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We begin with a study of operations and the
effects they measure. We define the probabil-
ity that an effect a occurs when the system

is in a state ρ by Pρ(a) = Tr(ρa). If Pρ(a) , 0 and
I is an operation that measures a, we define the con-
ditional probability of an effect b given a relative to I
by Pρ(b | a) = Tr[I(ρ)b]/Pρ(a). We characterize when
Bayes’ quantum second rule Pρ(b | a) = Pρ(b)

Pρ(a) Pρ(a | b)
holds. We then consider Lüders and Holevo opera-
tions. We next discuss instruments and the observ-
ables they measure. If A and B are observables and
an instrument I measures A, we define the observ-
able B conditioned on A relative to I and denote it
by (B | A). Using these concepts, we introduce Bayes’
quantum first rule. We observe that this is the same as
the classical Bayes’ first rule, except it depends on the
instrument used to measure A. We then extend this to
Bayes’ quantum first rule for expectations. We show
that two observables B and C are jointly commuting
if and only if there exists an atomic observable A such
that B = (B | A) and C = (C | A). We next obtain a gen-
eral uncertainty principle for conditioned observables.
Finally, we discuss observable conditioned quantum
entropies. The theory is illustrated with many exam-
ples.
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1 Effects and Operations

It is sometimes stated that all probabilities in quantum
mechanics are conditional probabilities and there is some
sense to this statement. Underlying most quantum ex-
periments or observations, there are basic observables Ai

and calculations are performed according to the outcomes
obtained for Ai. For example, many quantum experiments
consist of scattered particles and these involve the posi-
tions Ai of the various particles. The probabilities for
another observable is thus conditioned by the outcomes
of Ai.

According to complexity, there is a hierarchy of quan-
tum measurements. The simplest are effects, the next
are observables and finally we have instruments. Each
of these types of measurements can be conditioned in a
systematic way. They can even be conditioned among
each other.

Let H be a finite-dimensional complex Hilbert space
representing a quantum system. The set of linear opera-
tors on H is denoted by L(H) and the set of self-adjoint
operators is denoted by LS (H).

A state is a positive operator ρ ∈ LS (H) with trace
Tr(ρ) = 1 and the set of states is denoted by S(H). States
describe the conditions of the system and are employed
to compute probabilities of measurement outcomes.

An operator a satisfying 0 ≤ a ≤ I is called an effect.
An effect represents a two outcome yes-no experiment
that either occurs or does not occur [1–5]. We represent
the set of effects by E(H). If a ∈ E(H) occurs, then its
complement a′ = I − a does not occur.

An operation is a completely positive linear map
I : L(H) → L(H) such that Tr

[
I(ρ)

]
≤ Tr(ρ) for all
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ρ ∈ S(H) [1–5]. An operation that satisfies Tr
[
I(ρ)

]
=

Tr(ρ) for all ρ ∈ S(H) is called a channel [3, 5, 6]. Any
operation I has a Kraus decomposition I(A) =

∑
i

KiAK∗i
where Ki ∈ L(H) and

∑
i

K∗i Ki ≤ I. We call Ki, i =

1, 2, . . . , n, Kraus operators for I [4]. When I is a chan-
nel, we have

∑
i

K∗i Ki = I.

Corresponding to an operation I we have the dual op-
eration [7–9] I∗ : L(H)→ L(H) where I∗ is linear and
satisfies Tr

[
I(ρ)A

]
= Tr

[
ρI∗(A)

]
for all ρ ∈ S(H), A ∈

L(H). If I has Kraus decomposition I(A) =
∑

KiAK∗i ,
then I∗(A) =

∑
K∗i AKi for all A ∈ L(H). If I is a chan-

nel then I∗(I) = I. It is easy to check that if I is an
operation, then I∗ : E(H) → E(H) and I∗(a) ≤ a for all
a ∈ E(H). We say that an operation I measures an effect
a if Tr

[
I(ρ)

]
= Tr(ρa) for all ρ ∈ I(H) [7, 8, 10]. We

interpret Pρ(a) = Tr(ρa) as the probability that a occurs
when the system is in state ρ. It follows that an oper-
ation measures a unique effect. However, as we shall
see, there are many operations that measure an effect a.
If I measures a, then

Tr
[
ρI∗(I)

]
= Tr

[
I(ρ)

]
= Tr(ρa)

for every ρ ∈ S(H). Hence, I measures a if and only if
I∗(I) = a.

If a, b ∈ E(H) we write a ⊥ b if a + b ∈ E(H). If
a, b ∈ E(H) and Imeasures a, we define the I-sequential
product of a then b by a [I] b = I∗(b). It is easy to
check that a [I] b ≤ a, if b ⊥ c then a [I] (b + c) =
a [I] b + a [I] c and a [I] I = a [7, 8]. An effect a is
sharp if a is a projection and a is atomic if a is a one-
dimensional projection.

Lemma 1. Let I be an operation that measures a ∈ E(H).
(i) I∗(b) ≤ a for all b ∈ E(H). (ii) If a is sharp, then
I∗(b)a = aI∗(b) for all b ∈ E(H). (iii) If a is atomic,
then I∗(b) = λa for some λ ∈ [0, 1].

Proof. (i) Since

I∗(b) + I∗(b′) = I∗(b + b′) = I∗(I) = a

we conclude that I∗(b) ≤ a.
(ii) Since I∗(b) ≤ a, I∗(b) and a coexist [3]. Then

a being sharp implies that I∗(b)a = aI∗(b).
(iii) If a is atomic and I∗(b) ≤ a, we have that I∗(b) =
λa for some λ ∈ [0, 1] [3]. □

If Pρ(a) , 0 and I measures a, we define the condi-
tional probability of b given a relative to I by [9]

Pρ(b | a) =
Tr

[
I(ρ)b

]
Pρ(a)

We then have

Pρ(b | a) =
Tr

[
I(ρ)b

]
Tr

[
I(ρ)

] = Tr
[
ρI∗(b)

]
Tr(ρa)

=
Tr (ρa [I] b)

Tr(ρa)
=

Pρ (a [I] b)
Pρ(a)

=
PI(ρ)(b)
Pρ(a)

We have that b 7→ Pρ(b | a) is a probability distribution
in the sense that Pρ(I | a) = 1 and if bi ∈ E(H) with
b1 + b2 + · · · + bn ≤ I, then

Pρ

 n∑
i=1

bi | a

 = n∑
i=1

Pρ(bi | a)

We also see that ρ̃ = I(ρ)/Pρ(a) is a state called the
updated state for I and we have

Pρ(b | a) = Tr( ρ̃b) = Pρ̃(b)

Thus, to find Pρ(b | a) we first measure a using I, up-
date the state to ρ̃ and then compute the probability of
b using ρ̃. If I and J are operations, we define the se-
quential product of I then J as the operation given by
(I◦J)(ρ) = J (I(ρ)) for all ρ ∈ S(H) [7,8]. In a similar
way we define (I∗ ◦ J∗)(A) = J∗ (I∗(A)).

Theorem 2. Let I and J be operations. (i) (I ◦ J)∗ =
(J∗ ◦ I∗). (ii) If I measures a and J measures b, then
I ◦ J measures a [I] b. (iii) If a is measured with I,
b with J and a [I] b with I ◦ J , then

a [I] (b [J] c) = (a [I] b) [I ◦ J] c

(iv) For all ρ ∈ S(H) we have

Tr(ρa)Pρ (b [J] c | a) = Tr (ρa [I] b) Pρ (c | a [I] b)

Proof. (i) For all ρ ∈ S(H) A ∈ L(H) we obtain

Tr
[
ρ(I ◦ J)∗(A)

]
= Tr

[
(I ◦ J)(ρ)A

]
= Tr

[
J (I(ρ)) A

]
= Tr

[
I(ρ)J∗(A)

]
= Tr

[
ρI∗

(
J∗(A)

)]
= Tr

[
ρ(J∗ ◦ I∗)(A)

]
It follows that (I ◦ J)∗ = J∗ ◦ I∗.

(ii) Since

Tr
[
I ◦ J(ρ)

]
= Tr

[
J (I(ρ))

]
= Tr

[
I(ρ)b

]
= Tr

[
ρI∗(b)

]
= Tr (ρa [I] b)

it follows that I ◦ J measures a [I] b.
(iii) Applying (i) gives

a [I] (b [J] c) = a [I]
(
J∗(c)

)
= I∗

(
J∗(c)

)
= J∗ ◦ I∗(c)

= (I ◦ J)∗(c) = (a [I] b) [I ◦ J] c
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(iv) This follows from

Tr(ρa)Pρ (b [J] c | a) = Tr(ρa)
Tr (I(ρ)b [J] c)

Tr(ρa)
= Tr

[
I(ρ)J∗(c)

]
= Tr

[
J (I(ρ)) c

]
= Tr

[
(I ◦ J)(ρ)c

]
]

= Tr
[
ρ(I ◦ J)∗

]
= Pρ (a [I] b) Pρ (c | a [I] b) □

Bayes’ second rule says that

Pρ(b | a) =
Pρ(b)
Pρ(a)

Pρ(a | b) (1)

The following lemma shows that this result does not al-
ways hold.

Lemma 3. The following statements are equivalent.
(i) Equation (1) holds. (ii) Whenever I measures a and
J measures b, then

Tr (ρa [I] b) = Tr (ρb [J] a)

(iii) Whenever I measures a and J measures b, then
Tr

[
I(ρ)b

]
= Tr

[
J(ρ)a

]
.

Proof. (i)⇒(ii) If (i) holds, then

Tr (ρa [I] b) = Tr
[
ρI∗(b)

]
= Tr

[
I(ρ)b

]
= Pρ(a)Pρ(b | a)

= Pρ(b)Pρ(a | b) = Tr
[
J(ρ)a

]
= Tr

[
ρJ∗(a)

]
= Tr (ρb [J] a)

Hence, (ii) holds.
(ii)⇒(iii). If (ii) holds, then

Tr
[
I(ρ)b

]
= Tr

[
bI∗(b)

]
= Tr (ρa [I] b) = Tr (ρb [J] a)

= Tr
[
ρJ∗(a)

]
= Tr

[
J(ρ)a

]
Hence, (iii) holds.

(iii)⇒(i) If (iii) holds then

Pρ(b | a) =
Tr

[
I(ρ)b

]
Pρ(a)

=
Tr

[
J(ρ)a

]
Pρ(a)

=
Pρ(b)Tr(a | b)

Pρ(a)

Hence, (i) holds. □

Corollary 4. If I measures a and J measures b, then
the following statements are equivalent. (i) (1) holds for
every ρ ∈ S(H). (ii) a [I] b = b [J] a. (iii) I∗(b) =
J∗(a).

Example 1. For a ∈ E(H) we define the Lüders operation
L(a)(ρ) = a

1
2 ρa

1
2 [2, 11, 12]. Then

Tr
[
L(a)(ρ)

]
= Tr(a

1
2 ρa

1
2 ) = Tr(ρa)

for all ρ ∈ S(H) so L(a) measures a. Notice that L(a)∗ =

L(a) for all a ∈ E(H) and a
[
L(a)

]
b = a

1
2 ba

1
2 . We call

a
[
L(a)

]
b the standard sequential product of a then b

[7, 13]. Relative to L(a) we have for all ρ ∈ S(H), b ∈
E(H) that

Pρ(a | b) =
Tr

[
L(a)(ρ)b

]
Pρ(a)

=
Tr(a

1
2 ρa

1
2 b)

Tr(ρa)
=

Tr(ρa
1
2 ba

1
2 )

Trρa)

Applying Corollary 4 we have that Bayes’ second rule
holds relative to L(a) and L(b) for all ρ ∈ S(H) if and
only if a

1
2 ba

1
2 = b

1
2 ab

1
2 . This is equivalent to ab = ba;

that is, a and b commute [13]. Thus, (1) does not hold, in
general. We also have from Theorem 2(iii) that

a
[
La] (b [L(b)] c) =

(
a
[
L(a)b

] [
L(a) ◦ L(b)

]
c
)

= a
1
2 b

1
2 cb

1
2 a

1
2

It follows from Theorem 2(ii) that L(a) ◦ L(b) measures
a
[
L(a)

]
b = a

1
2 ba

1
2 . However,

(L(a) ◦ L(b))(ρ) = L(b)(L(a)(ρ)) = L(b)(a
1
2 ρa

1
2 )

= b
1
2 a

1
2 ρa

1
2 b

1
2

and

L(a
1
2 ba

1
2 )(ρ) = (a

1
2 ba

1
2 )

1
2 ρ(a

1
2 ba

1
2 )

1
2

so L(a) ◦ L(b) , L(a[L(a)]b). We conclude that

a
[
L(a)

] (
b
[
L(b)

]
c
)
,

(
a
[
L(a)

]
b
) [
L(a[L(a)]b)] c

in general. □

Example 2. If a ∈ E(H), α ∈ S(H), we define the Holevo
operation [6, 14]

H (a,α)(ρ) = Tr(ρa)α

Then for every ρ ∈ S(H), b ∈ E(H) we obtain

Tr
[
ρH (a,α)∗(b)

]
= Tr

[
H (a,α)(ρ)b

]
= Tr

[
Tr(ρa)αb

]
= Tr(ρa)Tr(αb) = Tr

[
ρTr(αb)a

]
Hence,

H (a,α)∗(b) = a
[
H (a,α)

]
b = Tr(αb)a

Since Tr
[
H (a,α)(ρ)

]
= Tr(ρa) we see that H (a,α) mea-

sures a. This shows that for any a ∈ E(H), there are many
operations that measure a. The conditional probability of
b given a relative toH (a,α) becomes

Pρ(b | a) =
Tr

[
H (a,α)(ρ)b

]
Pρ(a)

=
Tr(ρa)Tr(αb)

Tr(ρa)
= Tr(αb)
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which curiously is independent of ρ and a. Applying
Corollary 4 we have that Bayes’ second rule holds for all
ρ ∈ S(H) relative toH (a,α) andH (b,β) if and only if

Tr(αb)a = Tr(βa)b

If a and b are sharp this is equivalent to a = b and
Tr(αa) = Tr(βa). Moreover, Theorem 2(iii) becomes

a
[
H (a,α)

] (
b
[
H (b,β)

]
c
)
=

(
a
[
H (a,α)

]
b
) [
H (a,α) ◦ H (b,β)

]
c

= a
[
H (a,α)

] (
H (b,β)∗(c)

)
= a

[
H (a,α)

]
(Tr(βc)b)

= Tr(βc)a
[
H (a,α)

]
b

= Tr(βc)H (a,α)∗(b)

= Tr(βc)Tr(αb)a

Unlike the Lüders operations, we have

H (a,α) ◦ H (b,β) = H(a[H (a,α)]b,β)

Indeed,

H (a,α) ◦ H (b,β)(ρ) = H (b,β)
[
H (a,α)(ρ)

]
= H (b,β) (Tr(ρa)α)

= Tr(ρa)H (b,β)(α) = Tr(ρa)Tr(αb)β

= Tr
[
ρTr(αb)a

]
β = H (Tr(αb)a,β)(ρ)

= H (H(a,α)∗(b),β)(ρ)

= H(a[H (a,α)]b,β)(ρ) □

2 Observables and Instruments

A (finite) observable is a collection of effects A =
{Ax : x ∈ ΩA} on H satisfying

∑
x∈ΩA

Ax = I [1–3, 5]. We

assume that the set ΩA is finite and call ΩA the outcome
space for A. We think of A as an experiment or measure-
ment and when the outcome x results, then we say that
the effect Ax occurs. The condition

∑
x∈ΩA

Ax = I means

that one of the outcomes occurs when a measurement of
A is performed. If ρ ∈ S(H), then Pρ(Ax) = Tr(ρAx) is
the probability that the outcome x results and Ax occurs.
We call A(∆) =

∑
{Ax : x ∈ ∆}, where ∆ ⊆ ΩA, a posi-

tive operator-valued measure (POVM). The probability
distribution of A in the state ρ is the measure given by
ΦA
ρ (∆) =

∑
x∈∆

Pρ(x) for all ∆ ∈ ΩA and we usually write

ΦA
ρ (x) = ΦA

ρ ({x}) = Pρ(Ax)

A (finite) instrument is a finite collection of operations
I = {Ix : x ∈ ΩI} such that I =

∑
x∈ΩI
Ix is a channel

[1–3, 5, 15]. Then for all ρ ∈ S(H) and ∆ ⊆ ΩI

ΦIρ (∆) =
∑{

Tr
[
Ix(ρ)

]
: x ∈ ∆

}

is a probability measure on ΩI. We say that I mea-
sures an observable A if for all ρ ∈ S(H), we have
Tr

[
Ix(ρ)

]
= Tr(ρAx) for every x ∈ ΩA. Clearly, I mea-

sures a unique observable and they both have the same
probability distribution. As with operations and effects,
an observable is measured by many instruments. If I is
an instrument, its dual instrument I∗ : L(H) → L(H)
satisfies [8, 10]

Tr
[
ρI∗x(A)

]
= Tr

[
Ix(ρ)A

]
for all A ∈ L(H)

I∗ΩI
(I) =

∑
x∈ΩI

I∗x(I) = I

It is easy to check that I∗x : E(H) → E(H) and I∗x(I) is
the observable measured by I.

If a ∈ E(H) and A is an observable on H measured
by the instrument I, the effect a conditioned by A is the
effect

(a | A) =
∑
x∈ΩA

I∗x(a) = I∗ΩA
(a) =

∑
x∈ΩA

Ax [Ix] a

It is clear that a 7→ (a | A) is a morphism in the sense

that (I | A) = I and if ai ∈ E(H) with
n∑

i=1
ai ≤ I then(

n∑
i=1

ai | A
)
=

n∑
i=1

(ai | A). A sub-observable is a finite

collection of effects A = {Ax : x ∈ ΩA} on H satisfying∑
x∈ΩA

Ax ≤ I [8]. If A is a sub-observable, then A possesses

a unique minimal extension to an observable by adjoining
the effect I −

∑
x∈ΩA

Ax to A. If A is an observable and a ∈

E(H) is measured by an operation I, then A conditioned
by a is the sub-observable given by (A | a)x = a [I] Ax [9].
Notice that we have

∑
x∈ΩA

(A | a)x = a [I] I = a. If A

and B are observables on H and I is an instrument that
measures A, then B conditioned on A relative to I is the
observable [9]

(B | A)y =
∑
x∈ΩI

I∗x(By) =
∑
x∈ΩA

Ax [Ix] By

If I andJ are instruments on H we define the instrument
J conditioned by I as [9, 10]

(J | I)y(ρ) =
∑
x∈ΩI

Jy (Ix(ρ)) = Jy
[
I(ρ)

]
for all ρ ∈ S(H), y ∈ ΩJ . The next result corresponds to
Theorem 2.

Theorem 5. Suppose I measures A and J measures B.
(i) (J | I) measures (B | A). (ii) For any observable C
we have ((C | B) | A) = (C | (B | A)).
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Proof. (i) For every ρ ∈ S(H) we have

Tr
[
(J | I)y(ρ)

]
= Tr

∑
x∈ΩI

Jy (Ix(ρ))


=

∑
x∈ΩI

Tr
[
Jy (Ix(ρ))

]
=

∑
x∈ΩI

Tr
[
Ix(ρ)By

]
=

∑
x∈ΩI

Tr
[
ρI∗x(By)

]
= Tr

ρ ∑
x∈ΩI

I∗x(By)


= Tr

[
ρ(B | A)y

]
It follows that (J | I) measures (B | A).

(ii) It follows from (i) that (J | I) measures (B | A).
Then for all z ∈ ΩC we obtain

((C | B) | A)z = I
∗
(C | B)z = I

∗ [
J
∗
(Cz)

]
= J

∗
◦ I
∗
(Cz) = (I ◦ J) ∗(Cz)

= (J | I)∗(Cz) = (C | (B | A))z

which gives the result. □

Theorem 6. If I measures A and a ∈ E(H), then for all
ρ ∈ S(H) we have∑

x∈ΩA

Pρ(Ax)Pρ(a | Ax) = Pρ [(a | A)] = P
I(ρ)(a) (2)

Proof. We have that∑
x∈ΩA

Pρ(Ax)Pρ(a | Ax) =
∑
x∈ΩA

Tr(ρAx)
Tr

[
ρI∗x(a)

]
Tr(ρAx)

= Tr

ρ ∑
x∈ΩI

I∗x(a)


= Tr

[
ρ(a | A)

]
= Tr

[
ρI∗Ω(a)

]
= Tr

[
I(ρ)a

]
= P

I(ρ)(a)

and the result follows. □

We call (2) Bayes’ quantum first rule. This is the same
as the classical Bayes’ first rule except it depends on the
instrument used to measure A. We then say that (2) is
context dependent and that I is the context in which A
is measured. In classical probability theory there is only
one context available and no context dependence.

We say that a sub-observable A is real-valued if ΩA ⊆

R [16]. If A is real-valued and ρ ∈ S(H) the ρ-average
(or ρ-expectation) of A is

Eρ(A) =
∑
x∈ΩA

xPρ(Ax) =
∑
x∈ΩA

xTr(ρAx)

If A is real-valued, we define its stochastic operator [16]
to be the self-adjoint operator Ã =

∑
x∈ΩA xAx. We then

have

Eρ(A) = Tr

ρ ∑
x∈ΩA

xAx

 = Tr(ρÃ )

which is the expectation of Ã in the state ρ. We also define
the conditional ρ-average

Eρ(A | a) =
∑
x∈ΩA

xPρ(Ax | a) =
∑
x∈ΩA

xTr
[
ρI∗(Ax)

]
Tr(ρa)

where I measures a. The next result is called Bayes’
quantum first rule for expectations.

Theorem 7. If I measures A and B is a real-valued ob-
servable, then∑

x∈ΩA

Pρ(Ax)Eρ(B | Ax) = Eρ [(B | A)] = E
I(ρ)(B)

Proof. For all ρ ∈ S(H), x ∈ ΩA we have

Eρ(B | Ax) =
∑
y∈ΩB

yTr
[
ρI∗x(By)

]
Pρ(Ax)

It follows that∑
x∈ΩA

Pρ(Ax)Eρ(B | Ax) =
∑
x∈ΩA

∑
y∈ΩB

yTr
[
ρI∗x(By)

]
=

∑
y∈ΩB

yTr

ρ ∑
x∈ΩA

I∗x(By)


=

∑
y∈ΩB

yTr
[
I(ρ)By

]
= E

I(ρ)(B)

=
∑
y∈ΩB

yTr
[
ρ(B | A)y

]
= Eρ [(B | A)] □

Example 3. Let A be the atomic observable

A = {Px : x ∈ ΩA} = {|ϕx⟩⟨ϕx| : x ∈ ΩA}

and let I be the instrument

Ix(ρ) = PxρPx = ⟨ϕx, ρϕx⟩|ϕx⟩⟨ϕx|

that measures A. Then

Ax [Ix] a = I∗x(a) = ⟨ϕx, aϕx⟩|ϕx⟩⟨ϕx|

Moreover, if B =
{
By : y ∈ ΩB

}
is an observable on H,

then (B | Px) is the sub-observable (B | Px)y = PxByPx
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and if a ∈ E(H), then (a | A) is the effect I∗
Ω

(a). For all
ρ ∈ S(H) we obtain

Pρ(a | A) = Pρ
[
I∗Ω(a)

]
= P

I(ρ)(a)

= Tr

∑
x∈ΩA

⟨ϕx, ρϕx⟩Pxa


=

∑
x∈ΩA

⟨ϕx, ρϕx⟩⟨ϕx, aϕx⟩

If B is a real-valued observable, we obtain

Eρ(B | A) = E
I(ρ)(B) = Tr

[
I(ρ)B̃

]
=

∑
x∈ΩA

⟨ϕx, ρϕx⟩
〈
ϕx, B̃ϕx

〉
Bayes’ quantum first rule gives∑

x∈ΩA

Pρ(Px)Pρ(a | Px) = Pρ(a | A)

=
∑
x∈ΩA

⟨ϕx, ρϕx⟩⟨ϕx, aϕx⟩

and Bayes’ quantum first rule for expectations gives∑
x∈ΩA

Pρ(Px)Eρ(B | Px) = Eρ(B | A)

=
∑
x∈ΩA

⟨ϕxρϕx⟩
〈
ϕxB̃ϕx

〉
□

Example 4. If A = {Ax : x ∈ ΩA} is an observable and
αx ∈ S(H), x ∈ ΩA, we define the Holevo instrument
H

(A,α)
x (ρ) = Tr(ρAx)αx [6, 14]. ThenH (A,α) measures A

because

Tr
[
H

(A,α)
x (ρ)

]
= Tr

[
Tr(ρAx)αx

]
= Tr(ρAx)Tr(αx)

= Tr(ρAx)

Also, the dual ofH (A,α) becomes

H
(A,α)∗
x (a) = Tr(αxa)Ax

and

(a | A) = H (A,α)∗
ΩA

(a)

=
∑
x∈ΩA

H (A,α)∗(a)

=
∑
x∈ΩA

Tr(αxa)Ax

Then Bayes’ quantum first rule becomes∑
x∈ΩA

Pρ(Ax)Pρ(a | Ax) = Pρ(a | A) =
∑
x∈ΩA

Tr(ρAx)Tr(αxa)

Moreover, if B =
{
By : y ∈ ΩB

}
is a real-valued observ-

able, then

Eρ(B | A) =
∑
y∈ΩB

yTr
[
H (A,α)(ρ)By

]
=

∑
y∈ΩB

yTr

∑
x∈ΩA

H
(A,α)
x (ρ)By


=

∑
y∈ΩB

yTr

∑
x∈ΩA

Tr(ρAx)αxBy


=

∑
x∈ΩA

Tr(ρAx)Tr(αxB̃)

Bayes’ quantum first rule for expectations becomes∑
x∈ΩA

Pρ(Ax)Eρ(B | Ax) =
∑
x∈ΩA

Tr(ρAx)Tr(αxB̃) □

Example 5. IfH (A,α) andH (B,β) are Holevo instruments,
we show that

H (A,α) ◦ H (B,β) = H (C,β)

is the Holevo instrument with C(x,y) = Tr(αyBy)Ax. In-
deed(
H (A,α) ◦ H (B,β)

)
(x,y)

(ρ) = H (B,β)
y (H (A,α)

x )(ρ)

= H
(B,β)
y

[
Tr(ρAx)αx

]
= Tr(ρAx)Tr(αxBy)βy

= Tr
[
ρTr(αxBy)Ax

]
βy

= Tr(ρC(x,y))βy = H
(C,β)
(x,y) (ρ)

In contrast, if LA, LB are Lüders instruments L(A)
x (ρ) =

A
1
2
x ρA

1
2
x , L(B)

y = B
1
2
y ρB

1
2
y , we show that LA ◦ LB is not

Lüders, in general. Indeed, suppose LA ◦ LB = LC . We
then obtain

(LA ◦ LB)(x,y)(ρ) = LB
y (LA

x (ρ)) = B
1
2
y A

1
2
x ρA

1
2
x B

1
2
y

= C
1
2
(x,y)ρC

1
2
(x,y)

for all ρ ∈ S(H). Taking the trace of both sides gives

C(x,y) = A
1
2
x ByA

1
2
x and we conclude that

B
1
2
y A

1
2
x ρA

1
2
x B

1
2
y = (A

1
2
x ByA

1
2
x )

1
2 ρ(A

1
2
x ByA

1
2
x )

1
2

for all ρ ∈ S(H). Letting ρ = I/n where n = dim H gives

B
1
2
y AxB

1
2
y = A

1
2
x ByA

1
2
x

This holds if and only if AxBy = ByAx, in which case
(LA ◦ LB)(x,y) = L

AxBy for every x ∈ ΩA, y ∈ ΩB. In a
similar way, if a, b ∈ E(H), then

H (a,α) ◦ H (b,β) = H (Tr(αb)a,β)

and La ◦ Lb is not Lüders unless ab = ba in which case
La ◦ Lb = Lab. □
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We say that an observable A = {Ax : x ∈ ΩA} is commuting if AxAy = AyAx for all x, y ∈ ΩA. Also, two observables
B,C are jointly commuting if B and C are commuting and BxCy = CyBx for all x ∈ ΩB, y ∈ ΩC .

Theorem 8. Two observables B, C are jointly commuting if and only if there exists an atomic observable A and
observables B1,C1, such that B = (B1 | A), C = (C1 | A) relative to some instrument that measures A.

Proof. If B = (B1 | A), then By =
∑

x∈ΩA I
∗
x(B1y) and by Lemma 1(iii) I∗x(B1y) = λx,yAx for λx,y ∈ [0, 1].

Hence, By =
∑

x∈ΩA λx,yAx. In a similar way, Cz =
∑

x∈ΩA µx,zAx for µx,z ∈ [0, 1]. It follows that B and C are jointly
commuting. Conversely, if B and C are jointly commuting, then all the effects in

{
By,Cz : y ∈ ΩB, z ∈ ΩC

}
commute so

they are simultaneously diagonalizable. Hence, there exists an atomic observable A such that By =
∑

x∈ΩA Tr(AxBy)Ax

and Cz =
∑

x∈ΩA Tr(AxCz)Ax for all y ∈ ΩB, z ∈ ΩC . Using the Lüders instrument LA
xρ = AxρAx we have

(B | A)y =
∑
x∈ΩA

LA∗
x By =

∑
x∈ΩA

AxByAx =
∑
x∈ΩA

Tr(AxBy)Ax = By

Similarly, (C | A)z = Cz so B = (B | A) and C = (C | A). □

Corollary 9. Observables B,C are jointly commuting if and only if there exists an atomic observable A such that
B = (B | A), C = (C | A) relative to some instrument that measures A.

A similar proof gives the following.

Theorem 10. The following statements are equivalent. (i) An observable B is commuting. (ii) There exists an
atomic observable A such that B = (B | A). (iii) There exists an observable C and an atomic observable A such that
B = (C | A).

3 Uncertainty Principle and Entropy

Let B be a real-valued observable with stochastic operator B̃ =
∑
y∈ΩB yBy. We have seen that Eρ(B) = Tr(ρB̃). Also,

if A is an arbitrary observable and the instrument I measures A, then relative to I we have Eρ(B | A) = Tr
[
I(ρ)B̃

]
.

We call Eρ(B | A) the ρ-expectation of B in context A. If A, B,C are observables and B,C are real-valued, we define
the ρ-correlation of B and C in the context A by [16]

Cor(B,C | A) = Tr
[
ρ(B | A)∼(C | A)∼

]
− Eρ(B | A)Eρ(C | A) = Tr

[
ρ(B | A)∼(C | A)∼

]
− Tr

[
I(ρ)B̃

]
Tr

[
I(ρ)C̃

]
Although Corρ(B,C | A) need not be a real number, it is easy to check that

Corρ(B,C | A) = Corρ(C, B | A)

We call ∆ρ(B,C | A) = Re
[
Corρ(B,C | A)

]
the ρ-covariance of B and C in the context A [16]. We define the

ρ-variance of B in the context of A [16]

∆ρ(B | A) = Corρ(B, B | A) = ∆ρ(B, B | A) = Tr
{
ρ [(B | A)∼]2

}
−

{
Tr

[
I(ρ)B̃

]}2

Defining the commutator of (B | A)∼ with (C | A)∼ by

[(B | A)∼, (C | A)∼] = (B | A)∼(C | A)∼ − (C | A)∼(B | A)∼

we obtain the uncertainty principle [16]:

1
4 |Tr (ρ [(B | A)∼, (C | A)∼])|2 +

[
∆ρ(B,C | A)

]2
=

∣∣∣Corρ(B,C | A)
∣∣∣2 ≤ ∆ρ(B | A)∆ρ(C | A) (3)

The variance ∆ρ(B | A) gives the amount of uncertainty or lack of information about B provided by ρ relative to a
first measurement of A. The less ∆ρ(B | A) is, the more information ρ provides about B. Equation (3) gives a lower
bound for the product of the uncertainties. Notice that (3) generalizes the usual uncertainty principle.
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Example 6. Suppose A is sharp in which case AxAx′ = δxx′ for all x, x′ ∈ ΩA. Let us measure A with the Lüders
instrument Ix(ρ) = AxρAx. We can now compute the various statistical quantities more completely. To simplify the
notation we write Dx = AxDAx for D ∈ L(H). We then have I(ρ) =

∑
x∈ΩA

ρx and

Eρ(B | A) = Tr
[
I(ρ)B̃

]
=

∑
x,y

yTr(ρxBy) =
∑

x

Tr(ρxB̃)

(B | A)∼ =
∑
y

y(B | A)y =
∑

x

B̃x

We then obtain

Corρ(B,C | A) = Tr

ρ∑
x

B̃x

∑
x′

C̃x′

 − Tr
[
I(ρ)B̃

]
Tr

[
I(ρ)C̃

]
=

∑
x

Tr(ρxB̃AxC̃) −
∑
x,x′

Tr(ρxB̃)Tr(ρx′C̃)

∆ρ(B,C | A) = Re
[
Corρ(B,C | A)

]
= 1

2

[
Corρ(B,C | A) + Corρ(C, B | A)

]
= 1

2

∑
x

Tr
[
ρx(B̃AxC̃ + C̃AxB̃)

]
−

∑
x,x′

Tr(ρxB̃)Tr(ρx′C̃)

∆ρ(B | A) =
∑

x

Tr
[
ρ(B̃x)2

]
−

∑
x

Tr(ρxB̃)

2

∆ρ(C | A) =
∑

x

Tr
[
ρ(C̃x)2

]
=

∑
x

Tr(ρxC̃)

2

Finally, the commutator term becomes

Tr {ρ [(B | A)∼, (C | A)∼]} = Tr

ρ ∑
x

B̃x,
∑

x′
C̃x′

 = Tr

ρ∑
x

(B̃xC̃x − C̃xB̃x)

 =∑
x

[
ρx(B̃AxC̃ − C̃AxB̃)

]
Substituting these terms into (3) gives the uncertainty principle for this case. □

Example 7. Suppose A is measured by the Holevo instrumentH (A,α)
x (ρ) = Tr(ρAx)αx. Then

H (A,α)(ρ) =
∑
x∈ΩA

Tr(ρAx)αx

and we saw in Example 5 that
Eρ(B | A) =

∑
x

Tr(ρAx)Tr(αxB̃)

SinceH (A,α)∗
x (By) = Tr(αxBy)Ax we obtain

(B | A)∼ =
∑
y

y(B | A) =
∑
y

y
∑

x

H
(A,α)∗
x (By) =

∑
y

y
∑

x

Tr(αxBy)Ax =
∑

x

Tr(αxB̃)Ax

It follows that

Corρ(B,C | A) = Tr

ρ∑
x

Tr(αxB̃)Ax

∑
x′

Tr(αx′C̃)Ax′

 − ∑
x

Tr(ρAx)Tr(αxB̃)

 ∑
x

Tr(ρAx)Tr(αxC̃)


=

∑
x,x′

Tr(αB̃)Tr(αx′C̃)
[
Tr(ρAxAx′) − Tr(ρAx)Tr(ρAx′)

]

∆ρ(B,C | A) = Re
[
Corρ(B,C | A)

]
=

∑
x,x′

Tr(αxB̃)Tr(αx′C̃)
{

1
2
[
Tr (ρ(AxAx′ + Ax′Ax))

]
− Tr(ρAx)Tr(Ax′)

}
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∆ρ(B | A) =
∑
x,x′

Tr(αxB̃)Tr(αx′ B̃)
[
Tr(ρAxAx′) − Tr(ρAx)Tr(ρAx′)

]
with a similar formula for ∆ρ(C | A). Finally, the commutator term becomes

Tr {ρ [(B | A)∼, (C | A)∼]} = Tr

ρ
∑

x

Tr(αxB̃)Ax,
∑

x′
Tr(αx′C̃)Ax′


 =∑

x,x′
Tr(αxB̃)Tr(αx′C̃)Tr (ρ [Ax, Ax′])

Substituting these terms into (3) gives the uncertainty principle for this case. □

The uncertainty ∆ρ(A) measures the lack of informa-
tion about A provided by the state ρ. In the dual picture,
we have the lack of information S A(ρ) that a measurement
of A provides about the state ρ and this is called entropy.
We now briefly discuss conditional entropy. If a ∈ E(H),
ρ ∈ S(H), we define the ρ-entropy of a by [17–20]

S a(ρ) = −Tr(ρa) ln
[
Tr(ρA)
Tr(a)

]
We interpret S a(ρ) as the amount of uncertainty that a
measurement of a provides about ρ. The smaller S a(ρ) is,
the more information a measurement of a gives about ρ.
It follows that if I measures a, then

S a[I]b(ρ) = −Tr (ρa [I] b) ln
[
Tr (ρa [I] b)
Tr (a [I] b)

]
= −Tr

[
ρI∗(b)

]
ln

[
Tr

[
ρI∗(b)

]
Tr [I∗(b)]

]
= −Tr

[
I(ρ)b

]
ln

[
Tr

[
I(ρ)b

]
Tr [I∗(b)]

]
We define the a-conditional ρ-entropy of b as

S (b|a)(ρ) = S b
[
I(ρ)

]
= −Tr

[
I(ρ)b

]
ln

[
Tr

[
I(ρ)b

]
Tr(b)

]
Notice that there is a close connection between these two
entropies. Since lnx is an increasing function we have the
following.

Lemma 11. S a[I]b(ρ) ≤ S (b|a)(ρ) for every ρ ∈ S(H) if
and only if Tr [I∗(b)] ≤ Tr(b).

Example 8. If a is measured by the Lüders operation
L(a)(ρ) = a

1
2 ρa

1
2 , then

Tr
[
I∗(b)

]
= Tr(a

1
2 ba

1
2 ) = Tr(ab) ≤ Tr(b)

so in this case we have S a[I]b(ρ) ≤ S (b|a)(ρ) for all
ρ ∈ S(H). □

Example 9. If a is measured by the Holevo operation
H (a,α)(ρ) = Tr(ρa)α, then

Tr
[
H (a,α)∗(b)

]
= Tr [Tr(αb)a] = Tr(αb)Tr(a)

Hence, Tr
[
H (a,α)∗(b)

]
≤ Tr(b) if and only if

Tr(αb)Tr(a) ≤ Tr(b). Depending on a, b, α this inequal-
ity sometimes holds and sometimes does not hold. We
conclude that S a[I]b and S (a|b) give different measures of
information about ρ. □

If A is an observable, we define the ρ-entropy of A
by [17, 19]

S A(ρ) =
∑
x∈Ωa

S Ax(ρ)

= −
∑
x∈ΩA

Tr(ρAx) ln
[
Tr(ρAx)
Tr(Ax)

]

If I measures A, we define the A-conditional ρ-entropy
of the observable B by [17, 19]

S (B||A)(ρ) = S B
[
I(ρ)

]
=

∑
y∈ΩB

S By

[
I(ρ)

]
As with effects, this can be compared with

S (B|A)(ρ) =
∑
y∈ΩB

S (B|A)y(ρ)

and these are not related in general.
One of the advantages of S (B||A) over S (B|A) is the fol-

lowing. If I measures A and J measures B we obtain

S ((C||B)||A)(ρ) = S (C||B)
[
I(ρ)

]
= S C

[
J

(
I(ρ)

)]
= S (C||(B||A))

but in general

S ((C|B)|A) , S (C|(B|A))

We can continue this to obtain results concerning more
than three observables.
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