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Amodel of the Einstein–Bohr recoiling slit exper-
iment is formulated in a fully quantum theoret-
ical setting. In this model, the state and dynam-

ics of a movable wall that has two slits in it, as well as
the state of a particle incoming to the two slits, are
described by quantum mechanics. Using this model,
we analyzed complementarity between exhibiting an
interference pattern and distinguishing the particle
path. Comparing the Kennard–Robertson type and
the Ozawa-type uncertainty relations, we conclude
that the uncertainty relation involved in the double-
slit experiment is not the Ozawa-type uncertainty re-
lation but the Kennard-type uncertainty relation of
the position and the momentum of the double-slit
wall. A possible experiment to test the complemen-
tarity relation is suggested. It is also argued that
various phenomena which occur at the interface of a
quantum system and a classical system, including dis-
tinguishability, interference, decoherence, quantum
eraser, and weak value, can be understood as aspects
of entanglement.
Quanta 2015; 4: 1–9.

1 Introduction

The uncertainty relation is one of the best known subjects
which manifest the peculiar nature of the microscopic
world. Although many people have been discussing it for
a long time [1–9], some confusion about the formulation
and the implication of the uncertainty relation remained.
Recently, Masanao Ozawa [10, 11] settled down the con-
troversy about the uncertainty relation and he established
a new inequality [12], which represents a quantitative re-
lation between measurement error and disturbance caused
by measurement.

According to Ozawa’s formulation [12–15], a measure-
ment process is described as an interaction process of an
observed object and an observing apparatus. Suppose
that the object has observables Â and B̂. The apparatus
has a meter observable M̂, which is designed to point
the value of Â. The whole system is initialized at the
time t = 0 and the measurement is made at a later time t.
The readout of the meter is represented by the operator
M̂(t) := eıĤt/~M̂e−ıĤt/~ and the true value of the object ob-
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servable is Â(0) := Â. Their difference N̂ := M̂(t)−Â(0) is
called a noise operator. The change in B̂, D̂ := B̂(t)− B̂(0),
is called a disturbance operator. These expectation values

ε(Â) :=
√〈

(M̂(t) − Â(0))2
〉
, (1)

η(B̂) :=
√〈

(B̂(t) − B̂(0))2
〉
, (2)

σ(Â) :=
√〈

(Â − 〈Â〉)2
〉
, (3)

σ(B̂) :=
√〈

(B̂ − 〈B̂〉)2
〉

(4)

are defined with respect to the initial state of the whole
system. The quantity ε(Â) is the error involved in the
measurement of Â. The quantity η(B̂) is the disturbance
in B̂ caused by the measurement. The quantity σ(Â) is the
standard deviation of Â in the initial state. It is reasonable
to call σ(Â) the statistical fluctuation.

A naive expression of the uncertainty relation

ε(q̂) η( p̂) & h (wrong) (5)

for the position q̂ and the momentum p̂ of a particle is
sometimes attributed to Heisenberg. Originally, Heisen-
berg [1] examined a thought experiment of a gamma-ray
microscope for investigating limit of accuracy of measure-
ment on a microscopic particle and concluded the relation
(5). He stated that the microscope is an example of the
destruction of the knowledge of particle’s momentum
by an apparatus determining its position [2]. It should
be mentioned that Heisenberg himself did not give the
rigorous definitions of error, disturbance, and statistical
fluctuation. He did not distinguish these notions, either.
Therefore, it seems hard to shift the responsibility of the
inequality (5) onto Heisenberg.

Von Neumann [3] formulated a model of a measure-
ment process and proved the inequality ε(q̂) η(p̂) ≥ 1

2~,
but his proof apparently depends on the specific model.
Kennard [4] gave a mathematical proof of the inequality

σ(q̂)σ( p̂) ≥
1
2
~ (6)

in a model-independent manner. Robertson [5] proved a
more general relation

σ(Â)σ(B̂) ≥
1
2

∣∣∣∣〈[Â, B̂]〉
∣∣∣∣ (7)

for arbitrary observables Â and B̂. Considering their impli-
cations, we call the inequalities (6) and (7) the standard-
deviation uncertainty relations or the relations of fluctua-
tions intrinsic to a quantum state. It should be noted that
the Kennard–Robertson relation (6), (7) has nothing to do
with the measurement apparatus.

Ozawa [12] formulated a general scheme of measure-
ment and introduced the rigorous definitions of error and
disturbance, (1) and (2). Using them he proved the in-
equality

ε(Â) η(B̂) + ε(Â)σ(B̂) + σ(Â) η(B̂) ≥
1
2

∣∣∣∣〈[Â, B̂]〉
∣∣∣∣. (8)

Moreover, he constructed concrete models [12, 15] that
yield ε(q̂) = 0 and η( p̂) = finite. Hence, the Ozawa
inequality (8) is correct while the naive uncertainty re-
lation (5) does not hold in general. It seems suitable to
call the inequality (8) the error-disturbance uncertainty
relation or the relation of indetermination involved in a
measurement process. Later, Branciard [16] proved a
tighter inequality.

The interference effect of matter wave, or the particle-
wave duality of matter, is another well-known peculiarity
of quantum mechanics. When a beam of particles is emit-
ted toward a wall that has two slits on it, we observe an
interference pattern on a screen behind the wall. Quan-
tum mechanics tells that, if we put some device to detect
which slit each particle has passed, the interference pat-
tern disappears. It is impossible to distinguish the path of
each particle without smearing the interference pattern.
This kind of incompatibility of exhibitions of the particle
property and the wave property is called complementarity
by Bohr.

Einstein proposed, in his debate with Bohr, a thought
experiment in which the wall with the two slits is allowed
to move to detect a collision of the particle. He argued
that one could detect on which slit each particle recoils
without destroying the interference pattern. Bohr [17–
19] answered that, because of the uncertainty relation,
one cannot determine simultaneously the position and
the momentum of the wall and hence distinguishing the
particle path and viewing the interference pattern are
incompatible. Similar explanations can be found in some
textbooks [20–23], too. Recently, Miron et al. [24] made
experimental realization of a movable double-slit system.

Although the double-slit experiment is regarded as
a pedagogical subject from the viewpoint of modern
physics, it remains unclear what kind of uncertainty rela-
tion is involved there. Thus we propose a question: Which
type of the uncertainty relation, the Kennard inequality
(6) or the Ozawa inequality (8), prevents the simultaneous
measurements of the interference and the path? This is
the question we study in this paper.

In this paper we formulate a model of the double-slit
experiment in genuine quantum theoretical terms and ana-
lyze the complementarity between distinguishing the par-
ticle path and viewing the interference pattern. Our con-
clusion is that the complementarity involves the Kennard-
type uncertainty relation, which is the property intrinsic
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to the quantum state of the double-slit wall. We propose
an experiment to test this distinguishability-visibility re-
lation.

2 Model and its analysis

Here we shall formulate a model of the Young interfer-
ometer of the form proposed in the Einstein–Bohr discus-
sion [17]. As shown in Fig. 1, a particle is emitted from
the source, flies through the two slits on the wall, and
arrives at the screen behind the wall. The slits are num-
bered as slit 1 and slit 2, respectively. They are separated
by a distance d. The coordinate axis, which we call the
x-axis, is taken to be parallel to the wall and the screen.
The wall is movable along the x-axis and the screen is
fixed. The coordinate and the momentum of the particle
are denoted as (q, p). Similarly, the coordinate and the
momentum of the double-slit wall are denoted as (Q, P).

The x-coordinate of slit 1 is Q + d
2 while the x-

coordinate of slit 2 is Q − d
2 . A position eigenstate of

the whole system is |q〉 ⊗ |Q〉 = |q,Q〉. The initial state of
the whole system is assumed to be

|initial〉 = |φ〉 ⊗ |ξ〉, (9)

which is a composite of a particle state |φ〉 with a wall
state |ξ〉. The emitted particle obeys the free-particle
Hamiltonian. Its time-evolution operator is

Û(t) = exp
(
−
ı

~

p̂2

2m
t
)
. (10)

We assume that the particle reaches the slits on the mov-
able wall at the time τ.

The function of the slits are described by two projection
operators, Ŝ 1 and Ŝ 2. If the particle arrives at slit 1, its
state becomes Ŝ 1|φ〉. If the particle arrives at slit 2, its
state becomes Ŝ 2|φ〉. They satisfy Ŝ †α = Ŝ α, Ŝ 2

α = Ŝ α,
Ŝ 1 + Ŝ 2 = 1 and Ŝ 1Ŝ 2 = Ŝ 2Ŝ 1 = 0. It is assumed that
the particle gives a momentum +k to the wall when the
particle hits slit 1. On the other hand, the particle gives
a momentum −k to the wall when the particle hits slit 2.
This interaction is described by the Hamiltonian

V̂ = Ŝ 1F(q̂ − Q̂) − Ŝ 2F(q̂ − Q̂). (11)

Here F is a constant force. The evolution operator for an
infinitesimal time interval ∆t is

e−ıV̂∆t/~ = e−ıŜ 1k(q̂−Q̂)/~+ ıŜ 2k(q̂−Q̂)/~. (12)

Here k := F∆t is the impact (momentum transfer). The
operator eıkQ̂/~ shifts the wall momentum as eıkQ̂/~|P〉 =

|P+k〉while the operator e−ıkq̂/~ shifts the particle momen-
tum as e−ıkq̂/~|p〉 = |p − k〉. Hence, after the momentum
exchange, the state of the whole system becomes

|behind slits〉 = e−ıkq̂/~Ŝ 1Û(τ)|φ〉 ⊗ eıkQ̂/~|ξ〉

+eıkq̂/~Ŝ 2Û(τ)|φ〉 ⊗ e−ıkQ̂/~|ξ〉. (13)

The particle arrives at the screen at the time τ + τ′. Then
the state of the whole system becomes

|final〉 = Û(τ′)e−ıkq̂/~Ŝ 1Û(τ)|φ〉 ⊗ eıkQ̂/~|ξ〉

+Û(τ′)eıkq̂/~Ŝ 2Û(τ)|φ〉 ⊗ e−ıkQ̂/~|ξ〉

= |φ1〉 ⊗ eıkQ̂/~|ξ〉 + |φ2〉 ⊗ e−ıkQ̂/~|ξ〉. (14)

Here we put Û(τ′)e∓ıkq̂/~Ŝ αÛ(τ)|φ〉 = |φα〉. Then the
probability for finding the particle at the position q on the
screen is proportional to

Prob(q) ∝

∫ ∣∣∣∣〈q,Q |final〉
∣∣∣∣2dQ

=
∣∣∣φ1(q)

∣∣∣2 +
∣∣∣φ2(q)

∣∣∣2
+2 Re

{
φ∗1(q)φ2(q) 〈ξ|e−2ıkQ̂/~|ξ〉

}
=

∣∣∣φ1(q)
∣∣∣2 +

∣∣∣φ2(q)
∣∣∣2

+2VRe
{
eıα φ∗1(q)φ2(q)

}
. (15)

The last term describes an interference of the two waves
φ1(q) = 〈q|φ1〉 and φ2(q) = 〈q|φ2〉. The nonnegative real
numberV and the phase eıα are defined by

Veıα = 〈ξ|e−2ıkQ̂/~|ξ〉. (16)

The contrast of the interference fringe is proportional to
V, which is called the visibility of the interference and
takes its value in the range 0 ≤ V ≤ 1. The wavefunction
of the movable wall is denoted as ξ(Q) = 〈Q|ξ〉 and its
Fourier transform is

ξ̃(P) =
1
√

2π~

∫
e−ıPQ/~ ξ(Q)dQ. (17)

In terms of the wall wavefunctions, the visibility is written
as

V =

∣∣∣∣∣∫ ξ∗(Q) e−2ıkQ/~ ξ(Q)dQ
∣∣∣∣∣

=

∣∣∣∣∣∫ ξ̃∗(P − k) ξ̃(P + k)dP
∣∣∣∣∣ . (18)

After observing the position of the particle on the
screen, we measure the momentum of the wall to deter-
mine the path of the particle. The conditional probability
distribution of the momentum P is calculated from (14)
as

Prob(P|q) ∝
∣∣∣∣〈q, P |final〉

∣∣∣∣2
=

∣∣∣φ1(q) ξ̃(P − k) + φ2(q) ξ̃(P + k)
∣∣∣2 .

(19)
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Figure 1: An illustration of the Einstein–Bohr recoiling slit experiment. Einstein proposed, in his debate with Bohr, that a
particle passing through a movable wall with two slits will form interference pattern on a screen behind the two slits, but at the
same time the momentum imparted on the movable wall will tell us which slit the particle has passed through.

If the support of the initial wavefunction |ξ̃(P)| is con-
tained within the range P0 − k < P < P0 + k for some
P0, then from the measured value of P we can tell the slit
which the particle passed. Namely, if the measured mo-
mentum is in the range P0 < P < P0 + 2k, we can say that
the particle hit slit 1. On the other hand, if the measured
momentum is in the range P0 − 2k < P < P0, we can
say that the particle hit slit 2. However, if the support of
|ξ̃(P)| is contained within P0 − k < P < P0 + k, the over-
lap integral in (18) vanishes and hence the interference
fringes fade away completely.

Contrarily, if the width of the support of ξ̃(P) is larger
than 2k, the visibility (18) can be nonzero. However, at
that time, the probability (19) can have a nonzero inter-
ference term and hence we cannot distinguish the particle
path certainly.

We summarize the above argument symbolically as

Visible
interference

⇔ V , 0

⇒
supp |ξ̃(P − k)| ∩ supp |ξ̃(P + k)|
has nonzero measure.

⇔

The particle path cannot be distin-
guished completely by measuring
the momentum of the wall.

In the above inference, the second arrow (⇒) cannot be
replaced with the necessary and sufficient sign (⇔). For
example, if we take the wavefunction

ξ̃(P) =


a sin

(
2πP
2k

)
(0 ≤ P ≤ 2k)

b sin
(

4πP
2k

)
(−2k ≤ P ≤ 0)

0 (otherwise),
(20)

then the supports of |ξ̃(P−k)| and |ξ̃(P+k)| have an overlap
with nonzero measure but the integralV vanishes.

3 Uncertainty relation

Now we discuss what kind of uncertainty relation is in-
volved in the double-slit experiment. Let us consider the
expression (18) for the visibility,

V(k) =

∣∣∣∣∣∫ e−2ıkQ/~ |ξ(Q)|2 dQ
∣∣∣∣∣ . (21)

Suppose that the probability distribution |ξ(Q)|2 has an
effective width ∆Q. (A rigorous definition of ∆Q is not
necessary for the following argument.) Since (21) is an
oscillatory integral, to get a considerably large visibility
we need to have

2k ∆Q/~ . 2π. (22)

On the other hand, as discussed above, to distinguish
the slit which the particle passes, the initial momentum
distribution of the double-slit wall should be contained
within the range

∆P < 2k. (23)

Hence, to observe a clear interference and to distinguish
the path of the particle simultaneously, we need to have

∆Q ∆P . 2π~. (24)

As a contraposition, the uncertainty relation

∆Q ∆P & 2π~ (25)

implies that exhibiting a clear interference pattern and de-
tecting the particle path cannot be accomplished simulta-
neously. This uncertainty relation (25) is a property of the
initial state of the double-slit wall but it is not a relation
between error and disturbance caused by measurement.
Hence, we conclude that the obstruction against the si-
multaneous realization of interference and path detection
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is the Kennard-type uncertainty relation which is intrinsic
to the quantum state of the double-slit wall. This is the
main claim of this paper. It is to be noted that this is a
conclusion of an analysis of the specific model. We do
not have to take it as a universally valid statement.

It is a long-standing issue whether the position-
momentum uncertainty relation does imply or not the
particle-wave complementarity. Storey et al. [25, 26] ar-
gued that the position-momentum uncertainty relation is
responsible for destroying the interference pattern. En-
glert et al. [27, 28] took an opposite position and ar-
gued that the which-way information is responsible for
destroying the interference pattern. Dürr, Nonn, and
Rempe [29,30] performed experiments to prove that what
destroys the interference pattern is the which-way infor-
mation. Hence, Englert’s argument seems to be correct.
However, momentum disturbance is still necessary for
the change of the interference pattern in the which-way
experiment, and Englert did not answer to this point.

In this paper, we discussed the question asking which
kind of the position-momentum uncertainty relation is
responsible for destroying the interference pattern when
we try to detect the path of the particle by measuring the
momentum of the movable slit-wall. Our answer is that
the Kennard-type uncertainty relation is responsible in
the context of our model.

4 Suggestions for experiments

Here we would like to suggest an experimental scheme
to test the visibility relation (18). Our scheme uses the
Michelson interferometer as illustrated in Fig. 2. A pho-
ton is emitted from a light source (a) and is split by a
beam splitter (b) into two directions. At the end (c) of
one direction, an atom is placed. The incident photon is
scattered by the atom and the atom recoils. At the other
end (d) a mirror is fixed. The two paths merge at the beam
splitter (b) and the photon reaches the fixed screen (e).
There we observe an interference pattern by accumulating
photons. On the other hand, by measuring the velocity of
the atom, we can infer the path of the photon; If the atom
recoils out, we know that the photon took the path (c).
If the atom remains stationary, we know that the photon
took the path (d).

If the initial wavefunction of the atom is strongly lo-
calized, one will observe a clear interference pattern but
fail to determine the velocity of the atom precisely. If
the initial wavefunction of the atom has a larger spatial
spread, one can determine the velocity of the atom with
a smaller error but the interference pattern will become
feebler. Thus the initial state of the atom defines the vis-
ibility of the interference fringe as (18). We may put a

a: light source

b: beam splitter recoil

c: atom

e: screen

d: mirror

Figure 2: The Michelson interferometer with a recoiling atom.

Bose–Einstein condensate (BEC) of atoms at the place
(c) instead of a single atom since control and observation
of the BEC are more feasible than a single atom.

We can estimate the velocity of the recoiling atom. It
is assumed that the photon has wave length λ and the
target atom has mass M. Then the photon momentum is
p = h/λ and the impact given to the atom is k = 2p. The
velocity of the recoil atom is

v =
k
M

=
2h
Mλ

. (26)

Assume that the photon wave length is λ = 0.5 × 10−6 m
and that we use a mercury atom as a reflector. Then the
recoil velocity is v = 7.9 × 10−3 m · s−1. If we use a BEC
of 104 sodium atoms, the velocity is v = 6.9×10−6 m ·s−1.
On the other hand, the argument around Eq. (22) implies
that the size of the spread of the wavefunction of the target
should be smaller than

∆Q ∼
π~

k
=

1
4
λ (27)

for exhibiting a clear interference pattern.
In the above argument we proposed a use of the Michel-

son interferometer. Other interference experiments, like
the Hanbury Brown-Twiss correlation [31–33] or the in-
terference of photons from two light sources, which has
been demonstrated by Mandel et al. [34, 35], can also be
modified to experiments which demonstrate the tradeoff

between interference and distinguishability. It is also to
be noted that Plau et al. [36] and Chapman et al. [37] had
demonstrated that a change of the momentum distribution
of an atom by photon emission or by photon scattering
causes a change of spatial coherence of the atom. They
had confirmed the Kennard-type uncertainty relation.
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After completing this manuscript, we have learned that
the group of Miron [24] successfully observed interfer-
ence pattern of electrons emitted from two atoms. They
also observed that when the atoms are not fixed the in-
terference fringes disappear and the atom emitting an
electron recoils by the momentum transfer.

5 Entanglement as a root of
measurement effects

Various phenomena including distinguishability, interfer-
ence and decoherence, quantum eraser, and weak value,
which occur at the interface between quantum systems
and classical systems, are related to measurement and
entanglement. Before closing our discussion we would
like to explain that these phenomena can be understood
on the same footing.

Assume that an object system is in a superposed state
c1|φ1〉 + c2|φ2〉 and an apparatus is in a state |ξ〉. The
vectors |φ1〉, |φ2〉 are unit vectors, but not necessarily
orthogonal. The initial state of the whole system is the
tensor product state

|initial〉 =
(
c1|φ1〉 + c2|φ2〉

)
⊗ |ξ〉. (28)

Interaction between the object and the apparatus entangles
the two systems to the state

|Ψ〉 = Û
(
c1|φ1〉 + c2|φ2〉

)
⊗ |ξ〉

= c1|φ1〉 ⊗ |ξ1〉 + c2|φ2〉 ⊗ |ξ2〉. (29)

It is assumed that the vectors |ξ1〉, |ξ2〉 are unit vectors, but
not necessarily orthogonal. The object has an observable
Â and the apparatus has an observable M̂. The spectral
decompositions of these observables are

Â =
∑

a

a P̂A(a), M̂ =
∑

m

m P̂M(m). (30)

In the followings, we explain that various aspects of mea-
surement can be understood as properties of the entangled
state (29).

5.1 Which-way distinguishability

In the context of which-way experiment, the apparatus is
designed for distinguishing the object states |φ1〉 and |φ2〉.
After the interaction, the probability for reading out the
value m from the meter observable M̂ is given by

Prob(m) = 〈Ψ|P̂M(m)|Ψ〉

= |c1|
2〈ξ1|P̂M(m)|ξ1〉 + |c2|

2〈ξ2|P̂M(m)|ξ2〉

+ 2 Re
{
c∗1c2 〈φ1|φ2〉 〈ξ1|P̂M(m)|ξ2〉

}
. (31)

If the third term 〈φ1|φ2〉 〈ξ1|P̂M(m)|ξ2〉 vanishes, and if
either 〈ξ1|P̂M(m)|ξ1〉 or 〈ξ2|P̂M(m)|ξ2〉 vanishes, we suc-
cessfully distinguish the states |φ1〉 and |φ2〉 by reading
the value m. Oppositely, if the both terms 〈ξ1|P̂M(m)|ξ1〉

and 〈ξ2|P̂M(m)|ξ2〉 are nonzero, we have error for dis-
tinguishing the states |φ1〉 and |φ2〉. If the third term
〈φ1|φ2〉 〈ξ1|P̂M(m)|ξ2〉 is nonzero, the distinguishing mea-
surement fails, too. When the meter states |ξ1〉 and |ξ2〉 are
orthogonal, the meter becomes optimal for distinguishing
the states |φ1〉 and |φ2〉.

5.2 Interference visibility and decoherence

If we measure the quantity Â directly, the probability for
obtaining the value a of Â is

Prob(a) = 〈Ψ|P̂A(a)|Ψ〉

= |c1|
2〈φ1|P̂A(a)|φ1〉 + |c2|

2〈φ2|P̂A(a)|φ2〉

+ 2 Re
{
c∗1c2 〈φ1|P̂A(a)|φ2〉 〈ξ1|ξ2〉

}
. (32)

The interference effect is characterized by the coefficient
c∗1c2, which depends on the phases of c1 and c2. When the
matrix element 〈φ1|P̂A(a)|φ2〉 is nonzero, the interference
effect is observed. But the contrast of interference fringe
is reduced by the factor 〈ξ1|ξ2〉. When the meter states
|ξ1〉 and |ξ2〉 are orthogonal, the which-way distinguishing
measurement is optimized but the interference effect is
completely lost.

5.3 Quantum eraser

The above argument tells that the distinguishability
is maximized but the interference effect is lost when
〈ξ1|ξ2〉 = 0. However, even when 〈ξ1|ξ2〉 = 0, by a
joint measurement of Â and M̂ the interference effect is
recovered. The joint probability for observing the values
Â = a and M̂ = m is

Prob(a,m) = |c1|
2〈φ1|P̂A(a)|φ1〉〈ξ1|P̂M(m)|ξ2〉

+|c2|
2〈φ2|P̂A(a)|φ2〉〈ξ1|P̂M(m)|ξ2〉

+2Re
{
c∗1c2 〈φ1|P̂A(a)|φ2〉 〈ξ1|P̂M(m)|ξ2〉

}
. (33)

Note that 〈ξ1|P̂M(m)|ξ2〉 can be nonzero even when
〈ξ1|ξ2〉 = 0. Thus the interference effect is observed
by the joint measurement of Â and M̂ although the in-
terference effect is not observed by the measurement of
Â alone. However, the which-way distinguishability is
reduced as 〈ξ1|P̂M(m)|ξ2〉 , 0. In a sense, the which-way
information is erased for reviving the interference fringe,
and hence this effect is named quantum eraser. The con-
ditional probability for obtaining the value a of Â under
the restriction M̂ = m is calculated as

Prob(a|m) =
Prob(a,m)
Prob(m)

. (34)
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5.4 Weak value

The weak probability is the conditional probability for
obtaining the meter value m of M̂ under the selection of
object value Â = a,

Prob(m|a) =
Prob(a,m)

Prob(a)
. (35)

When the probability Prob(a) is small, that means the
measurement disturbance is small, the joint probability
Prob(m|a) becomes large. Thus a kind of enhancement
or amplification of the meter value can occur. This is the
mechanism of the so-called weak measurement.

Before summarizing our discussion, we give a brief
overview of the developments in this area. Englert [38]
formulated a qualitative relation between distinguisha-
bility and interference visibility. Dürr and Rempe [39]
gave a general proof of the Englert formula using the non-
commutativity of observables. Dürr et al. [30] tested this
formula by experiment. Hosoya et al. [40] investigated
the complementarity of which-way distinguishability and
interference from the viewpoint of entanglement.

Scully and Drühl [41] introduced the idea of quantum
eraser. Experimental realization of quantum eraser have
been achieved repeatedly, for example, as demonstrated
by Hillmer and Kwiat [42].

Aharonov, Albert and Vaidman [43] introduced the
idea of weak value as an extended notion of the values of
physical observables. The weak value is a value of meter
conditioned by a postselected object value. It was first
pointed out by Tamate et al. [44] that the structure of the
weak value (35) is dual to the structure of the quantum
eraser (34).

6 Summary

In this paper, we analyzed the double-slit scheme that
exhibits the interference pattern on the screen and distin-
guishes the path of a particle by measuring the momentum
of the movable wall. This double-slit setting leads to an
entangled state of the particle and the wall. Analyzing the
resulting entangled state, we concluded that the Kennard-
type uncertainty relation of fluctuations of position and
momentum of the movable wall is the reason for the
complementarity in the double-slit experiment. Similar
analysis has been done by Qureshi and Vathsan [45]. It
is also to be noted that Busch and Shilladay have pre-
sented a study of the complementarity in Mach-Zehnder
interferometry [46].
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