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We show how imaginary numbers in quantum
physics can be eliminated by enlarging the
Hilbert space followed by an imposition of—

what effectively amounts to—a superselection rule.
We illustrate this procedure with a qubit and apply
it to the Mach–Zehnder interferometer. The pro-
cedure is somewhat reminiscent of the constrained
quantization of the electromagnetic field, where, in or-
der to manifestly comply with relativity, one enlarges
the Hilbert space by quantizing the longitudinal and
scalar modes, only to subsequently introduce a con-
straint to make sure that they are actually not directly
observable.
Quanta 2023; 12: 164–170.

1 Introduction

We have all seen statements of the type (I am not quoting
from any particular text here, just rephrasing things that
have appeared in articles and books): “complex numbers
are fundamental in quantum physics. The Schrödinger
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equation is a diffusion equation, but in complex time,
and the “i” in “iℏ∂/∂t” is unavoidable. Yes, we do use
complex numbers to represent the phase of any classical
wave, ei(kx−ωt), but this is just a matter of convenience
in our calculations. Ultimately, at the end, we always
have to take the real part of this expression to arrive at a
measurable entity. In quantum physics, on the other hand,
it is impossible not to use complex numbers.”

Dyson puts it dramatically:

. . . But then came the surprise. Schrödinger
put the square root of minus one into the equa-
tion, and suddenly it made sense. Suddenly it
became a wave equation instead of a heat con-
duction equation. [. . .] And that square root of
minus one means that nature works with com-
plex numbers and not with real numbers. [1].

There are even recent papers claiming experimental evi-
dence that rules out quantum physics with real numbers
only [2, 3].

In this paper, I would like to present a way of eliminat-
ing the need for complex numbers in quantum physics
and show how to only ever use the reals. The idea is
old [4, 5], though my exposition is, I believe, novel.

There are many equivalent ways of defining com-
plex numbers, but for our purposes Hamilton’s defini-
tion might be the most suitable. A complex number
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(in the usual notation a + ib) is defined as an ordered
pair of reals (a, b) with the following addition and mul-
tiplication rules: (a, b) + (c, d) = (a + b, c + d) and
(a, b)(c, d) = (ac − bd, ad + bc). It is clear that this is
equivalent to the polynomial-like notation a + ib and it
reproduces the same kind of algebra. The last fact will be
key to our own exposition which will involve yet another
representation of complex numbers.

The price to pay for avoiding the imaginary compo-
nents will be, first and foremost, the need to dimensionally
enlarge the representation of the states as well as of the
observables (the trick that is overlooked by the above
mentioned experiments claiming complex numbers to be
indispensable). In addition, we will need to restrict the
number of observables in this higher representation, so
that we achieve the full equivalence with quantum me-
chanics. Without the latter step, we would obtain a theory
that is larger than quantum physics and therefore could
also be ruled out as we will see in what follows.

Neither of these procedures, the enlargement of the
space, and the subsequent restrictions, are, of course, for-
eign to quantum physics. The canonical quantization of
the electromagnetic field in the Lorenz gauge is the best-
known example [6]. In the remaining part of the paper
we will proceed as follows. We first present a general
method for eliminating the imaginary numbers from quan-
tum physics. We then apply this to the Mach–Zehnder
interferometer. The next step is to present a single qubit
as two qubits in the real representation in order to exhibit
the role played by entanglement. A comparison is then
made with the Gupta–Bleuler method of quantizing the

electromagnetic field [7, 8]. Finally, we discuss the impli-
cations of our results and speculate on possible extensions
of quantum physics.

2 The Main Construction

We will show this with a two-level system, and the gener-
alisation to any dimensionality is straightforward. First
of all, it is clear that the general superposition a|0⟩ + b|1⟩,
can always be encoded by 4 real numbers written as a
vector (ar, ai, br, bi), where the subscripts indicate the real
and imaginary parts of a and b.

The key observation now is the following one and it is
the only additional trick one needs to understand. If the
amplitude of either of the states acquires a phase factor
equal to

√
−1 (i.e. a π/2 phase shift) then this amounts

to the transformation ar → ai, ai → −ar and likewise for
b. Therefore, multiplication by the imaginary number i
simply can be represented by the matrix whose action is

as follows: [
0 −1
1 0

] [
ar

ai

]
=

[
−ai

ar

]
(1)

The most general dynamics is given by the Schrödinger
equation and it is easy to see how to now represent
it with real numbers only. The prescription is that
all imaginaries are substituted by the above matrix
(which is equal to iσy) and all unit numbers by
the two-by-two identity matrix. The Schrödinger
equation for a qubit is in the Pauli basis given by

iℏ
d
dt

[
a
b

]
=

(
h0

[
1 0
0 1

]
+ h1

[
0 1
1 0

]
+ h2

[
0 −i
i 0

]
+ h3

[
1 0
0 −1

]) [
a
b

]
(2)

which, following the above prescription (after putting the i on the right hand side of the equation and absorbing it
into the 4 matrices), becomes in the real representation:

ℏ
d
dt


ar

ai

br

bi

 =
h0


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 + h1


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 + h2


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 + h3


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




ar

ai

br

bi

 (3)

By construction, this equation leads to the same dy-
namics as the original Schrödinger equation. For in-
stance, we can obtain the usual Larmor precession by
setting h0 = h1 = h2 = 0 and h3 = ℏΩ. In this
case we obtain the following equations ȧr = ai, ȧi =

−ar, ḃr = −bi, ḃi = br. If the initial state is such that
ar(0) = br(0) = 1/

√
2 and ai(0) = bi(0) = 0, the so-

lution is ar(t) = cosΩt/
√

2, ai(t) = sinΩt/
√

2, br(t) =

cosΩt/
√

2, ai(t) = − sinΩt/
√

2. In the standard qubit
representation this is simply (|0⟩ + |1⟩)/

√
2→ (eiΩt|0⟩ +

e−iΩt|1⟩)/
√

2, i.e. the phase between the two states pre-
cesses at the rate 2Ω as expected.

The generalisation to higher dimensional systems is im-
mediate, since the same prescription applies in that case
too. This also includes the infinite dimensional systems
such as the quantum simple harmonic oscillator. One
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should also be aware of the fact that the imaginary com-
ponent could have higher dimensional representations
than 2, although we will not be using it in this work. We
will come back to the infinite dimensional systems when
we discuss the quantization involving gauges.

Now, however, a comment is in order regarding the
fact that the real representation contains much more than
the original quantum mechanics. Namely, if we look
at all the possible linear transformations of the vector
(ar, ai, br, bi), then one such transformation is what is
known as the universal NOT gate. This transformation
sends the quantum state a|0⟩ + b|1⟩ into its orthogonal
state b∗|0⟩ − a∗|1⟩, which in the real representation leads
to the state (−bi, br,−ai, ar). The matrix that achieves
this in the real representation is σz ⊗ iσy. In ordinary
quantum physics, the universal NOT is an anti-linear op-
eration and not representable by a unitary transformation.
There are, of course, many other operations that are not
allowed in quantum mechanics, even the innocently look-
ing operation that conjugates both of the amplitudes (the
basis for the partial transpose criterion for entanglement,
which itself is not a physical operation). An easy way of
eliminating all such operations is to insist that all allowed
operations must commute with iσy⊗ I (the universal NOT
fails to commute because the Pauli y and z matrices do
not commute).

In fact, the full basis is given by the following matri-
ces: iσy ⊗ I, iσy ⊗ σx, I ⊗ −iσy, iσy ⊗ σz. This is the
real representation of the identity and the Pauli matrices.
The reason is that in ordinary quantum theory, the iden-
tity commutes with all other operations, however, in real
quantum mechanics the identity becomes (−i)I which is
represented by iσy ⊗ I. The rationale behind this will be-
come even clearer when we use the entangled two qubit
representation of a single qubit.

This brings us to a surprising statement whose validity
has been known for a long time [4, 5]: a commuting
subspace of the full real theory, gives us back quantum
physics in the same way that a commuting subspace (say

with σz) of quantum physics leads us to classical physics
(i.e. the physics where superpositions of the state |0⟩ and
|1⟩ are not allowed). One therefore wonders if the real
extension of quantum theory could be thought of as a
possible gateway to going beyond.

3 The Mach–Zehnder Qubit

Here is a good place to introduce another, frequently seen,
argument for the necessity of using complex numbers in
quantum mechanics. One can think of any two-input-two-
output interferometer as a computation performing a NOT
gate on the input state, or something similar (probably

a Mach–Zehnder interferometer is better described as
performing a −I operation, namely introducing a π phase
shift in both states of the interferometer).

Now, quantum dynamics is continuous, which means
that it is meaningful to talk about the transformation tak-
ing us half way through the interferometer. This is then
a square root of NOT or of −I (since applying the trans-
formation twice should lead us to the full interferometric
transformation). Both of these transformations clearly
require imaginary numbers if we remain within the 2 by
2 matrix representation.

However, we saw that in the 4 dimensional representa-
tion, this is no longer the case. We now treat the evolution
of the Mach–Zehnder action using this representation.
The simplest is to first write the three transformations
(the first beamsplitter, the two mirrors and the last beam-
splitter) using the conventional Pauli basis:[

1 i
i 1

] [
0 i
i 0

] [
1 i
i 1

]
(4)

which multiplies out to the negative identity as
indicated before. We now follow the enlarge-
ment prescription so that 1 → I and i → −iσy.
The Mach–Zehnder transformation is then


1 0 0 −1
0 1 1 0
0 −1 1 0
1 0 0 1



0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0



1 0 0 −1
0 1 1 0
0 −1 1 0
1 0 0 1



ar

ai

br

bi

 =

−ar

−ai

−br

−bi

 (5)

and, clearly, all transformations contain real numbers only.

The above calculation involves one effective qubit,
but we must be careful when generalising real quan-
tum physics to two or more qubits [5]. The problem
exists even when each qubit on their own obeys quantum

physics. For instance, the action of applying a phase to
the first or the second of two qubits is indistinguishable
in ordinary quantum physics. The state i|ψ⟩ ⊗ |ϕ⟩ gives
the same results in any experiment as the state |ψ⟩ ⊗ i|ϕ⟩.
However, in real quantum mechanics this corresponds
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to two different states that could in principle be discrim-
inated (for the simple reason that the state is given by
4 real numbers). To make things worse, they are also
different from the states |ψ⟩ ⊗ |ϕ⟩ and i|ψ⟩ ⊗ i|ϕ⟩.

This presents a problem for the real quantum mechan-
ics and it signals that we need to reduce the space of
states even further. The solution is similar to how we
deal with multi-mode fermionic states. When we have
two fermions, we can only do full operations in spaces
with different parity. Namely, there is a superselection
rule that prohibits us from superposing the vacuum state
with the one fermion state. Therefore, we have to confine
ourselves either to the subspace where we have the vac-
uum and two fermions (one in each mode) or where we
have the vacuum in one mode and a fermion in the other
one. These two subspaces are of different parity and any
unitary operation is allowed in each, but the two can never
be connected physically. In other words, each subspace is
equivalent to a qubit, but together we still only have one
qubit and not two.

4 Entanglement

The real representation used here could be thought of as
a “second quantization” of the amplitudes pertaining to
quantum states. Namely, the real vector (ar, ai, br, bi) can
be written in the form of a tensor product of two qubits as(

ar

ai

)
⊗

(
1
0

)
+

(
br

bi

)
⊗

(
0
1

)
(6)

From this representation, it becomes clear why the multi-
plication by i is encoded as iσy ⊗ I for it is only the first
of the two qubits that is changed (the real and imaginary
parts of a and b get swapped and the real part acquires a
minus sign).

Furthermore, this state can be interpreted as an entan-
gled state of two qubits, where we note that the states of
the first qubit have not been normalised. When normal-
ization is included, the state, written in the Dirac notation,
is given by:

|a|
(

ar

|a|
|0⟩ +

ai

|a|
|1⟩

)
|0⟩ + |b|

(
br

|b|
|0⟩ +

bi

|b|
|1⟩

)
|1⟩ . (7)

As we saw, if all quantum operations were allowed on this
state, then the resulting single qubit dynamics would con-
tain more possibilities than contained in quantum physics.
In fact, this two qubit representation of a single qubit
allows us to see exactly why imposing the restriction to
operations that commute with iσy⊗ I is needed to recover
the ordinary quantum physics. It is because the imaginary
i has been upgraded to a two-by-two matrix in the real
representation, but in ordinary quantum mechanics it is

still just a number that ought to commute with everything
else.

Let us, for the time being, ignore this fact and proceed
to compute the amount of entanglement in this state by
treating it like any other two-qubit quantum state. The
simplest way is to trace out the second qubit and take the
entropy of the first qubit reduced state. This state is

ρ1 = |a|2
(

ar

|a|
|0⟩ +

ai

|a|
|1⟩

) (
ar

|a|
⟨0| +

ai

|a|
⟨1|

)
+|b|2

(
br

|b|
|0⟩ +

bi

|b|
|1⟩

) (
br

|b|
⟨0| +

bi

|b|
⟨1|

)
(8)

which, when written in the matrix form yields

ρ1 =

[
a2

r + b2
r arai + brbi

arai + brbi a2
i + b2

i

]
(9)

The eigenvalues are r1 = 1/2(1 +
√

1 − 4 det(ρ1)) and
r2 = 1 − r1. The entropy of entanglement is therefore
equal to E = −r1 ln r1 − r2 ln r2.

Maximum entanglement occurs when ar = bi and
ai = −br. For instance, the qubit state eπ/4|0⟩ + e−π/4|1⟩
corresponds to the maximally entangled state in the
real two qubit representation (where the state is (|0⟩ +
|1⟩)/
√

2 ⊗ |0⟩ + (|0⟩ − |1⟩)/
√

2 ⊗ |1⟩). Disentangled states
(product states since we are confined to the globally pure
ones) on the other hand are those where either a = 0 or
b = 0, or when ar = br and ai = bi.

Of course, due to the constraints imposed in recovering
the usual quantum theory, this entanglement is only “rep-
resentational”. This is because to confirm entanglement
we need to be able to measure at least two different com-
plementary observables on each subsystem. However, the
constraint imposed in order to recover quantum mechan-
ics, tells us that σy is the only observable accessible on
one of the qubits (the first one in our notation). One qubit
is therefore effectively “classicalised” in order to reduce
the real theory to quantum theory. It is here that we see
similarities with fermions, where two fermionic modes
are equivalent to one qubit only.

5 Electromagnetic field
quantization in the Lorenz gauge

Here we would like to outline some parallels be-
tween the extension of quantum physics we have
been discussing with the constrained quantization
employed in the presence of gauges. If one wishes
to be manifestly relativistically covariant, one needs
to work in the Lorentz gauge, where all the 4 modes
of the vector potential are quantized. The quan-
tum A-field is, in the Fourier expansion, given by

Quanta | DOI: 10.12743/quanta.v12i1.241 September 2023 | Volume 12 | Issue 1 | Page 167

http://dx.doi.org/10.12743/quanta.v12i1.241


Aµ(x) =
∫

d3k√
2ωk(2π)3

3∑
λ=0

(
aλ(k)ϵµ(k, λ)e−ikx + a†λ(k)ϵµ(k, λ)e+ikx

)
, (10)

where a and a† are the usual annihilation and creation
operators for the 4 modes. We now have the subsidiary
condition which guarantees the gauge independence (in
the case of the free electromagnetic field):

∑
µ

∂A+µ
∂xµ
|Ψ⟩ = 0 , (11)

where A+µ is the positive frequency part of the vector
potential (the one containing the annihilation field op-
erators). This condition, known as the Gupta–Bleuer
constraint [7, 8], must hold at all space points and at all
times. It ensures that the expectation value of ∂Aµ/∂xµ,
⟨Ψ|∂Aµ/∂xµ|Ψ⟩, vanishes at all points and times. In the
momentum space this yields a simple constraint:∑

µ

kµaµ|Ψ⟩ = 0 , (12)

in other words, any non-transverse components of the
field are annihilated at all times. It turns out that for the
free field (without charges whose treatment is not relevant
here - see [9]) it is sufficient to postulate this just at the
initial time.

If, without loss of generality, we assume that kµ =
(ω, 0, 0, ω), then this condition reduces to

(a3 − a0)|Ψ⟩ = 0 ,

which states that physical states must have an equal num-
ber of longitudinal and scalar photons. This ensures that
the longitudinal and scalar photons never contribute any-
thing observable to any physical analysis, which is why
they are frequently called “ghosts”. The average of any
observable simply vanishes as far as the contribution from
the 0 (temporal) and 3 (longitudinal x) modes. In other
words, the probability of ever observing the longitudinal
and scalar photons is identically zero throughout. Indeed,
if the state |Ψ′⟩ is obtained from |Ψ⟩ by an emission of
a ghost-photon (and therefore by a gauge change whose
potentials are proportional to ∂µΩ) it must have the form

|Ψ′⟩ = (1 + λ
∑
µ

kµa†µ)|Ψ⟩ .

Now the overlap of this new state with ghost-photons
with another physical one, |Ψ1⟩ is

⟨Ψ′|Ψ1⟩ = ⟨Ψ|(1 + λ
∑
µ

kµaµ)|Ψ1⟩ = ⟨Ψ|Ψ1⟩ ,

i.e., it is unaffected by the presence of the ghost-photons.
It is, in fact, clear that any number of applications of the
operator λ′

∑
µ k′µa†µ must lead to the same physical state.

A gauge change is now, at the operator level, given by
aµ → aµ + Ω(k)kµ. This satisfies the gauge condition,
because Ω satisfies the Lorenz condition

∑
µ
∂2Ω(x)
∂x2

µ
= 0,

which in the momentum representation (Ω(x) = Ω(k)eikx)
simply states that k2

µ = 0, i.e. that photons are massless.
The biggest drawback of the manifestly covariant quan-

tisation of the electromagnetic field is that it leads to
states with a negative norm. This is because the Lorentz
invariance implies that the commutation relations be-
tween the 4-vector A potential components must have
the Minkowski signature. Therefore, for one of the four
modes - the scalar mode - the commutation relation be-
tween the annihilation and creation operators has a wrong
sign, [a0, a

†

0] = −1. This implies that, if the vacuum state
of that mode is properly normalised so that ⟨0|0⟩ = 1,
then the first excited state (and all the odd states) have a
negative norm because

⟨1|1⟩ = ⟨0|a0a†0|0⟩ = −1 + ⟨0|a†0a0|0⟩ = −1.

A knock-on effect is also that the observables that are
normally considered to be Hermitian, in the case of the
scalar mode become anti-Hermitian. This is interesting
since in our real representation of quantum physics, the
Pauli operator σy is multiplied by the i in order to elim-
inate the imaginary numbers in the representation. The
operator iσy is anti-Hermitian which means that if one
of the eigenstates of σy, with the eigenvalue of −i, is as-
sumed to be positive norm, then the other eigenstate must
have a negative norm. This is for the same reason as in
the scalar mode since we can write σy = −iσ+ + iσ−.

To make the analogy with real quantum mechanics
more transparent we introduce a single qubit but with an
indefinite metric. This simply means that ⟨0|0⟩ = 1 =
−⟨1|1⟩. The norm of a general superposition c|0⟩ + s|1⟩ is
given by c2−s2. If this is to be normalised, c = cosh x and
s = sinh x (instead of the cos and sin as in the definite
norm conventional quantum physics). The orthogonal
state is given by s|0⟩ + c|1⟩.

It is clearly impossible to interpret the squares of am-
plitudes as probabilities, since they can exceed unity. The
negative norm is the main problem, so how can one deal
with it while preserving the indefiniteness of the metric?
One way is to introduce another such indefinite qubit.
Now it seems that the problem has doubled, however, we
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can choose to work in the subspace |0⟩⊗|0⟩, |1⟩⊗|1⟩where
the metric is always positive (−1 × −1 = 1). One can
simply declare that the physical subspace is composed of
the states |ψ⟩ which obey the following constraint:

(σ+ ⊗ σ− + σ− ⊗ σ+)|ψ⟩ = 0 (13)

This resembles the fermionic superselection rule where
one works in the positive parity subspace of two fermionic
modes as explained above. Also, more appropriately for
the present discussion, it resembles the Gupta–Bleuler
quantization in the Lorenz gauge where the constraint is
arranged so that the scalar and the longitudinal modes
excitations cancel out, (a3−a0)|ψ⟩ = 0. We will say more
on this point in the discussion below.

The constraint on the indefinite qubits, as in the case
of the real quantum physics extension, boils down to the
fact that two qubits with indefinite metric are equivalent
to one qubit with a definite metric.

We have now completed the formal part of the exposi-
tion (though there is much more to be explored here, see
e.g. [10–12]) and would like to proceed with the discus-
sion regarding possible physical implications of the ideas
presented.

6 Discussion

Extending the space of states and operations to real
Hilbert spaces has the appeal that no imaginary number
are required to describe either quantum states or quantum
operations. After all, complex numbers are just ordered
pairs of real numbers, so it might not be surprising to see
that only the real numbers suffice.

This teaches us one important lesson, however. It is
not the need for the complex numbers that makes quan-
tum physics unusual; it is, instead, the need for the non-
commuting elements of reality, or, what Dirac called,
the q-numbers. Indeed, the way we got rid of the i was
to substitute it with an operator that need not commute
with other relevant operators. This is why this trick to
make quantum physics real, in fact, makes it even more
“quantum”. Eliminating complex numbers is therefore
not a return to the classical physics of real numbers, but
quite the opposite. Quantum physics does not need com-
plex numbers, but it does need q-numbers and the ques-
tion as always is which classical entities to upgrade to
q-numbers.

That extended theory, however, leads to impossible op-
erations, such as the universal NOT. The enlarged theory
needs to be restricted to recover the ordinary quantum the-
ory. However, there is still a question regarding whether
some of the extended operations could still be realised
out there in Nature.

The intuition here comes from my recent work with
Marletto [13, 14], in which we argued that the ghost
modes of the electromagnetic field are both real (in the
sense that they affect charges) and detectable (through
coupling to charges). The idea is that the Coulomb forces
are in the Lorenz gauge mediated by the scalar potential.
It works in the following way. Every charge perturbs the
scalar modes and creates coherent states in them. For-
mally, the state of the charge and the modes is an entan-
gled state if a charge is in a superpositions of different
locations (since the coherent states are centred around
those locations).

Given what we said about the Gupta–Bleuler constraint,
it would seem that the charge-scalar-modes entanglement
is only a formal kind of entanglement, of the same kind as
the entanglement between two qubits in the real quantum
mechanics. Namely, it would seem impossible to confirm
this entanglement since the photons in the scalar mode are
undetectable. This, however, is not true. The argument
that Marletto and I have presented involves another charge
and the reduction in the coherence of the first charge is a
direct witness of entanglement.

Is something like this possible for real extensions of
quantum physics? More precisely, could two qubits be
entangled through the extension into the real domain? In
order to mimic as closely as possible the story about the
electromagnetic gauges, we imagine a real qubit in the
entangled representation as two qubits, and then coupled
to another real qubit of the same type. However, we will
allow these two real qubits to couple to one another only
through the iσy ⊗ iσy interaction between the “amplitude”
qubits. The question is if the two real qubits can now
ever become entangled if they initially start in a product
state. The answer superficially seems to be a yes, because
the same interaction could entangle two normal qubits.
However, in the real quantum mechanical representation,
the matrix iσy implements the multiplication by i. In that
sense, our interaction only produces a global phase and
has no entangling power. Of course, if the Hamiltonian
also contained σz terms, say signifying the energy of
the extension qubits, then this would, in combination
with iσy ⊗ iσy, be able to generate various entanglements.
Something like that happens in the scalar modes, where
both a†a and a + a† - which do not commute - play a role.

Thinking along these lines, one direction for testing for
effects going beyond quantum physics would be to probe
if things “fail to commute even more” than stipulated by
the standard quantum theory. If, as we have explored,
the quantum amplitudes also end up being q-numbers,
then the effects would automatically be testable (e.g. the
standard phases would become non-Abelian as in the case
of anyons [15] or quaternionic amplitudes [16]).
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In conclusion, attempts to phrase quantum physics on
real Hilbert spaces can, in fact, lead to theories broader
than quantum physics. A constraint then has to be used
to recover (the ordinary) quantum physics, however, the
“leakage” into the larger Hilbert space can always—at
least in principle—be detected [16]. It seems to the author
that a search for such deviations is certainly a worthwhile
enterprise.
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