential
speedup. In the respective problem, the set of functions
is all the constant and balanced functions (with the same
number of zeroes and ones) fb : {0, 1}n → {0, 1}. Four of
the eight functions, for n = 2, are shown in Table 2.

The bit string b ≡ b0b1 . . . b2n−1 is both the suffix and
the table of the function fb (a), which is the sequence
of function values for increasing values of the argument.
Alice is to find whether the function chosen by Bob is
constant or balanced by computing fb (a) for appropriate
values of a. Classically, this requires in the worst case
a number of function evaluations exponential in n. It
requires just one function evaluation in the quantum case.

Table 2: Tabular representation of the functions fb (a) that are
evaluated by the black box in the Deutsch–Jozsa problem.

a f0000 (a) f1111 (a) f0011 (a) f1100 (a) . . .

00 0 1 0 1 . . .

01 0 1 0 1 . . .

10 0 1 1 0 . . .

11 0 1 1 0 . . .

7.1 Time-symmetric representation to
Alice

The input and output states of the quantum algorithm to
Alice are respectively

ÛB |ψ〉 = |ψ〉 =
1
4
(
eıϕ0 |0000〉B + eıϕ1 |1111〉B

+eıϕ2 |0011〉B + eıϕ3 |1100〉B + . . .
)
|00〉A

(
|0〉V − |1〉V

)
,

(40)

ĤAÛ f ĤAÛB |ψ〉 =
1
4

[ (
eıϕ0 |0000〉B − eıϕ1 |1111〉B

)
|00〉A

+
(
eıϕ2 |0011〉B − eıϕ3 |1100〉B

)
|10〉A + . . .

] (
|0〉V − |1〉V

)
.

(41)

Registers B, A, and V and the unitary transformation
ÛB have the same function as in the previous quantum
algorithms. ĤA is the Hadamard transform on register A
and Û f is function evaluation. Note that we could have
written the input and output states of registers B and A
only on the basis of the pairs b and s (b).

Measuring Â in the output state 41 says that the func-
tion is constant if the measurement outcome is all zeros,
balanced otherwise.

7.2 Quantum feedback

We apply the advanced knowledge rule to Deutsch–Jozsa
problem. Given the problem setting of a balanced func-
tion, there is only one pair of partial measurements of the
content of register B compatible with conditions (1′) and
(2′). With problem setting, say, b = 0011, B̂i must be the
content of the left half of register B and B̂ j that of the
right half. The measurement of B̂i yields all zeros, that of
B̂ j all ones.

In fact, a partial measurement yielding both zeroes and
ones would violate condition 32: it would provide enough
information to identify the solution, namely the fact that
fb is balanced. Given that either partial measurement
must yield all zeroes or all ones, it must concern the
content of half register. Otherwise either Eq. 31 would be
violated or the problem setting would not be completely
determined, as readily checked.
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One can see that, with b = 0011, the measure-
ment of B̂i, performed alone, projects σB on the subset
{0011, 0000}B, that of B̂ j on {0011, 1111}B. Either sub-
set represents the part of the problem setting that Alice
knows in advance. Eq. 31 is satisfied with ∆EA(B̂i) =

∆EA(B̂ j) = 1 bit.
The case of the problem setting of a constant function

is analogous. The only difference is that there are more
pairs of partial measurements that satisfy the above said
conditions. Say that the problem setting is b = 0000.
The measurements of the content of the left and right
half of register B (each performed alone) projects σB on
respectively {0000, 0011}B and {0000, 1100}B, the mea-
surements of the content of even and odd cells (say the
leftmost one is odd) on respectively {0000, 0101}B and
{0000, 1010}B, etc.

There is a shortcut to finding the subsets in question.
Here the problem setting, namely the bit string b, is the
table of the function chosen by Bob. For example b =

0011 is the table fb (00) = 0, fb (01) = 0, fb (10) = 1,
fb (11) = 1. We call good half table any half table in
which all the values of the function are the same. One can
see that good half tables are in one-to-one correspondence
with the subsets of σB in question. For example, the good
half table fb (00) = 0, fb (01) = 0 corresponds to the
subset {0011, 0000}B, is the identical part of the two bit-
strings in it. Thus, given a problem setting (that is an
entire table), either good half table, or identically the
corresponding subset of σB, is a possible instance of
Alice’s advanced knowledge.

Because of the structure of tables, given the advanced
knowledge of a good half table, the entire table and thus
the solution can be identified by performing just one func-
tion evaluation for any value of the argument a outside
the half table.

Summing up, the advanced knowledge rule says that
Deutsch–Jozsa problem can be solved with just one func-
tion evaluation. This is in agreement with Deutsch–Jozsa
algorithm, what also means that the speedup of this algo-
rithm is explained by quantum retrocausality R = 1

2 .
The present instance of Deutsch–Jozsa algorithm can

be seen as a sum over classical histories in each of which
Alice knows in advance that Bob has chosen one of a pair
of functions and discriminates between the two with just
one function evaluation. An example history is

eıϕ2 |0011〉B |00〉A |0〉V
ĤA
→ eıϕ2 |0011〉B |10〉A |0〉V

Û f
→ eıϕ2 |0011〉B |10〉A |1〉V

ĤA
→ eıϕ2 |0011〉B |10〉A |1〉V .

(42)

Since the problem setting is b = 0011 and Alice performs
function evaluation for a = 10, her advanced knowledge

must be b ∈ {0011, 0000}B; if it were b ∈ {0011, 1111}B,
she would have performed function evaluation for either
a = 00 or a = 01. The result of function evaluation,
fb (10) = 1, tells that the function chosen by Bob is
f0011 (a), hence that it is balanced.

One can see that the present analysis, like the notion
of good half table, holds unaltered for n > 2.

8 Simon and hidden subgroup
algorithms

In Simon’s [37] problem, the set of functions is all the
fb : {0, 1}n → {0, 1}n−1 such that fb (a) = fb (c) if and
only if a = c or a = c ⊕ h (b); ⊕ denotes bitwise modulo
2 addition. The bit string h (b), depending on b, is a sort
of period of the function.

Table 3 shows four of the six functions, for n = 2. The
bit string b is both the suffix and the table of the function.
We note that each value of the function appears exactly
twice in each table; thus 50% of the rows plus one always
identify h (b).

Bob chooses one of these functions. Alice is to find
the value of h (b) by performing function evaluation for
appropriate values of a.

In present knowledge, a classical algorithm requires
a number of function evaluations exponential in n. The
quantum part of Simon algorithm solves with just one
function evaluation the hard part of this problem, namely
finding a string s j (b) orthogonal [37] to h (b). There are
2n−1 such strings. Running the quantum part yields one of
these strings at random. The quantum part is iterated until
finding n − 1 different strings. This allows Alice to find
h (b) by solving a system of modulo 2 linear equations.
Thus, on average, finding h (b) requires O (n) iterations of
the quantum part; in particular O (n) function evaluations.
Moreover, if we put an upper bound to the number of
iterations, a priori there is always a non-zero probability
of not finding n − 1 different strings.

We apply the advanced knowledge rule directly to the
complete Simon’s problem of finding h (b) through func-
tion evaluations. This is not the problem solved by the
quantum part of Simon algorithm, which is finding at
random one of the s j (b) orthogonal to h (b). The value of
R that explains the speedup of the quantum part of Simon
algorithm will be a by-product of applying the advanced
knowledge rule to Simon’s problem.
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Table 3: Tabular representation of the functions fb (a) that are evaluated by the black box in the Simon’s problem.

h (0011) = 01 h (1100) = 01 h (0101) = 10 h (1010) = 10 . . .

a f0011 (a) f1100 (a) f0101 (a) f1010 (a) . . .

00 0 1 0 1 . . .

01 0 1 1 0 . . .

10 1 0 0 1 . . .

11 1 0 1 0 . . .

8.1 Time-symmetric representation to
Alice

Knowing all the pairs b, h (b) from Table 3 we can write
|in〉BA and |out〉BA as

|in〉BA =
1
√

6

(
eıϕ0 |0011〉B + eıϕ1 |1100〉B + eıϕ2 |0101〉B

+eıϕ3 |1010〉B + . . .
)
|00〉A , (43)

|out〉BA =
1
√

6

[ (
eıϕ0 |0011〉B + eıϕ1 |1100〉B

)
|01〉A

+
(
eıϕ2 |0101〉B + eıϕ3 |1010〉B

)
|10〉A + . . .

]
. (44)

We must assume that there can be a unitary transformation
between the un-traced states |in〉BAW and |out〉BAW .

8.2 Quantum feedback

The analysis is similar to that of Deutsch–Jozsa algo-
rithm. This time a good half table should not contain a
same value of the function twice, what would provide
enough information to identify the solution of the prob-
lem, namely the period h (b), thus violating condition 32
of the advanced knowledge rule.

With b = 0011, that is fb (00) = 0, fb (01) = 0,
fb (10) = 1, fb (11) = 1, one way of sharing the table
into two good halves is fb (00) = 0, fb (10) = 1 and
fb (01) = 0, fb (11) = 1. The corresponding subsets
of σB are respectively {0011, 0110}B and {0011, 1001}B;
one can check that each half table is the identical part
of the two bit-strings in the corresponding subset of σB.
Either good half table or identically either subset is a
possible instance of Alice’s advanced knowledge. Eq. 31
is satisfied with ∆EA(B̂i) = ∆EA(B̂ j) ≈ 0.585 bit (entropy
reduction from log2(3) bit to 1 bit).

We note that sharing each table into two halves is pe-
culiar to Deutsch–Jozsa and Simon algorithms. In the
quantum part of Shor’s [38] factorization algorithm (find-
ing the period of a periodic function), taking two shares of
the table that do not contain a same value of the function
twice implies that each share is less than half table if the
domain of the function spans more than two periods.

Given the advanced knowledge of a good half table,
the entire table and then h (b) can always be identified by

performing just one function evaluation for any value of
the argument a outside the half table. Thus, the advanced
knowledge rule says that, with R = 1

2 , Simon’s problem
is solved with just one function evaluation. Under the
assumption that R = 1

2 is always attainable, Simon algo-
rithm, which requires O (n) function evaluations, would
be suboptimal. The above also shows that the speedup
of the quantum part of Simon algorithm is explained by
R = 1

2 . In fact, once h (b) is known (with just one function
evaluation in the case of quantum retrocausality R = 1

2 ),
generating at random the s j (b)’s requires no further func-
tion evaluations.

We give the simplest instance, n = 2, of the quantum al-
gorithm that finds h (b) with just one function evaluation.
Register W reduces to the usual register V that contains
the result of function evaluation modulo 2 added to its
previous content. The input and output states of V are
both 1√

2

(
|0〉V − |1〉V

)
. We have Û = P̂AĤAÛ f ĤA, where

ĤA is Hadamard on register A, Û f is function evaluation,
and P̂A is the permutation of the basis vectors |01〉A and
|10〉A. Checking whether there is the similar algorithm
for n > 2 should be the object of further work.

The sum over histories representation can be developed
as in Deutsch–Jozsa algorithm. If, for example, Alice’s
advanced knowledge is b ∈ {0011, 0110}B, she can iden-
tify the value of h (b) by performing a single function
evaluation for either a = 01 or a = 11, see Table 3, etc.

The fact that Alice knows in advance a good half ta-
ble, and can thus identify the entire table and hence the
solution with just one function evaluation, clearly holds
unaltered for n > 2. It should also apply to the general-
ized Simon’s problem and to the Abelian hidden subgroup
problem. In fact the corresponding algorithms are essen-
tially Simon algorithm. In the hidden subgroup problem,
the set of functions fb : G → W map a group G to some
finite set W with the property that there exists some sub-
group S ≤ G such that for any a, c ∈ G, fb (a) = fb (c)
if and only if a + S = c + S . The problem is to find the
hidden subgroup S by computing fb (a) for the appropri-
ate values of a. Now, a large variety of problems solvable
with a quantum speedup can be re-formulated in terms
of the hidden subgroup problem [13]. Among these are
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the seminal Deutsch’s problem, finding orders, finding
the period of a function (thus the problem solved by the
quantum part of Shor’s factorization algorithm), discrete
logarithms in any group, hidden linear functions, self shift
equivalent polynomials, Abelian stabilizer problem, and
the graph automorphism problem [39, pp. 146–147].

9 Discussion

To highlight the simplicity of the present interpretation
of the quantum speedup, we refer to Grover algorithm
where the problem setting and the solution of the problem
coincide with one another. We also assume that ÛB is the
identity, so that the problem setting is directly the random
outcome of Bob’s measurement.

To the end of selecting the setting or identically the
solution of the problem, the initial Bob’s measurement (re-
quired to select the problem setting) and the final Alice’s
measurement (required to read the solution), are redun-
dant with one another. From the mathematical standpoint,
the selection of any part of the information that specifies
the random outcome of the initial measurement can be
ascribed to the final measurement. We should naturally
assume that part of the selection performed by the final
measurement propagates backward in time, by the inverse
of the time-forward unitary transformation, until selecting
the part of the outcome of the initial measurement whose
selection is ascribed to the final measurement. We have
seen that, in the representation of the quantum algorithm
relativized to Alice, this backward propagation tells Al-
ice the part of the outcome of the initial measurement
in question (which is identically a part of the solution),
before she starts her search for the solution.

We have called R the fraction of information whose
selection is ascribed to Alice’s measurement. Given a
value of R, we need to reconcile the notion of Alice’s
advanced knowledge of an R-th part of the information
with the fact that such a part can be taken in a plurality
of ways. Moreover, we need an operational interpretation
of the advanced knowledge notion. We kill two birds
with one stone by resorting to Feynman’s path integral
formulation of quantum mechanics. Given an appropriate
value of R, the quantum algorithm can be seen as a sum
over classical histories in each of which Alice knows in
advance one of the possible R-th part of the information
that specifies the problem setting (or the solution) and
performs the oracle queries still necessary to find the so-
lution. The sum covers all the possible ways of taking
that part. An immediate consequence is that the number
of oracle queries required to solve the problem with retro-
causality R is that of a classical algorithm that knows in
advance the R-th part of the problem setting.

Put in this simplified form, the present interpretation
of the speedup would seem to be self-evident. What we
have until now is an exact relation between Q, the number
of queries required to solve an oracle problem on the one
side and advanced knowledge of part of the problem
setting, or the corresponding retrocausality measure R,
on the other side. R = 0 means classical computation,
whereas R > 0 quantum computation and speedup.

We have applied this retrocausal interpretation of the
speedup to the major quantum algorithms known today.
R is exactly 1

2 in all the quantum algorithms requiring
a single oracle query, slightly above 1

2 in Grover algo-
rithm with database size N > 4 (more than one query is
required), whereas it goes back to 1

2 for N → ∞. More-
over, R = 1

2 always corresponds to an existing quantum
algorithm and gives at least the order of magnitude of the
number of queries required by the optimal one.

Relating Q to R should be interesting from the founda-
tional standpoint and might have practical applications.
The following prospects seem to be liable of further study:

First, there should be a relationship between R and
the violation of the temporal Bell inequalities. For ex-
ample, we have R ≈ 1

2 in Grover algorithm whereas this
algorithm violates a Bell inequality [23]. It is reasonable
to think that any quantum algorithm with R > 0 does
the same. If this were proved, given an optimal quan-
tum algorithm that yields the solution with Q queries and
R > 0, this would mean that no classical algorithm could
make it with the same number of queries. Often, as in the
case of Shor’s algorithm, one does not know whether the
speedup is an essential quantum feature or is just due to
our ignorance of an equally efficient classical algorithm.

Second, we have seen that relating the speedup to a
quantitative fundamental quantum feature, entanglement
in [24] and discord in [25, 26], is common to other at-
tempts to unification. These attempts have not yet man-
aged to identify a unifying element that explains the dif-
ferent speedups [26]. In the present work, entanglement
is replaced by the retrocausality measure R, a perhaps
more fundamental feature as far as it can explain entan-
glement [28]. The possible unifying element, for the time
being, is the fact that in all the quantum algorithms exam-
ined the value of R is in a right surrounding of 1

2 where
the value of Q has little variance. All this might allow
the conjecture that R = 1

2 is always attainable in quantum
computation and always gives the order of magnitude of
the number of queries required by the optimal quantum
algorithm. If this conjecture were true, we would have
a very powerful tool. Given a generic oracle problem,
we would know the order of magnitude of the number in
question (Section 5).

Here, let us make a distinction between entangling and
non-entangling unitary evolutions. The unitary evolution
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under consideration is that between initial and final mea-
surement. An example of non-entangling evolution would
be the identity transformation of the initial (sharp) mea-
surement outcome. In this case R can assume any value
between zero and one, including the extremes where ev-
erything is selected by only the initial measurement (in
which case R = 0) or only the final measurement (in
which case R = 1). Of course, quantum algorithms in-
stead create maximal entanglement between the setting
and the solution of the problem. In this case, there seems
to come out a distinction between past and future. In
fact, while R = 0 is always possible, as it corresponds
to classical computation, R = 1 seems to be obviously
impossible. It would mean solving an oracle problem
without oracle queries. Then, in the case of a unitary evo-
lution that produces maximal entanglement, there must
be an upper bound to the value of R that can be attained.
As things are now, one could think that this bound is
reached in quantum search, because of the fundamental
character of this algorithm. Then it would be R = 1

2 , or R
slightly above 1

2 . Conversely, a value of R that does not
overcome this bound should always be attainable. This
idea is also supported by the fact that, in all the quantum
algorithms examined, R always attains at least the value
1
2 . These considerations seem to authorize the conjecture
that R = 1

2 is always attainable for fundamental reasons,
independently of the specificity of the quantum algorithm.
By the way, the idea that, at the microscopic level, the
arrow of time is that of growing entanglement dates back
to 1988 [40] and underwent further developments starting
from 2006 [41].

To better assess the trust that can be placed in this con-
jecture, there can be the following directions of research:
checking the value of R on other classes of quantum
algorithms (such as quantum random walks); verifying
whether there exists a quantum algorithm that solves Si-
mon’s problem with certainty with a single oracle query
for n > 2, as foreseen by the present interpretation of the
speedup for R = 1

2 (see Section 8); and, learning more
about the relation between R and quantum entanglement.

It could also be interesting to look for possible cross
fertilizations between the present work and other works
on time-symmetric quantum mechanics or the speedup.
The present notion of quantum retrocausality might ap-
ply to: some possibly related findings of time-symmetric
quantum mechanics, as in [20, 21]; the violation of tem-
poral Bell inequalities on the part of quantum computa-
tion [23]; and, a more direct physical interpretation of
quantum computation complexity classes [29].
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