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The issue of ontology in quantum mechanics, or
equivalently the issue of the reality of the wave
function is critically examined within standard

quantum theory. It is argued that though no strict
ontology is possible within quantum theory, ingenious
measurement schemes may still make the notion of a
FAPP ontology (ontology for all practical purposes)
meaningful and useful.
Quanta 2014; 3: 47–66.

1 Introduction

A cursory check as to the meaning of the word Ontology
will turn up a bewildering response, with a wide spectrum
of interpretations. So is also the case for its close relative
Epistemology. It is not the purpose of this article to get
into a general discourse on this concept. Instead, it will
focus on its meaning as widely understood by physicists,
more particularly the quantum physicists. Though notions
of existence and of reality come frequently associated
with ontology, we shall focus more on aspects of reality.
In the specific context of quantum theory, this more or less
concerns the so called reality of the wavefunction. Reality
is in itself a heavily loaded concept were one to turn into
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it from general philosophical considerations. We shall
therefore restrict attention to Physicist’s notion of reality,
however unsophisticated it may appear to philosophers at
large!

It is fair to say that the notion of reality to most physi-
cists is conditioned by their experience from classical
physics. Many so called paradoxes in quantum theory
have in fact arisen because of this. Nevertheless, a careful
examination of the concept of reality in classical physics
is essential as a guide to examining its counterpart in
quantum theory. It is clear that even in classical physics,
notions of reality are intimately tied up with aspects of ob-
servation, or of measurements. Therefore, the plan of this
article is to first examine ontology in classical physics,
and to identify those aspects of classical measurements
and dynamics that make the notion of reality reliable and
useful. We then examine the issue of ontology in quantum
mechanics against the backdrop of a variety of quantum
measurements all the way from the Dirac–von Neumann
description to the current day explosions.

2 Ontology in Classical Physics

Reality in classical physics may be characterized by cer-
tain robust associations of attributes and objects. For
example, when one says that a particular Rose is Red,
this represents an element of reality with many important
aspects, many of which appear trivial and straightforward
unless carefully contemplated upon. In this case the at-
tribute is Redness and the object is the Rose in question.
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What are the mechanisms in classical physics that bring
about this association, and in what sense this association
is robust are questions whose answers hold the key to a
finer understanding of reality in classical physics.

Before attempting to answer them, let us expand the
list of attributes in this case to include, let us say, Smell.
Classical reality says that these two attributes can peace-
fully coexist and that the reality of one need not interfere
with the reality of the other. Now what gives an element
of reality to, say, the redness, is that no matter how many
times we observe the color, no matter how we observe
the color, or no matter how often we interject color ob-
servations with other observations, say in this case smell,
we come up with the same measure of redness for the
flower. It is obvious that this is possible only if observing
the color of the rose does not itself alter its color.

We can sharpen this by introducing the notion of a
state of the object. In the above example, red is the
‘value’ of the attribute of color for this particular state
of the rose which may be called a ‘red rose’. One could
have yellow roses, purple roses etc. and they would all
refer to different states of the object; let us stipulate that
the state of any object is specified by the values of its
attributes. It is worth recalling a characterization of a
state by Dirac [1, 2]; though it was given in the context of
quantum theory, it is pertinent to any theory, and certainly
to classical physics also. According to him, a state is an
embodiment of all possible measurement outcomes.

At this point there is an important subtlety that needs
to be taken care of. It appears and in reality it is indeed so,
that a red rose is a different object from a yellow rose and
we are not really talking of different states of an object but
of different objects. In fact that may make the distinction
between the object and its state artificial and unwarranted.
To overcome that, we shall allow for the possibility (not
altogether unrealistic) of processes that could change the
color of a given rose. Then the rose, the given object, can
indeed be in different states of color. If, as mentioned
above, we are also considering additional attributes like
smell, a characterization of the state of a rose would, in
this classical context, require specifying the values of
both smell and color. These values can be thought of as
the outcomes of color and smell measurements thus tying
up with the characterization of a state according to Dirac.

In fact, we can go to the more prosaic world of clas-
sical mechanics and consider a particle as the object, its
position, velocity etc. as its attributes. The state of the
particle is then specified by the values of these attributes.
There is an obvious redundancy with this description. For
example, one could have also considered the square of the
position as an attribute, but then that would not carry any
additional information from that already carried by the
position on its own. So a distinction should be made be-

tween what one may call primary and derived attributes.
The upshot is that it is enough to consider an optimal set
of independent attributes for state description.

Let us return to the issue of reality and its robustness.
The association of, say, position with the particle can be
taken as an element of reality which is robust because
measurement of position of the particle returns the same
values within some range of errors (more on this later)
no matter how often this measurement is done, how this
measurement is done (as there are many means of position
measurements), and in what order these measurements
are done in the sense that position measurements may be
interspersed with measurements of other attributes. In
fact, in the classical world it would then be possible to
say that this element of reality exists even if no one is
actually observing the particle!

It is obvious that this is possible if and only if the
measurements have no effect on the state. Such measure-
ments can be called non-invasive. But not every measure-
ment should be necessarily non-invasive even in classical
physics. One could in principle adopt a measurement
scheme that is deliberately invasive. For example, a po-
sition measurement of a tiny particle could be done by
hitting it with a big stone. So a choice of non-invasive
measurement is essential in the scheme above. In the clas-
sical world, by and large, measurements are non-invasive
unless by deliberate design.

It is important to emphasize that non-invasiveness by
itself is enough to guarantee a robust element of reality.
Now the other crucial aspect of the classical world enters
the picture and this is determinism. To appreciate this
consider the possibility that before a measurement the
particle is in a definite state (state with definite values
of all its attributes). A non-invasive measurement may
leave the particle in the same state, but may not neces-
sarily yield definitive values for these attributes. This
could happen when the physical processes making up the
measurement are not deterministic. It could well be that a
definite measured value emerges upon averaging a large
number of outcomes. Such a world would exhibit both
ontic and epistemic features.

But the world of classical physics is deterministic. On
top of that, no separate laws have to be stipulated for mea-
surements. Therefore in principle every classical mea-
surement should yield definite outcomes with no errors at
all. But errors do occur in classical measurements. This is
for the obvious reason that even in the deterministic world
of classical physics, not every source of influence in an
experiment can be identified and accurately accounted for.
A pragmatic approach would treat the unknowns proba-
bilistically thereby introducing randomness in a perfectly
deterministic world! Therefore the outcomes will have
variances and actual errors can be statistically reduced
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through repeated measurements. Nevertheless, even this
randomness introduced purely for practical purposes, gov-
erns errors that can be controlled by better experimental
designs. Then, one can adopt the reasonable stand that
the outcomes within such narrow and controllable er-
rors are, for all practical purposes, making the strictly
non-invasive measurements into practically non-invasive
measurements.

But it is worth appreciating that any randomness, how-
ever small, does not allow for ontic descriptions, in prin-
ciple. But in practice this does not pose a problem. In
that sense, even the ‘real’ world of classical physics has a
blurry edge, which we ignore all the time!

All these considerations have one profound conse-
quence. Measurements on a single object are meaningful,
and statistical errors can be meaningfully reduced arbi-
trarily by making sufficiently large number of repeated
measurements on the same object. It should be stressed
that this arose both due to the near non-invasive measure-
ments as well as due to each measurement practically
yielding full information.

Even with regard to deliberately invasive measure-
ments, the determinism of classical physics can in prin-
ciple, though tedious and heavy on resources in practice,
provide a means of compensating for the invasive effects.
In the example of throwing a rock to measure the posi-
tion of a small particle, though the rock strongly alters the
state of the particle, very careful measurements of the sub-
sequent trajectories of both the particle and the rock can
be used to accurately reconstruct the state of the particle
before the collision, and restore the particle to that state.
But second law can put a limit on how much invasiveness
is tolerable! If for example, the invasive measurement
involved setting fire and vaporizing the particle, it would
be practically impossible to regain the original state!

It is of course possible that the attributes change with
time. The rose of the beginning could fade. Does this
mean that the element of reality that was so carefully
constructed was not real at all? The physicist’s answer
to this is not to deny the element of reality or its ro-
bustness, but to allow for a time evolution of states and
their associated attributes. This is the idea of Dynamics.
The determinism referred to earlier then takes the form
of a Deterministic Dynamics. These deterministic rules
of dynamics not only ensure unambiguous outcomes in
ideal measurements, but they also ensure that no separate
rules are necessary to describe measurements, unlike in
quantum theory.

3 Ontology in Quantum Mechanics

At least as per our present understanding, the standard
quantum theory is inherently random. From our previous
discussion, no strict ontology ought to be possible then.
Quantum Measurements, as understood during the critical
years of the development of quantum theory, and as ide-
alized by the Dirac–von Neumann measurement models,
are certainly invasive, and uncontrollably so. They are
invasive in an unpredictable way. This too leaves no room
for an ontic description. The Born probability rule has to
be invoked for a consistent interpretation of quantum me-
chanics and that is where randomness becomes intrinsic.
Paradoxically, the rules for time evolution of states, or,
quantum dynamics, is completely deterministic by itself!
It is only measurement that brings in indeterminacy. Nev-
ertheless, as we shall see later, there are intriguing point-
ers to why there can be no ontic description of quantum
mechanics, coming from purely dynamical considerations
(all unitary processes are considered dynamical here).

This also makes repeated measurements of the Dirac–
von Neumann meaningless when performed on a single
copy. The simple reason being that the state after the
first measurement bears no obvious relation to the state
one started with, and the subsequent measurements can at
best reveal the state after the first measurement. Therefore
only ensemble measurements become significant. For a
good account of the issues involved in getting information
out of measurements on a single copy see [3].

If there are such serious obstacles to ontology in quan-
tum mechanics, why bother to go further? There are sev-
eral good reasons for it! Firstly, the extreme invasiveness
of quantum measurements is certainly a distinctive feature
of the Dirac–von Neumann, or more precisely, Projective
Measurements. So the question naturally arises whether
there can be other measurement schemes that are non-
invasive or controllably non-invasive. It then becomes
important to re-examine the ontology issue in the context
of these alternate measurement schemes. As it turns out,
there are so many interesting alternatives to projective
measurements today [4]. It is the purpose of this article
to do that examination carefully.

We set the following technical criterion for ontology:
ontology is the ability to completely determine the pre-
viously unknown state of a single copy. Even in cases
where this is not possible, we introduce the notion of
FAPP Ontology (ontology For All Practical Purposes) as
the ability to almost determine the unknown state of a
single copy, or in other words, a state determination with
specified amount of errors.

It may, however, be worthwhile to point out that strictly
speaking, the condition of non-invasiveness may be too
restrictive for ontology. Both in classical mechanics and
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in quantum mechanics if means are available for a com-
plete determination of the state of a system albeit at the
cost of a radical change of state (but not of the system
itself!), one can still meaningfully ascribe reality to that
state. Then one can prepare the system in this state, and as
far as subsequent measurements are concerned, it would
be as if the original state had not been tampered with. In
the context of quantum mechanics, this entails simultane-
ous and accurate determination of the expectation values
of non-commuting observables in a single measurement
performed on a single copy. The uncertainty principle
restricts the possible accuracies in such a measurement
which resembles the well-known Arthurs-Kelly Measure-
ments. Again, strict ontology would not be possible, but it
would be interesting to investigate the best possible FAPP
ontology.

Though historically it was not recognized as such, we
can now trace all the essential non-classical features of
quantum theory to just one principle, namely, The Prin-
ciple of Superposition of States [1, 2, 5]. In fact, one can
take this principle to be the defining feature of quantum
theories. Other aspects like Entanglement, taken by many
(particularly among the Quantum Information commu-
nity) to be the crux of quantum mechanics, is a natural
consequence of the superposition principle.

It turns out that even without a very detailed analysis,
one can show the impossibility of perfectly non-invasive
measurements in quantum mechanics by just invoking
the superposition principle. We outline this powerful
argument in subsection 3.1. Another, equally powerful
argument against ontology can be given by invoking the
No Cloning Theorem. The proof of the No Cloning Theo-
rem involves only Unitarity, and makes no reference to
quantum measurements at all. It is surprising that this
theorem, which has nothing to do with the measurement
process, could have such a strong bearing on the issue
on ontology in quantum mechanics. This second argu-
ment is presented in subsection 3.2. We then analyse the
projective measurements (section 4), the protective mea-
surements (section 5), a method of cloning which we had
named Information Cloning (section 7), the weak mea-
surements (section 6), methods of approximate cloning
(section 8) for their implications on the question of ontol-
ogy in quantum mechanics.

3.1 Superposition Principle and Ontology

Let us consider a hypothetical measurement device that
is perfectly non-invasive (leaves the system state undis-
turbed). We can consider the initial unknown system state
to be |ψ〉S . Since this does not change, we can use a state-
vector representation for the system. The treatment of
the apparatus will be more subtle. All that the apparatus

is required to do is produce a probability distribution of
outcomes which carries complete information about the
expectation value of the observable in the system state
|ψ〉S . Therefore, at least the final state of the apparatus
ought to be described by a density matrix. Then one
might as well describe the entire history of the apparatus
by a density matrix. Because the system stays in the same
state throughout, it is consistent to treat the system by a
state vector, and the apparatus by a density matrix. The
initial state of the system-apparatus composite can be
taken to be

|ψ〉S ⊗ ρA(0) (1)

Under the measurementM, this goes to

|ψ〉S ⊗ ρA(0)
M
−−→ |ψ〉S ⊗ ρ

A(〈ψ|O|ψ〉S ) (2)

The measurement M not being a Unitary process, can
take a pure density matrix to a mixed one. The final
apparatus (reduced) density matrix is in general mixed.
If such aM could be realized, it can be used as often as
necessary to measure all the relevant observables for state
tomography of |ψ〉S as the state is left undisturbed.

The map in Equation 2 is not consistent with the prin-
ciple of linear superpositions of states. That is, if the
measurement device works on |ψ1〉S and |ψ2〉S , it will not
work on an arbitrary superposition α|ψ1〉 + β|ψ2〉 i.e. the
measurement does not work on an arbitrary unknown
state. As this is a very important issue, let us state it as
precisely as possible. For that, let us describe the system
state also by a density matrix ρS = |ψ〉〈ψ|S and recast
Equation 2 as

ρini
S A = ρS ⊗ ρA(0)

M
−−→ ρS ⊗ ρ

A(〈O〉ρS ) (3)

The mapM can generically be expressed as

ρS A
M
−−→

∑
i

Mi ρS A M†i (4)

The measurement operations Mi, in the sense of positive-
operator valued measures (POVMs), are independent of
ρS A. Therefore, the l.h.s. of Equation 3 is bilinear in the
system state |ψ〉S . If the system state |ψ〉S =

∑
i ci|i〉S

in some basis |i〉S , the l.h.s. is a quadratic form in
Re ci, Im ci. But the r.h.s. of the same equation is cer-
tainly not bilinear in this sense. Thus the conflict with the
superposition principle.

This is a very powerful conclusion showing that the
principle of linear superposition of states alone is enough
to rule out ontology in quantum mechanics and one need
not invoke the deep, but confusing, chain of arguments
invoked by the founders like Niels Bohr. An explicit
realization of this line of thinking is afforded by the mea-
surements discussed in section 5 and section 7. In the
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case of Protective Measurements, the scheme requires the
unknown initial states to be non-degenerate eigenstates
of a suitable Hamiltonian. A linear superposition of such
states is no longer a state of the same type. In the case of
Information Cloning, the scheme requires the unknown
states to be Coherent States of a Harmonic Oscillator, and
again, a superposition of such coherent states is not a
coherent state!

3.2 The No-cloning theorem

The No-Cloning theorem [6,7] is one of the most striking
of all results in quantum theory! Invoking nothing more
than the inner-product preserving nature of unitary trans-
formations or the superposition principle, it states that no
unitary process can ever ‘copy’ unknown quantum states.
In a lighter vein it is said that there are no quantum Xerox
machines! We shall first describe the theorem, which is
remarkably straightforward considering its profundity.

Consider an unknown state |ψ〉S of some quantum sys-
tem and N identical copies of another, but known, state
|0〉S of the same system (it is not really necessary that
they be of the same system, though). The latter are also
called ‘blanks’ or ‘ancillaries’. A unitary transformation
U acting on the tensor product Hilbert space HN+1 is
said to be a universal cloning transformation if it satisfies

U |ψ〉 ⊗ |0〉1 ⊗ . . . ⊗ |0〉N = |ψ〉 ⊗ |ψ〉1 ⊗ . . . ⊗ |ψ〉N (5)

for every |ψ〉. The No-cloning theorem is a proof that
no such universal unitary transformation can exist. For
a proof based only on unitarity ofU, consider a second
state |χ〉 so chosen that |〈χ|ψ〉| , 0, 1. Then the effect of
U on |χ〉 has to be

U |χ〉 ⊗ |0〉1 ⊗ . . . ⊗ |0〉N = |χ〉 ⊗ |χ〉1 ⊗ . . . ⊗ |χ〉N (6)

Taking the inner product between these two equations and
using unitarity ofU, one gets,

〈χ|ψ〉 = (〈χ|ψ〉)N+1 (7)

But this is possible only if |〈χ|ψ〉| = 0, 1 which contradicts
the initial premise about |χ〉! The same proof can also be
viewed as a consequence of the superposition principle.

What is the relevance of the No-cloning theorem to
our discussion of ontology? The point is, that N can
be made very very large, at least in principle, either in
a single application of the universal cloner or in many
cascaded applications of it. Then we can set aside one
out of N + 1 copies produced, and use the remaining N
copies for an ensemble state determination. The accuracy
of the subsequent state determination can be improved
with higher and higher N. One would still be left with one

copy of the original unknown state even if the tomography
with the N copies is as invasive as can be.

Thus if an universal cloner existed, one would in effect
be able to make a non-invasive measurement on a single
copy of an unknown state and still be able to determine
its state as accurately as one wishes. It is rather remark-
able that this theorem which invokes only aspects of uni-
tary evolutions, with no explicit reference to quantum
measurements, nevertheless captures the very essence of
quantum measures as per the Copenhagen Interpretation!
This deep connection also borders on the mystic.

However, we shall introduce a novel Information
Cloning which bypasses the no cloning theorem in a sub-
tle way and is a way of getting information on a single
copy, albeit with errors that cannot be reduced arbitrarily.

Before proceeding, we wish to highlight some other
aspects of the No-cloning theorem. As expressed in Equa-
tion 5, the cloning transformation has made additional
copies of the unknown state while preserving the original.
But for the purposes of ontology, the preservation of the
original is quite unnecessary as long as one ends up with
sufficient number of copies.

A particularly striking example where the original is
totally destroyed but one copy is left behind is in Quantum
Teleportation! In fact in that case, the copy is created in a
way that it is physically separated by distance from the
original. Complete destruction of the original with exactly
one copy produced also happens in swapping, but unlike
teleportation a unitary transformation can accomplish that.
Though quantum teleportation is not particularly useful
in determining the unknown original state, it brings to
the fore another aspect of reality, namely, transport of
‘real’ objects. In classical mechanics for sure, an object
that does not have reality, or does not exist, cannot be
transported. So it would be legitimate in that context
to say that anything that can be transported is also real.
In that sense, quantum teleportation would accord some
reality to the wavefunction (state). Being a single state
there can be no strict ontology though a FAPP ontology
would be possible. Since the state is not determined, there
is no epistemology either.

4 Projective Measurements and
Ontology

Now we analyze why the Projective or Dirac–von Neu-
mann measurements cannot yield any ontology. Even
though the arguments are simple and straightforward, we
recast them in the language of joint and conditional prob-
abilities so we can use the same framework to address the
issue of ontology in other contexts like weak measure-
ments.
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In a strong or projective measurement, the state after
the first measurement is changed randomly to one of
the eigenstates of the observable being measured. The
outcome of the apparatus is the corresponding eigenvalue.
The fact that a given eigenstate-eigenvalue combination
could have resulted from infinitely many unknown initial
states makes their reconstruction impossible from the
information available after a single such measurement.
Such a reconstruction requires an ensemble measurements
with optimally chosen observables.

If repeated strong measurements are performed on a
single copy, the second and all subsequent measurements
are eigenstate measurements where the eigenstate in ques-
tion is the state after the first measurement. Therefore all
subsequent measurements leave the system in this same
eigenstate and all subsequent apparatus outcomes are ex-
actly the same as the outcome of the first measurement.
In other words, they do not generate any additional infor-
mation required for the state reconstruction. The strong
measurements are not only highly invasive, they do not
generate any information for determining the state. These
are the reasons, within standard quantum mechanics, for
the impossibility of an ontological description.

Now let us recast these considerations in the language
of conditional and joint probabilities of outcomes of re-
peated measurements on a single copy. Let the observable
being measured is S , with the spectrum si, |si〉S . If the
initial unknown state of the system is

|ψ〉S =
∑

i

αi |si〉S (8)

The probability distribution for the outcomes of the first
measurement is given by

P(p1) =
∑

i

|αi|
2 δ(p1 − si) (9)

This says that the first outcome is random with the above
distribution. Let the outcome of the second measurement
be p2, and as explained above, it has to be the same as
p1 because it is an eigenstate measurement. Therefore,
the probability distribution for p2 is conditional on the
outcome p1. In other words, the conditional probability
distribution P(p2|p1) for the outcome p2, conditional on
the first outcome being p1 is

P(p2|p1) = δ(p2 − p1) (10)

The Joint Probability Distribution P(p2, p1) for the out-
comes of the first two of the repeated measurements is
now given by

P(p2, p1) = P(p2|p1)P(p1)

=
∑

i

|αi|
2 δ(p2 − p1)δ(p1 − si)

=
∑

i

|αi|
2 δ(p2 − si)δ(p1 − si) (11)

It is straightforward to generalize these to the outcomes
of N repeated measurements on a single copy:

P(pN , . . . , p1) =
∑

i

|αi|
2

N∏
j=1

δ(p j − si) (12)

As usual, it is useful to introduce yN to be the average of
the first N outcomes, and consider its probability distribu-
tion P(y) that is

yN =

∑
i pi

N
(13)

and

P(yN) =

∫
. . .

∫ ∏
i

dpi P({p}) δ(yN −

∑
i pi

N
) (14)

where the notation {p} is used to indicate the values of
the set of all p-variables. On using Equation 12 and
Equation 14, it follows that

P(yN) =
∑

i

|αi|
2 δ(yN − si) (15)

The repeated measurements have not changed the nature
of the distribution at all, and it remains the same as Equa-
tion 9! Though our simple reasoning had already told us
this, the formalism of conditional and joint probabilities
used above will prove to be useful in more complicated
situations where there are no such simple reasoning avail-
able.

4.1 Sharpening the ontology criterion

The form of Equation 15, derived for Projective Measure-
ments which are decidedly invasive and hence incapable
of any ontological descriptions, suggests an even more
precise technical criterion for ontology. For that, let us
contrast Equation 15 with what one would expect in the
case of ensemble measurements on the basis of the Cen-
tral Limit Theorem:

P(yN) = N e−
N (yN−µ)2

∆2 (16)

This suggests a way to sharpen the criterion for onticity
in quantum mechanics, given verbally earlier, to the fol-
lowing precise mathematical criterion: exact ontology
in quantum mechanics is the ability to find non-invasive
measurement schemes such that the mean of the N out-
comes of repeated measurements on a single copy of a
system in an unknown state takes the deterministic form

P(yN) = δ(yN − µ), µ = 〈ψ|O|ψ〉 (17)

Not surprisingly, there will be no candidates within quan-
tum mechanics for this criterion.
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The next best possibility will be the FAPP-Ontology
discussed earlier. The following two criteria provide pre-
cise characterizations of such. The first is that the statis-
tics of outcomes of repeated measurements on a single
copy will be very similar to that obtained from measure-
ments on an ensemble. In particular, the distribution for
the average yN will be a single distribution as in Equa-
tion 16, and additionally µ = 〈ψ|S |ψ〉. The figures of
merit for the FAPP ontology are (i) how close µ actually
is to the expectation value, and (ii) how small the error
ε = ∆√

N
is.

The second criterion allows for the distribution P(yN)
to deviate from a single distribution but with very small
deviations

P(yN) = p0 e−
(yN−〈S 〉ψ)2

ε2 +
∑

i

pi e
−

(yN−µi)
2

ε2i (18)

In this case, the average outcome of repeated measure-
ments will be random, and ensemble measurements be-
come a necessity; measurements on a single copy will not
reveal any information about the unknown state. In the
coming sections we shall discuss explicit realizations of
these criteria.

5 Protective Measurements and
Ontology

Aharonov, Anandan and Vaidman [8, 9] proposed a re-
markable type of experiments which they called Protec-
tive Measurements. They gave an explicit realization for
them and showed that for a restricted class of states, and
in a certain ideal limit, one could get full information
about single copies of such restricted class of states with-
out affecting the state. From whatever we have said so far,
such a proposal would realize exact ontology in the ideal
limit. Closer examination, however, shows that even these
remarkable category of measurements actually provide
only FAPP ontology, as the ideal limit requires measure-
ments lasting infinitely long. Now we elaborate on the
details.

They consider states that are non-degenerate eigen-
states of some unknown Hamiltonian. For this reason, the
states are indeed unknown. Let us briefly review the stan-
dard projective measurements to see the differences and
commonalities between projective and protective mea-
surements. For every type of measurement it is necessary
to characterize the measuring apparatus. Niels Bohr was
of the opinion that this necessarily had to be classical,
whereas Dirac and von Neumann found it desirable to
take this also to be a quantum system. It is also important
to consider the modern picture of the Dirac–von Neu-
mann Scheme. According to this, the final act of the

measurement (the one that breaks the so called infinite
von Neumann regression) is environmental decoherence
which accounts for the real life situation that there is a
complex environment with which both the system and
the apparatus are interacting. This, technically speaking,
renders the final density matrix diagonal in an apparatus
Hilbert space basis which defines the Pointer States for
the apparatus. Let RA be the observable of the apparatus
whose eigenstates are the pointer states. In the Dirac–von
Neumann measurement theory formalism, one introduces
an apparatus operator QA that is canonically conjugate to
RA that is [RA,QA] = ı~.

For both types of measurements, the interaction be-
tween the ‘apparatus’ and the system is taken to be de-
scribed by a Hamiltonian:

HI(t) = g(t)QA S ,
∫

g(t)dt = 1 (19)

Here S is the system observable that is being measured
and QA the observable of the apparatus described above.
The integral condition on g(t) is a convenient normaliza-
tion which can be taken without loss of generality. In
addition to this interaction Hamiltonian, the time evolu-
tion of both the system and the apparatus are respectively
governed by their own Hamiltonians HA and HS , respec-
tively.

The projective measurements correspond to an impul-
sive g(t) that is g(t) is non-zero only in a very small time
interval − ε2 < t < ε

2 . The time-evolution unitary trans-
formation taking pre-measurement-interaction states to
post-measurement-interaction states is given by

U(
ε

2
,−
ε

2
) = e

− ı
~

∫ ε
2
− ε2

H dt
(20)

Normally this unitary transformation is given by time
ordered integral over the total Hamiltonian H(t):

H(t) = HA + HS + HI (21)

In the limit of the measurement interaction being ex-
tremely impulsive that is ε → 0, the time ordered integral
is well approximated by

U = e−
ı
~ QA S (22)

It should be noted that HA,HS do not contribute in this
impulsive limit (it is understood that these Hamiltonians
are bounded). The combined state of the system and appa-
ratus before measurement is taken to be the disentangled
state

|t<〉 = |ν〉S |Φ(r0)〉A (23)

The initial apparatus state, in the Dirac–von Neumann
scheme is taken to be an eigenstate of RA with an eigen-
value, say, r0; this corresponds to the initial reading of
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the apparatus. To avoid technical difficulties arising out
of the use of continuous variables, the initial apparatus
state |Φ(r0)〉 is taken to be a wavepacket sharply centered
around the value r0 of RA.

Here |ν〉 is the unknown system state on which a mea-
surement of the observable S is performed. If |si〉 are the
eigenstates of S that is S |si〉 = si|si〉, and |ν〉 =

∑
i αi|si〉

the post-measurement interaction state is given by

|t>〉 = U |t<〉 =
∑

i

αi e−
ı
~ si QA |si〉 |Φ(r0)〉 (24)

As QA is canonically conjugate to RA, the exponential
operator shifts the value of RA by si and one gets the
entangled state

|t>〉 =
∑

i

αi |si〉 |Φ(r0 + si)〉 (25)

This explicitly manifests the one-one correspondence
between the states |si〉 of the system, and the states
|Φ(r0 + si)〉 of the apparatus. But the state in Equation 25
is entangled and it hardly reflects the single outcomes
expected of a good measurement! It is instructive to see
how decoherence ‘solves’ this issue; for that, consider the
pure density matrix corresponding to this state:

ρS +A(t>) =
∑
i, j

αi α
∗
j |si〉〈s j| |Φ(r0 + si)〉〈Φ(r0 + s j)| (26)

Clearly this matrix is not diagonal in the pointer basis |Φ〉.
Decoherence reduces this to the mixed density matrix

ρS +A(t>) =
∑

i

|αi|
2 |si〉〈si| |Φ(r0 + si)〉〈Φ(r0 + si)| (27)

Though this still does not explain how single outcomes
come about, it has at least reduced that to a classical
problem of picking from a mixture, much like picking a
card out of a deck.

To pictorially contrast the projective and protective
cases, we show in Figure 1a the outcomes of a standard
Stern-Gerlach experiment viewed as a projective mea-
surement. With this background, it is easy to grasp the
essentials of a Protective Measurement. The major de-
parture from projective measurements is that now the
measurement interaction behaves oppositely to what it
did in the case of projective measurements–the interac-
tion time T is now taken to be very large, approaching
infinity! Let us leave aside for now questions like the
meaning of measurements that take infinitely long, and
proceed. It is simplest to take g(t) to be a constant. Then
the normalization condition gives g = 1

T , where T is the
long duration of the measurement, which will tend to∞
in the end. The total Hamiltonian becomes

H = HA + HS +
1
T

QA S (28)

which is time independent. Again, for simplicity we re-
strict analysis to the choice [HA,QA] = 0 (for a complete
discussion of the general situation see [10]). However,
even in the standard Stern-Gerlach case, such a simplifica-
tion does not happen. This condition allows both HA,QA

to be simultaneously diagonalized

QA|ai〉A = ai|ai〉A, HA|ai〉A = EA
i |ai〉A (29)

HS taken to be unknown has the non-degenerate eigen-
states | j〉S , with eigenvalues ω j. Because of the simpli-
fying assumptions made, the total Hamiltonian H also
commutes with QA and both of them can also be diag-
onalized simultaneously. If we take HA|ai〉A = EA

i |ai〉A,
the simultaneous eigenstates of H and QA are of the form
| j, i〉S |ai〉A with | j, i〉S satisfying

(HS +
1
T

ai S )| j, i〉S = Ω( j, i)| j, i〉S (30)

It is clear that Ω( j, i)
T→∞
−−−−→ ω j and | j, i〉S

T→∞
−−−−→ | j〉S .

The eigenvalues and eigenstates of the total Hamiltonian
H can now be expressed as

H| j, i〉S |ai〉A = E( j, i)| j, i〉S |ai〉A

= (EA
i + Ω( j, i))| j, i〉S |ai〉A (31)

For very large T, Ω( j, i) can be calculated in first order
perturbation theory to get

Ω( j, i) = ω j +
1
T

ai 〈 j|S | j〉S (32)

If the unknown system state before measurement is the
non-degenerate eigenstate |k〉S of HS , the joint state
before measurement is taken to be |k〉S |Φ(r0)〉A, with
|Φ(r0)〉A being the same as what was used in projective
measurements.

The joint state after time T is

|k,T 〉 = U(T )|k〉S |Φ(r0)〉A
=

∑
i, j

〈ai|Φ(r0)〉A 〈 j, i|k〉S e−
ı
~T E( j,i) | j, i〉S |ai〉A

(33)

In first order perturbation theory, 〈 j, i|k〉s = δ j,k. Putting
everything together

|k,T 〉
T→∞
−−−−→ e−

ı
~ωkT |k〉S e−

ı
~HAT e−

ı
~ 〈k|S |k〉S QA |Φ(r0)〉A

(34)
In other words

|k,T 〉 → e−
ı
~ωkT |+〉e−

ı
~HAT |Φ(r0 + 〈k|S |k〉)〉A (35)

Thus under these protective measurements, the original
state is protected and the apparatus reads the expectation
value 〈k|S |k〉S ! This is modulo the e−

ı
~HAT factor.

Quanta | DOI: 10.12743/quanta.v3i2.27 September 2014 | Volume 3 | Issue 1 | Page 54

http://dx.doi.org/10.12743/quanta.v3i2.27


N

S
Source Slit

Magnet
Screen

A

N

S
Source Slit

Magnet
Screen

B

N

S
Source Slit

Magnet
Screen

C

Figure 1: A. The standard Stern-Gerlach measurement setup denoting a projective measurement on a spin- 1
2 system. The source

emits a collimated beam of silver atoms directed between the poles of a magnet that produces an inhomogeneous magnetic field.
Since the silver atoms are neutral they do not experience a Lorentz force. However, silver has in its outer shell an unpaired 5s
electron that is in a zero orbital angular momentum state. Thus the deflection by the inhomogeneous magnetic field is due to the
spin of the outer electron only. The top (+) and the bottom (−) spots are hit randomly with probabilities given by the initial state.
B. The situation to be expected in the case of an ideal protective measurement (that is in the extreme adiabatic limit T → ∞). In
this case, the beam hits the screen at only one spot which directly measures the expectation value of the observable in the initial
state. The slashes denote the ‘protective magnetic field’ which has to be present over and above the inhomogeneous magnetic
field. C. The situation in the case of the non-ideal protective measurement (that is when T is very large but finite). In this case,
while the spot occurring in the ideal case has a very large probability, other cases as enumerated in subsection 5.1 occur with
small but non-vanishing probabilities.
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Since the state is ‘undisturbed’, one can reuse it for
carrying out protective measurements of all the necessary
observables for complete state determination. The appara-
tus and the system are disentangled, and there is no need
to take recourse to decoherence to achieve the final step
in the measurement process. This is what can be called
the Ideal protective measurements, in the sense that it is
valid only in the strict T = ∞ limit. Figure 1b shows
the situation to be expected for an ideal protective Stern-
Gerlach experiment. Unlike the standard Stern-Gerlach
set up, the silver atoms in an ideal protective measure-
ment would strike the screen at only one spot, in between
the extreme positions encountered in the standard case.
Its location is a precise measure of the expectation value
of the measured observable in the unknown initial state.

But Equation 35 is precisely the kind that had been
argued to be in conflict with the superposition principle
in subsection 3.1! The Aharonov–Anandan–Vaidman
scheme cleverly evades this by considering the unknown
initial states to be non-degenerate eigenstates of HS ; there-
fore, superpositions of such states can no longer be non-
degenerate eigenstates of HS !

5.1 Non ideal protective measurements

The Ideal case is obviously unphysical as it is meaningless
for any measurement to last infinitely long! In real life
situations T can be very very large (compared to the time
scales involved) but not∞. One may naively argue that
for all practical purposes the difference between such very
large T and the ideal limit should be negligible. Indeed,
for ensemble measurements the difference between very
large T and T = ∞ is negligible in the precise sense that
the resulting probability distributions for outcomes differ
only very slightly, and all the statistical conclusions are
not affected significantly.

But for measurements on single copies, which are the
only relevant measurements in the context of ontology,
the situation is dramatically different. In Quantum Me-
chanics, unlike in the classical counterpart, individual
outcomes of measurements are completely random and
unpredictable. Even outcomes with hopelessly small
probabilities can manifest. Only if their probability is
exactly zero, will they not show up. This makes a very
significant difference for protective measurements. In a
nutshell, departure from T = ∞ causes a very small but
significant entanglement between the system and the ap-
paratus. This can cause the first protective measurement
to project the unknown initial state into any state that is or-
thogonal to it. This way, not only is the state not protected
during the first measurement, it renders meaningless the
outcome of even protective measurements subsequently.
No state reconstruction is possible and there is no strict

ontology. This was the criticism of protective ontology
that was made by both [10] as well as by [11].

To address these issues we need to consider all sources
of 1

T corrections to the ideal results. We refer the reader
to [10, 12, 13] for the technical details. Here we shall list
the important sources of 1

T corrections and discuss their
importance. In the sum of Equation 33, one will have
to take into account system states | j , k, i〉S . In order
to get the leading 1

T corrections, second order perturba-
tion theory becomes necessary. This typically introduces
corrections of the type |k′〉S Q2

A|Φ(r0)〉. Schematically the
effect of these corrections can be represented as

|T 〉 = |ideal〉 +
c
T
|non-ideal〉 (36)

It is important to note that 〈ideal|non-ideal〉 = 0 because
of the nature of perturbation theory. Now we can further
enumerate some possibilities:

• State is protected and apparatus reads the 〈QS 〉 in
that state with P = 1 − c2

T 2 .

• State protected but pointer in all possible states with
probability ' 1

T 2 .

• State collapses to the state orthogonal to it and the
pointer reads the expectation value in the orthogonal
state with probability ' 1

T 2 .

• State collapses to the orthogonal but pointer in all
possible states with probability ' 1

T 2

This is depicted pictorially in Figure 1c. It is worth em-
phasizing that in each of these cases, the system state after
measurements remains correlated with the original state.
This is in sharp contrast to projective measurement where
the system state after the measurement is completed has
no memory of the original state whatsoever.

5.2 Adiabatic two qubit
interactions–another twist

As a further generalization of the protective measurement
schema, Anirban Das and myself [12] considered the case
where the role of the apparatus is also played by another
qubit or by a quantum system with finite dimensional
Hilbert space. Let us illustrate with the example of the
qubit as a detector. We take the basis states to be |d↑〉A
and |d↓〉A. The system is also taken to be a qubit with its
Hilbert space spanned by | ↑〉S and | ↓〉S . The measure-
ment interaction is taken to be represented by the unitary
transformationU:

| ↑〉|d↓〉
U
−−→ | ↑〉 |d↑〉

| ↓〉|d↓〉
U
−−→ | ↓〉 |d↓〉 (37)
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The components of spin are taken to be along the z-axis
for both systems. For projective measurements where
there are only two possible outcomes, it suffices to take
|d↑〉, |d↓〉 as the pointer states. Whether there are any re-
alistic ‘environments’ that can result in decoherence in
this basis is not very clear. For adiabatic measurements
where there can be a near-continuum of outcomes, we
shall take angular momentum coherent states obtained
by rotating, say, |d↑〉 by θ about the x-axis as the pointer
states. Once again the existence of suitable decoherence
mechanisms in this basis remains to be understood. More
general possibilities for pointer states can also be con-
sidered. The interaction Hamiltonian that generates the
unitary transformationU turns out to be (actually there
are infinitely many such Hamiltonians!)

− πg(t)PS
z,+ ⊗ PA

x,− (38)

Here Pa,± are the projection operators for spin ± along the
a-direction. HA is taken to be the rotationally invariant
~S A · ~S A. This, being a constant, does not lead to any
pointer state broadening. Let the initial unknown system
state be

|ν〉 = α| ↑〉S + β| ↓〉S (39)

In the ideal limit, protective measurements of this type
maintain the original state and the pointer state is θ =

π|α|2. But here too, the non-ideal case is the more realistic
and we enumerate the possible outcomes [12, 13].

• After accounting for the relevant 1
T corrections also,

the dominant outcome is when the original state is
protected and the apparatus outcome is the expec-
tation value of the observable in the original state.
But unlike the ideal case, the probability of this hap-
pening is no longer unity; instead it happens with
probability P ' 1 − c2

T 2 .

• State collapses to its orthogonal; unlike the protec-
tive measurements considered so far, the apparatus
state now is uniquely determined to be |d↓〉x! This
happens with probability P ' 1

T 2 .

• State is protected but apparatus again in |d↓〉x , with
probability P ' 1

T 2 .

• It is intriguing that the ‘failed’ protective measure-
ments now always produce the same apparatus state
|d↓〉x .

We see that because of non-vanishing probabilities for
deviations from the ideal case, perfect ontology is not
possible. The last point mentioned above (the failed cases
coming with a well defined apparatus state) might give
hope that the lack of perfect ontology may somehow be
overcome by exploiting this feature. Even though the

apparatus state, being fixed, does not convey any informa-
tion about the initial system state, the state of the system
after the measurement being just orthogonal to it, car-
ries all information about it. Unfortunately, no universal
unitary transformation can transform an unknown initial
state of a qubit to its orthogonal state. But what is worse,
there is no way to tell, with only single copies, that the
protective measurement has actually failed. The reason
is that as long as the pointer states are the ones produced
by rotating |d↓〉 through θ around the x-axis, |d↓〉x will
have to be expressed as 1√

2
(|d↑〉 + |d↓〉. This being a su-

perposition of pointer states, there are finite probabilities
for different outcomes, and the failed case will behave
as in a projective case. This again precludes any perfect
ontological significance to these unknown states.

However, protection fails with very low probability.
This means protective measurements can give practically
full information about a class of unknown states in such
a way as to protect the purity of the post-measurement
ensemble to a very high degree. Further, a dramatic de-
crease in the size of the ensemble for state tomography
is possible. In other words, protective measurements
can provide FAPP ontology to an arbitrary degree, and
this can be important and highly useful in this pragmatic
sense [13, 14] though from a philosophical point of view
they cannot deliver the ontological goods. Because of all
these interesting aspects, it is critical that they are sub-
jected to a proper experimental study. For some feasible
suggestions, the reader is referred to [13].

6 Weak Measurements and
Ontology

Now we take up another class of remarkable measure-
ment schemes called Weak Measurements and Weak Value
Measurements. These were also discovered by Aharonov
and his collaborators [15, 16]. Let us first dispose off

the weak value measurements as they are by design un-
suited for ontology. These are also called measurements
with Post-selection; a post-selection of the system state
is made through a projective measurement, following a
weak measurement on an initial, possibly unknown state.
Obviously, the projective measurements involved in the
post-selection stage are invasive on the system. For this
reason, this class of measurements cannot have any bear-
ing on the issues of ontology discussed here.

6.1 Weak Measurements Without
Post-Selection

On the other hand, if no post-selection is made, removing
thereby the invasive elements, weak measurements on
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their own appear to be ideal for the ontological issues. As
their name suggests, they are minimally invasive, with
this degree of invasiveness apparently under full control.
Here too, it is possible to make such measurements both
on ensembles and on single copies. We consider only the
latter here.

As in section 4, let S be the observable of the sys-
tem with si, |si〉S its spectrum, which we take to be non-
degenerate. The initial states of the system and the ap-
paratus are taken to be pure and as in Equation 23. The
measurement interactions are also of the form of Equa-
tion 19 discussed in section 5. But there is an important
difference now in that QA need not be as restrictive as in
the Dirac–von Neumann measurement schemes.

The Pointer States of the apparatus denoted by |p〉A,
are taken to be eigenstates of an apparatus observable
PA. The point of view taken here is that such pointer
states form the basis in which the density matrix becomes
diagonal as a result of decoherence. They are not always
labeled by the mean values of PA in a given state of the
apparatus. Therefore, the specification of an apparatus
involves some quantum system, along with a decoher-
ence mechanism which picks out the pointer states. The
PA,QA pair need not be canonically conjugate. A detailed
account of many important aspects of weak measurements
can be found in [17]. In what follows we shall neverthe-
less stick to the canonical pair for convenience.

The initial apparatus states are taken to be Gaussian
states centered around some p0. For p0 = 0, we have

|φ0〉A = N
∫

dp e
−

p2

2∆2
p |p〉A, N2

√
π∆2

p = 1 (40)

In projective measurements, the Gaussians are taken to
be very narrow that is ∆p � 1 so that they approximate
pointer states to a high degree. In contrast, for weak mea-
surements, ∆p � 1.That means that the initial apparatus
state is a very broad superposition of pointer states with
practically equal weight for many pointer states. Though
even in the weak case, the initial apparatus state is also
peaked at p0 = 0, it is not a pointer state. This important
point has led to confusing statements in literature.

The measurement interaction is still taken to be impul-
sive that is the function g(t) is non-vanishing only during
a very small duration, say, −ε < t < ε. We leave out
the details (the reader is referred to [18] for them) and
give only the essential results. The post-measurement
density matrix turns out to be (in what follows, we shall
use the notation {α} to indicate the values of the set of all
α-variables):

ρ
post
S A =

∫
dp |N(p, {α})|2|p〉〈p|A |ψ(p, {α})〉〈ψ(p, {α})|S

(41)

where

N(p, {α}) = N

√√√∑
i

|αi|
2 e
−

(p−si)2

∆2
p (42)

|ψ(p, {α})〉 =
N

N(p, {α})

∑
j

α j e
−

(p−s j)
2

2∆2
p |s j〉S (43)

For an ensemble of weak measurements, P(p, {α}) =

|N(p, {α})|2 being the probability for outcome p, the mean
outcome is

〈p〉ψ =

∫
dp p|N(p, {α})|2 =

∑
i

|αi|
2 si (44)

yielding the same expectation value as in strong mea-
surements. The variance of the outcomes can be readily
calculated to yield

(∆p)2
ψ = (∆p)2 + (∆S )2 (45)

This exposes one of the major weaknesses (!) of weak
measurements–the errors in individual measurements are
huge. This can be reduced statistically as usual. If one
considers averages over Mw measurements, the variance
in the average, is ∆p

√
2Mw

. It makes sense to compare differ-
ent measurement schemes only for a fixed statistical error.
Therefore if averaging is done over Ms strong measure-
ments,

∆S
√

Ms
=

∆p
√

2Mw

→ Mw =

(
∆p

∆S

)2 Ms

2
(46)

the required resources will be super-massive!
The aspect of weak measurements that has gained great

prominence is its alleged non-invasiveness. One possible
measure of this non-invasiveness is provided by the post-
measurement reduced density matrix of the system:

ρ
post
S = ρini −

1
4∆2

p

∑
i, j

(si − s j)2 αiα
∗
j |si〉〈s j| (47)

Thus, for very large ∆p, the reduced density matrix of the
system practically equals that of the initial state.

The combination of an exact estimate for the expec-
tation value, as given by Equation 44, as well as the
maintenance of the state to a very high degree as per
Equation 47 may give rise to the expectation that weak
measurements may offer the best hopes for ontology in
quantum mechanics. What would make such an expecta-
tion particularly exciting is that these measurements can
be done on any state–they appear to offer FAPP ontology
for arbitrary states! We investigate this by turning to an
analysis of repeated weak measurements on a single copy
as given in [18] with particular emphasis on ontology.
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Two aspects that need to be particularly focused upon in
this context are (i) how closely the averages of N out-
comes approximate the exact expectation values, and, (ii)
how the single state gets degraded as a result of multiple
weak measurements.

The following schema defines for us repeated weak
measurements of the same observable on a single copy
[18]: (i) perform a weak measurement of system observ-
able S in state |ψ〉S with the apparatus in the state of
Equation 40 with very large ∆p, (ii) let the definitive out-
come, defined as above, be p1, and the single system state
be |ψ(p1, {α})〉S , (iii) restore the apparatus to its initial
state, (iv) repeat step (i), and so on. After N such steps,
let the sequence of outcomes be denoted by p1, p2 . . . , pN

and the resulting system state by |ψ({p}, {α})〉S .
The probability distribution for the first outcome

p1,P(1)(p1) is given by

N(1)(p1, {α})|2 = |N(p1, {α})|2 (48)

with N(p, {α}) given by Equation 42. The correspond-
ing system state is given by |ψ(p1, {α})〉S of Equation 43.
Thus the set of α for this state is given by

α(1)
i =

N
N(p1, {α})

e
−

(p1−si)
2

2∆2
p αi (49)

Since in step (iii) the apparatus state has been restored,
the probability distribution P(2)(p2) for the outcome p2 at
the end of the second weak measurement, is given by

P(2)(p2) = |N(2)(p2, {α})|2 = |N(1)(p2, {α
(1)})|2 (50)

Substituting from Equation 49, one gets

P(2)(p2) =
(N2)2

P(1)(p1)

∑
i

|αi|
2

2∏
j=1

e
−

(p j−si)
2

∆2
p (51)

As stressed in [18], P(2)(p2) is actually the conditional
probability P(p2|p1) of obtaining p2 conditional to having
already obtained p1 (that is the reason for the explicit
dependence on p1 in Equation 51). The joint probability
distribution P(p1, p2) is therefore given by P(p2, p1) =

P(p2|p1)P(p1) to give

P(p1, p2) = (N2)2
∑

i

|αi|
2

2∏
j=1

e−
(p j−si)

2

∆2 (52)

The state after the second measurement is given by the
exact analog of Equation 49:

α(2)
i =

N
N(2)(p2, {α(1)})

e
−

(p2−si)
2

2∆2
p α(1)

i (53)

It is useful to explicitly write this state:

|ψ(p1, p2, {α}) =

∑
i

2∏
j=1

e
−

(p j−si)
2

2∆2
p αi|si〉S√√∑

i
|αi|

2
2∏

j=1
e
−

(p j−si)2

∆2
p

(54)

It is remarkable that these results are all symmetric in
the outcomes pi. Equation 52 and Equation 53 readily
generalize to the case of M repeated measurements:

P(p1, . . . , pM) =
(
N2

)M ∑
i

|αi|
2

M∏
j=1

e−
(p j−si)

2

∆2 (55)

|ψ(p1, . . . , pM, {α}) =

∑
i

M∏
j=1

e
−

(p j−si)
2

2∆2
p αi|si〉S√√∑

i
|αi|

2
M∏
j=1

e
−

(p j−si)2

∆2
p

(56)

6.2 Consequences for ontology

The intrinsic randomness of quantum theory makes no as-
pect of a particular realization predictable. For ensemble
measurements the variables are independently distributed
and the Central Limit Theorem guarantees that as long
as the number of trials is large enough, averages over
even particular realizations converge nicely to the true
mean. To see what happens in the present context, where
the outcomes are clearly not independently distributed,
let us study yM, the average of M outcomes. The ex-
pectation value of yM in the joint probability distribution
P(p1, . . . , pM) is

ȳM =
1
M

∫
. . .

∫ M∏
i=1

∑
i

pi P({p}) =
∑

i

|αi|
2 si

(57)
Which is certainly a remarkable result. With this, the
repeated weak measurements on a single copy certainly
pass one critical requirement for ontology. The variance
in yM can likewise be calculated and it equals ∆p

√
2M

. This
makes it appear that in principle the errors can be reduced
arbitrarily, reminding one of the situation in protective
measurements, except that now no restrictions need be
placed on the initial states! But such appearances turn out
to be highly misleading.

As argued before the crux of the ontology issue lies in
the distribution function P(yM), and not just in its mean
and variance. As shown in [18], the distribution function
P(yM) can itself be calculated explicitly. This is in spite
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of the outcomes not being independently distributed. The
result is

P(yM) =

∫
. . .

∫ M∏
i=1

dpi P({p})δ(yM −

∑
i

pi

M
) (58)

Using Equation 55, this becomes

P(yM) =

√
M
π∆2

p

∑
i

|αi|
2 e
−

(yM−si)
2 M

∆2
p →

∑
i

|αi|
2 δ(yM−si)

(59)
where we have also displayed the limiting behavior as
M → ∞.

This, as per our discussions earlier, immediately
negates not just ontology but even FAPP ontology! In
other words, the distribution of yM is not only not peaked
at the true average, with errors decreasing as M−1/2, it
is actually a weighted sum of sharp distributions peaked
around the eigenvalues, exactly as in the strong measure-
ment case. This means that averages over outcomes of
a particular realization will be eigenvalues, occurring
randomly but with probability |αi|

2. It then follows that
averages over outcomes of a particular realization do not
give any information about the initial state, precisely as in
the case of the invasive strong measurements where there
can clearly be no ontology! Ensemble measurements
again become inevitable.

The other issue to be settled in this context is whether
the repeated measurements on single copies are invasive
or not. It turns out that a very large number of repeated
weak measurements on a single copy has the same inva-
sive effect as a strong measurement. This can be seen by
examining the expectation value of the system reduced
density matrix, ρrep

> :

ρ
rep
> = ρ −

∑
i, j

αiα
∗
j (1 − e

−
M(si−s j)

2

4∆2
p )|si〉〈s j| (60)

It is seen that as M gets larger and larger, there is signifi-
cant change in the system state. In the limit M → ∞, the
off-diagonal parts of the density matrix get completely
quenched, as in decoherence, and the density matrix takes
the diagonal form in the eigenstate of S basis:

ρ
rep
> →

∑
i

|αi|
2|si〉〈si| (61)

which is exactly the post-measurement density matrix in
the case of a strong measurement! The sequence of sys-
tem states of Equation 56 is a random walk on the state
space of the system (see also [19]). It follows from Equa-
tion 43 that the eigenstates of S are the fixed points of the
probabilistic map that generates this walk. Presumably
each walk terminates in one of the eigenstates but which
eigenstate it terminates in is unpredictable.

6.3 Other equivalent results

Alter and Yamamoto have obtained a number of very
significant results about the possibility of obtaining in-
formation about single quantum systems [3, 20, 21]. In
particular they also gave an analysis based on joint and
conditional probabilities applied to repeated weak quan-
tum non-demolition measurements on a single state [21].
They too obtained evolutions resembling random walks
in state space. They concluded that it is not possible to
obtain any information on unknown single states from
the statistics of repeated measurements. The degradation
of the state and relation to projective measurements were
not explicitly studied. In another work, they found con-
nections between Quantum Zeno Effect and the problem
of repeated measurements and again concluded that it is
impossible to determine the quantum state of a single sys-
tem. Our results on information cloning and the general
results from optimal cloning discussed in the next two
sections show that it may be possible to obtain partial
results.

In a very interesting approach to these ontological ques-
tions, Paraoanu has investigated these issues within what
he calls partial measurements [22, 23]. By employing a
combination of repeated such measurements on a single
state and the possibility of reversing such measurements,
he too has concluded the impossibility of obtaining any
information about single unknown states. The invasive
aspects as well as the connections to strong measurements
are not explored here either.

7 Information Cloning and
Ontology

As we saw in subsection 3.2, a subtle inner consistency
of quantum theory prevents determining the unknown
state of a single copy by trying to make many clones of it.
We had, however, proposed what we called information
cloning in [24]. The main idea was to make many copies
of an unknown state which are however not identical to
the original state, but contain the same amount of infor-
mation as the original. Now we discuss the implications
for ontology of such a cloning scheme [25].

The details of how this type of cloning can be used to
determine the state of a single unknown coherent state of
quantum harmonic oscillators can be found in [25]. In
the case of coherent states of harmonic oscillators (say,
in one dimension), complete information about the state
is contained in a single complex coherency parameter
α. Thus by information cloning what we mean is the
ability to make arbitrary number of copies of coherent
states whose coherency parameter is c(N)α where α is
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the coherency parameter of the unknown coherent state
and c(N) is a known constant depending on the number
of copies made.

To this end consider 1 + N systems of harmonic oscilla-
tors whose creation and annihilation operators are the set
(a, a†), (bk, b

†

k) (where the index k takes on values 1, ..,N).
The a oscillators represent the original unknown state,
and the b oscillators represent the information clones.
These operators satisfy the commutation relations

[a, a†] = 1 (62)

[b j, b
†

k] = δ jk (63)

[a, bk] = 0 (64)

[a†, bk] = 0 (65)

Coherent states parametrized by the complex number α
are given by

|α〉 = D(α)|0〉 (66)

where |0〉 is the ground state and the unitary operator D(α)
is given by

D(α) = eαa†−α∗a (67)

We view the information cloning to be a unitary process.
The initial composite state can be taken to be a disentan-
gled state containing the unknown initial coherent state
and some known states of the b-oscillators. It turns out
to be best to take them also to be coherent states. In
other words, the state before information cloning is taken
as |α〉|β1〉1|β2〉2...|βN〉N , where α is unknown while βi are
known to very high accuracy. Consider the action of the
unitary transformation

U = et(a†⊗
∑

j r jb j−a⊗
∑

j r jb
†

j ) (68)

The most general unitary transformation of this type
would involve complex r j’s. But this can be reduced
to the present form through suitable redefinitions of the
phases of the creation and annihilation operators [24]. Of
course, such redefinitions should maintain the algebra of
Equation 62. The process implemented by this unitary
transformation is well known in optics and is called the
beam splitter. But it is very important to appreciate that
what we are dealing with here is when this acts on a sin-
gle photon state, a circumstance in which the notion of
a beam is neither meaningful nor useful. By an applica-
tion of the Baker–Campbell–Hausdorff identity and the
fact that U |0〉|0〉1..|0〉N = |0〉|0〉1..|0〉N it follows that the
resulting state is also a disentangled set of coherent states
expressed by

|α′〉|β′1〉1..|β
′
N〉N = U |α〉|β1〉1..|βN〉N (69)

In other words, the unitary transformation U acting on
various coherent states induces another unitary transfor-
mationU among the coherency parameters. Details can

be found in [24]; we merely give the final result and
discuss its physical implications. Let us define

a(t) = UaU† (70)

b j(t) = Ub jU† (71)

The explicit form of the transformation induced on the
parameters (α, β j) can be represented by the matrixU as

αa(t) = Uabαb. (72)

where we have introduced the notation αa with a =

1, ...,N + 1 such that

α1 = α

αk = βk−1k ≥ 2 (73)

Then we have

U1a =
(

cos Rt r1
R sin Rt .. .. rN

R sin Rt
)

(74)

where R =
√∑

j r2
j and

Uab = −
ra−1

R
sin Rt δb1 + (1 − δb1)Ma−1,b−1 (75)

where Equation 75 is defined for a ≥ 2. Equivalently

U =


cos Rt r1

R sin Rt .. .. rN
R sin Rt

−
r1
R sin Rt M11 .. .. M1N

.. .. .. ..

.. .. .. ..

−
rN
R sin Rt MN1 .. .. MNN


(76)

It is best to choose {βi, ri} in such a way that all βi(t)
become identical and we get N identical copies. This
happens only when ri = r, βi = β. In that case we have

βi(t) = −
α
√

N
sin Rt + β cos Rt (77)

There is still the freedom to choose Rt. Let us first con-
sider the choice of sin Rt = −1 which gives N copies
of the state | α√

N
〉. This is what we called information

cloning in [24] as the states | α√
N
〉 and |α〉 have the same

information content. This particular choice of Rt will
be seen to be optimal in the sense that it gives the least
variance in the estimation of α. In this case the value of β
is immaterial.

It is easily seen that Equation 7 does not pose any dif-
ficulties for information cloning, as it did for universal
cloning! Now we can address the ontology issue by at-
tempting to use the N-information clones for an ensemble
determination of the information-clone state first, and
then a state determination of the original unknown state
subsequently, by using the fact that the information clone
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has the same information content as the original. More
specifically, we can use the N copies of | α√

N
〉 to make

ensemble measurements to estimate α√
N

and α.
One can already sense some limitations of the method:

usually, the statistical errors can be made arbitrarily small
by making the ensemble size larger and larger. However,
in our proposal even though the number of copies N
can be made arbitrarily large, at least in principle, the
coherency parameter given by α√

N
becomes arbitrarily

small while the uncertainties in α, being characteristic of
coherent states, remain the same as in the original state.
We now address the question as to how best the original
state can be reconstructed.

On introducing the Hermitian momentum and position
operators p̂, x̂ through

x̂ =
(a + a†)
√

2
(78)

p̂ =
(a − a†)
√

2ı
(79)

the probability distributions for position and momentum
in the coherent state | α√

N
〉 are given by

|ψclone(x)|2 =
1
√
π

e−(x−
√

2
N αR)2

|ψclone(p)|2 =
1
√
π

e−(p−
√

2
N αI )2

(80)

Let us distribute our N-copies into two groups of N
2 each

and use one to estimate αR through position measure-
ments and the other to estimate αI through momentum
measurements. Let yN denote the average value of the
position obtained in N

2 measurements and let zN denote
the average value of momentum also obtained in N

2 mea-
surements. The central limit theorem states that the prob-
ability distributions for yN , zN are given by

fx(yN) =

√
N
2π

e−
N
2 (yN−

√
2
N αR)2

fp(zN) =

√
N
2π

e−
N
2 (zN−

√
2
N αI )2

(81)

It is more instructive to recast these as the probability
distributions for ᾱR,N , ᾱI,N , the average over N measure-
ments of αR, αI:

fR(ᾱR,N) =
1
√
π

e−(ᾱR,N−αR)2

fI(ᾱI,N) =
1
√
π

e−(ᾱI,N−αI )2
(82)

Thus the original unknown α is correctly estimated, in
the sense that the above distributions peak precisely at the

coherency parameter α of the original state. But this is
not enough and one needs to know the reliability of this
estimate. For that one needs the variances. The variances
for αN are easily found out from Equation 82:

∆αR,N = ∆αI,N =
1
√

2
(83)

Thus, while the statistical error in usual measurements
goes as 1√

N
, and can be made arbitrarily small by mak-

ing N large enough, information cloning gives an error
that is fixed and equal to the variance associated with the
original unknown state. For coherent states with large
enough α, even these errors are quite reasonable. An-
other figure of merit, the so called Fidelity has also been
adopted in [24, 26–30]. That fidelity for information
cloning works out to 1

2 [24], the maximum possible for
Gaussian Cloning [26–33]. Therefore, fidelity on its own
may give an unnecessarily pessimistic picture. Compar-
ison between information cloning and optimal cloning
mentioned above will again be made in section 8.

Thus we have shown that even when the coherent state
is unknown single state, information cloning will allow
its determination, but with fixed statistical errors. Never-
theless, it is a great improvement from not being able to
know anything at all about the unknown state.

A comparison with our technical criteria for ontology
reveals that again there is no perfect ontology but indeed
there is FAPP ontology of the first kind. In contrast,
protective measurements gave a FAPP ontology of the
second kind. In the protective case the FAPP ontology
could approach perfect ontology arbitrarily close, but
never equal it. In both cases, one had to restrict the classes
of states for which they would work and the restricted
class did not allow linear superpositions.

8 Approximate Cloning and
Ontology

Though the No-cloning theorem forbids making perfect
clones of an unknown state, there seems nothing against
making imperfect copies. The information cloning of the
previous section was a particularly interesting variant of
this theme. Then the obvious question is the closeness
to perfect cloning that can be achieved. There has been
an explosion of interest in this question and the reader is
referred to [31] for a comprehensive review. We shall only
examine the so called optimal cloning [26–30, 32–35]
(see [31] for a review), from the ontological point of view.
The details are not that critical to understanding the broad
implications and chief conclusions.

In these implementations, one starts with the original
unknown state |α〉 belonging to the Hilbert space HA, a
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number of ancillary states, also known as blank states,
|b0〉, |b1〉...|bN〉. The ancillaries are known states. This is
the general setup for all cloning processes. The ancillaries
belong to the Hilbert spacesHBi ; each of them is isomor-
phic toHA. Unlike the information cloning case, a num-
ber of additional states called machine states, also known,
|m0〉, |m1〉.....|mM〉 all belonging to the Hilbert spaces iso-
morphic to, say,HM , are also considered. The combined
Hilbert space has the structureHA ⊗HM ⊗

∏
iHBi .

A general cloning transformation T has the effect

|α〉

N∏
0

|bi〉

M∏
0

|m j〉
T
→

∑
i, j,k

di jk|ai〉

M∏
j

|β j〉

N∏
k

|γk〉 (84)

Such a general cloning is said to be optimal if it satisfies
the two conditions: (i) all the reduced density matrices
ρi0 obtained by tracing over the HA states, the machine
states and all the blank states except those belonging to
HBi0

, are all identical and (ii) each of them has maximum
overlap with the original unknown state |α〉 that is with
the maximum possible value of 〈α|ρi0 |α〉. The reduced
density matrices are in general mixed.

In the case of information cloning, the clones were
all disentangled and one could use all of them at a time
for carrying out measurements of one’s choice. In the
case of optimal cloning, in general the clones could be
in entangled states. Depending on such details, it could
even be that that at any given time it is possible to realize
only a few of the reduced matrices ρi as different values
of i require tracing over different states.

As can be gathered from [31] and the many references
there, there are various types of optimal clonings. But
for the ontological questions, only a part of them are of
interest. Firstly, we need only look at the so called univer-
sal types as these can produce clones of unknown states.
The so called state dependent cloning is not of interest.
The information cloning that we discussed earlier is state
dependent in one way as it can work only with coherent
states, but it is also somewhat universal in the sense that
the input state can be any coherent state. In fact, it is a
particular case of Gaussian cloning [26–33]. Secondly,
even among the universal optimal cloning there are re-
sults for the so called N → M type clonings. Here N is
the number of copies of the unknown initial state (usually
pure) and M the number of clones (usually mixed). For
our ontological considerations, only 1 → M types are
relevant.

Let us first consider the case where the input Hilbert
space is finite dimensional, and specifically consider only
cubits. We shall only look at a few illustrative aspects.
For qubits, the fidelity F, which is the overlap of the clone

with the original, is, given by

F(N,M) =
MN + M + N

M(N + 2)
(85)

for the N → M case. The clone state is of the form (with
tr ρ · ρ⊥ = 0),

ρclone = F ρini + (1 − F) ρ⊥ (86)

The accuracy of the state determination with the clones
requires as large a M as possible. Therefore, for N = 1
and M → ∞, one has F = 2

3 . In fact, for an arbitrary M,

F(1,M) =
2M + 1

3M
(87)

The largest value, for the non-trivial case 1→ 2 is 5
6 . But

with only two clones the errors in the state determination
are very high. But as M is increased, to get more accurate
state determination, F decreases, reaching the limiting
value of 2

3 . In that case though the errors are very small,
the estimates for expectation values of observables devi-
ates significantly from the true values. For example, for
observables O with zero expectation values in ρ⊥, one
finds

〈O〉clone =
2
3
〈O〉true (88)

failing even the first criterion for ontology rather poorly.
Unlike the information cloning case, where the error
was independent of the input state, here the error is
a finite fraction ( 1

3 ) of the expectation value. The re-
sources required even to reach this are impractically large
(M → ∞).

Of course, it is inappropriate to use the results obtained
for optimal cloning of qubits to make a comparison with
information cloning which is really a case of infinite-
dimensional Hilbert space. But results are also available
for optimal cloning for arbitrary, but finite dimensional
Hilbert space. As an intermediary to considering continu-
ous variable cloning, let us consider Werner’s results [33]
for d-dimensional Hilbert spaces. The formula for the
fidelity of N → M cloning is

F(N,M) =
N
M

+
(M − N)(N + 1)

M(N + d)
(89)

The clone state is given by

ρclone = η(N,M) ρini + (1 − η(N,M))
I
d

(90)

where

η(N,M) =
N
M

M + d
N + d

(91)
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Let us look at the continuous case by letting d → ∞ first.
While the fidelity approaches the limit N

M , the density
matrix formula is much more tricky. Now if apply this
formula for fidelity to N = 1, M → ∞ limit relevant for
our ontological concerns, we see that the fidelity vanishes!

This is because of the attempt to find a universal cloner
for continuous variable case. Let us lower the expecta-
tions and consider only coherent states. It has been shown
that the fidelity is bounded by

F(N,M) ≤
MN

MN + M − N
(92)

The clone state is a mixture of coherent states centered
around the unknown initial coherent state. Its explicit
form is given by (see eqn.(53) of [31], but watch for a
typo!):

ρclone(α) =
1

πσ(N,M)2

∫
d2β e

−
|β|2

σ(N,M)2 |α + β〉〈α + β|

(93)
where σ(N,M) stands for

σ(N,M)2 =
1
N
−

1
M
≥ 0 (94)

Returning to the ontology issue, we set N = 1. It is
easy to verify that the mean values of x and p in the
clone state of Equation 93 are exactly the same as in the
unknown original coherent state. This was so in the case
of information cloning too. But the variances in x and p
for the clone state turn out to be

(∆x)2
clone =

1
2

+ σ(1,M)2 = (∆p)2
clone (95)

Like the information cloning case, these variances are the
same for all coherent states. But irrespective of M, the
variances are worse here than there. Again there is only
FAPP ontology, of a somewhat worse quality.

8.1 Probabilistic Cloning

What was described till now can be called deterministic
cloning. There are also probabilistic cloning machines.
The reader is referred to [36] to get an understanding of
these. Many features and implementations are different
and these cloning devices are very interesting. But from
our ontological perspective, the situation is not too differ-
ent; again the mean values can approach the true values
and the errors cannot be completely eliminated. One can
ascribe a FAPP ontology with figures of merit determined
by both of these.

9 Conclusions

In this paper we have carefully examined the issue of
obtaining information about the state of a single quan-
tum system. We have equated the ability to obtain such
information with the concept of ontology in quantum
mechanics. We have given a precise technical charac-
terization of this concept and examined the implications
of a large variety of quantum measurements including
projective measurements, protective measurements, weak
measurements (including weak quantum non-demolition
measurements) and the so called partial measurements.
We have also examined the issue in the light of the no-
cloning theorem on the one hand, and in the light of a
variety of cloning techniques.

The impossibility of gaining information about a sin-
gle quantum state is considered to be the basic tenet of
quantum mechanics. Admittedly, it was based on the
picture of quantum measurements that dominated dur-
ing the early development of quantum theory. Central to
that line of thinking were the highly invasive nature of
the eigenvalue-eigenstate based projective measurements.
In view of the highly invasive nature of such measure-
ments, that thinking seemed almost obvious. But what
is surprising now is that when even novel measurement
schemes like weak measurements, partial measurements
are around, which make such a tenet far from obvious, it
still remains rock solid. Now the results that even these
seemingly non-invasive measurement schemes simply
cannot coax any information out of generic single states
make this lack of ontology deep and perplexing, as if
they are the foundational principles of quantum theory.
Nevertheless, that schemes like protective measurements,
information cloning in particular and optimal cloning in
general exist to provide a silver lining in the form of what
we have called FAPP ontology is also equally perplex-
ing. What general principles are lurking behind these is
something that all those trying to fathom the depths of
quantum theory will be eagerly searching for.
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