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We provide a pedagogical presentation of Shor’s
factoring algorithm, which is a quantum al-
gorithm for factoring very large numbers (of

order of hundreds to thousands of bits) in polynomial
time. In contrast, all known classical algorithms for
the factoring problem take an exponential time to fac-
tor such large numbers. Shor’s algorithm therefore
has profound implication for public-key encryption
such as RSA and Diffie–Hellman key exchange. We as-
sume no prior knowledge of Shor’s algorithm beyond
a basic familiarity with the circuit model of quantum
computing. Shor’s algorithm contains a number of
moving parts, and can be rather daunting at first.
The literature is replete with derivations and expo-
sitions of Shor’s algorithm, but most of them seem
to be lacking in essential details, and none of them
provide a pedagogical presentation. They require
a thicket of appendices and assume a knowledge of
quantum algorithms and classical mathematics with
which the reader might not be familiar. We therefore
start with first principle derivations of the quantum
Fourier transform (QFT) and quantum phase estima-
tion (QPE), which are the essential building blocks of
Shor’s algorithm. We then go on to develop the the-
ory of modular exponentiation (ME) operators, one
of the fundamental components of Shor’s algorithm,
and the place where most of the quantum resources
are deployed. We also delve into the number theory
that establishes the link between factorization and the

period of the modular exponential function. We then
apply the QPE algorithm to obtain Shor’s factoring
algorithm. We also discuss the post-quantum process-
ing and the method of continued fractions, which is
used to extract the exact period of the modular ex-
ponential function from the approximately measured
phase angles of the ME operator. The manuscript then
moves on to a series of examples. We first verify the
formalism by factoring N = 15, the smallest number
accessible to Shor’s algorithm. We then proceed to fac-
tor larger integers, developing a systematic procedure
that will find the ME operators for any semi-prime
N = p × q (where q and p are prime). Finally, we
factor the composite numbers N = 21, 33, 35, 143, 247
using the Qiskit simulator. It is observed that the
ME operators are somewhat forgiving, and truncated
approximate forms are able to extract factors just as
well as the exact operators. This is because the method
of continued fractions only requires an approximate
phase value for its input, which suggests that imple-
menting Shor’s algorithm might not be as difficult as
first suspected.
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1. Introduction

In this work, we present a pedagogical construction of
Shor’s factoring algorithm [1], which can factor expo-
nentially large integers in polynomial time. All known
classical algorithms for factorization require an exponen-
tial time because they work by brute force, essentially
testing all (or most) numbers less than the number be-
ing factored. In contrast, Shor’s algorithm exploits the
massive parallelism inherent in quantum mechanics, so
that all numbers can be tested simultaneously rather than
sequentially, thereby providing for a polynomial factoriza-
tion process. Since Shor’s algorithm can factor massively
large numbers very quickly, it has major implications for
the security of encryption standards such as RSA [2]
and Diffie–Hellman [3, 4] key exchange, rendering these
encryption methods severely compromised. As most in-
ternet communication is based on such public key encryp-
tion schemes, Shor’s algorithm has profound implications
for digital security.

Shor’s algorithm rests upon two fundamental quantum
algorithms, the quantum Fourier transform (QFT) and
quantum phase estimation (QPE). The QFT, as the name
suggests, implements the discrete Fourier transform on a
gated quantum computer. Like the classical Fourier trans-
form, it extracts frequency signals from an input source,
except that the QFT works by manipulating quantum bits
or qubits (two state quantum systems) on a gated quan-
tum computer. The QPE algorithm, in contrast, finds the
complex phases or the Eigenvalues of an arbitrary unitary
linear operator. Shor’s algorithm elegantly combines the
QFT and QPE to construct a powerful quantum algorithm
for factoring very large integers. More precisely, by em-
ploying a specific and well chosen unitary operator called
the modular exponentiation (ME) operator, quantum par-
allelism allows the QPE to extract the factors of expo-
nentially large numbers in polynomial time. One might
say that the QPE algorithm is the workhorse of Shor’s
algorithm [5], and we shall spend most of our time on the
associated ME operators. The mathematics behind Shor’s
algorithm is based on a simple but profound result from
number theory, which maps the factoring problem onto
another mathematical problem that finds the period of the
modular exponential function. The period of this function
is directly related to the factors of the number in ques-
tion, and the QPE extracts this period using the method
of continued fractions, thereby providing the sought after
factors.

Historically, Shor’s algorithm was motivated by Si-
mon’s algorithm [6], but we shall not discuss these (in-
teresting) details. We assume no prior knowledge of
Shor’s algorithm beyond a basic familiarity with the cir-
cuit model of quantum computing. Shor’s algorithm has

a number of moving parts, and it is rather complex. It
contains a pre-processing phase that happens on a classi-
cal computer, then the QPE is conducted on a quantum
computer (using the associated ME operators), and fi-
nally there is a post-processing phase that takes place on
a classical computer (employing the method of contin-
ued fractions). The literature is thick with expositions of
Shor’s algorithm, but most of them seem to be lacking
in some essential respect, and none of them provide a
satisfying pedagogical presentation. Consequently, this
work is an attempt to derive Shor’s algorithm from first
principles in a self-contained manner assuming minimal
familiarity with the requisite quantum computing machin-
ery. In Sections 2 and 3, we therefore provide complete
derivations the QFT and the QPE algorithms, respec-
tively. As we have emphasized, these algorithms form
the essential building blocks of Shor’s algorithm. For the
classical post-processing stage, one must utilize the the-
ory of continued fractions, and in Section 4 we provide
a brief introduction to the subject, proving a number of
fundamental theorems. In Section 5, we are finally ready
to address Shor’s algorithm, which involves a rigorous
construction of the appropriate modular exponentiation
operator U. Shor’s algorithm then follows by applying
the QPE algorithm to this operator. After this, we move
on to discuss the post-quantum processing in more detail,
where we apply the theory of continued fractions from
Section 4 to extract the exact period of the modular expo-
nential function f (x) from the approximately measured
phase of the ME operator U.

In Section 6 we apply the formalism to factor N = 15,
the smallest number accessible to Shor’s algorithm, and
we use this section to develop an all purpose factoring
script. The difficulty in factoring a number with Shor’s al-
gorithm does not lie in the magnitude of the number itself,
but in the size of the period r of the modular exponential
function f (x) [7]. In Section 7, we apply the formalism
to the composites N = 21, 33, 35, 143, 247, which have
periods ranging from r = 2 to r = 36. One might think
that we have accomplished nothing, since knowing the
exact ME operator is equivalent to knowing the period r
of the function f (x), and Shor’s algorithm would there-
fore be unnecessary. However, it turns out that we do
not require the exact ME operators! It is observed that
the ME operators are somewhat forgiving, and truncated
approximate forms are able to extract factors just as well
as the exact operators. This is because the method of con-
tinued fractions only requires an approximate phase value
for its input, which suggests that implementing Shor’s
algorithm might not be as difficult as first suspected. Fi-
nally, Section 8 provides some conclusions and closing
remarks.
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2. The Quantum Fourier Transform

2.1. General Definitions

In this section we formulate of the quantum Fourier transform (QFT), where our primary references are Refs.
[8] and [9]. Given an M-vector of complex numbers ψ = (ψ0, ψ1, · · · , ψM−1), the discrete Fourier transform
ψ̃ = (ψ̃0, ψ̃1, · · · , ψ̃M−1) is defined by

ψ̃ℓ =
1
√

M

M−1∑
k=0

e2πi ℓk/M ψk , (1)

and the discrete inverse Fourier transform is therefore given by

ψk =
1
√

M

M−1∑
ℓ=0

e−2πi ℓk/M ψ̃ℓ , (2)

where the indices ℓ, k ∈ {0, 1, · · · ,M − 1}. We wish to implement the Fourier transform using an m-qubit quantum
system, where M = 2m is the number of possible quantum states. The corresponding quantum Fourier transform will
be a linear unitary operator on the m-qubit Hilbert space, denoted by QFT , whose action on the computational basis
elements reproduces the classical transform (1),

QFT |ℓ⟩ =
1
√

M

M−1∑
k=0

e2πi ℓk/M |k⟩ . (3)

Recall that a linear operator defined only on the basis states is sufficient to give the operator on any state in the Hilbert
space. We can now express the QFT operator in a very useful basis-dependent form,

QFT = QFT · 1 = QFT ·
M−1∑
ℓ=0

|ℓ⟩⟨ℓ|︸    ︷︷    ︸
1

=
1
√

M

M−1∑
k=0

M−1∑
ℓ=0

e2πi kℓ/M |k⟩⟨ℓ| , (4)

where we have used the decomposition of unity 1 =
∑M−1
ℓ=0 |ℓ⟩⟨ℓ|. Since the quantum Fourier transform is unitary (an

easy proof), that is to say QFT · QFT † = 1, then the inverse quantum Fourier transform is given by

QFT−1 = QFT † =
1
√

M

M−1∑
ℓ=0

M−1∑
k=0

e−2πi kℓ/M |ℓ⟩⟨k| . (5)

Our aim in this Section is to construct a quantum circuit to implement the QFT operator and its inverse.

2.2. Qubit Ordering and the QFT Circuit

A quantum circuit has four distinct qubit ordering conventions of which we must be cognizant, as they are all
present in the literature. We can order the qubits on the quantum circuit in two ways, and we can order the bits
of a binary integer in two ways, thereby giving four possible conventions. We will be concerned with two such
conventions. In computer science, one represents an m-bit integer k by m binary digits kr ∈ {0, 1} using the standard
notation k = km−1 · · · k1k0. The bit-ordering convention is that k0 is the lowest-order bit, so that the value of the
integer is given by k = k0 20 + k1 21 + · · · + km−1 2m−1. We must also label the qubits of the quantum circuit, which
gives two more possible conventions. In OpenQASM/Qiskit [10], the upper qubit of an m-qubit circuit is labeled
by 0, working its way down the circuit and ending with qubit m − 1 at the bottom. For a general m-bit binary
integer k = km−1 · · · k1, k0, the least significant bit k0 is therefore placed at the top of the circuit, encoded by the
computational basis state |k0⟩ of the upper qubit. The integers k therefore correspond to the computational basis states
|k⟩ ≡ |km−1 · · · k0⟩ ≡ |k0⟩⊗ |k1⟩⊗ · · ·⊗ |km−2⟩⊗ |km−1⟩. Note that the qubit ordering is opposite to the bit-string ordering.
This will be one of our primary conventions. Alternatively, we can number the qubits on the circuit from 1 to m, and
express binary numbers by m-bit strings of the form k = k1k2 · · · km−1km. In this convention, the lowest order bit km
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Figure 1: An m-bit binary integer k can be encoded on a gated quantum computer in either of the conventions described in the
text. Convention 1 is called the OpenQASM/Qiskit convention, while Convention 2 is called the Physics/Mathematics convention.
Convention 1 labels the top qubit by 0, and works its way down to the last qubit labeled by m − 1. Binary integers are expressed
with the standard bit encoding k = km−1 · · · k1k0, which places the lowest order bit k0 at the top of the circuit. Convention 2
numbers the qubits from 1 to m running from top to bottom, and the bit-ordering of integers is flipped to k = k1k2 · · · km, placing
the lowest order bit km at the bottom of the circuit.

is placed at the bottom of the circuit, and the value of the index integer is k = km 20 + km−1 21 + · · · + k1 2m−1. The
qubit ordering is the same as the bit-string ordering, and the integers k correspond to the computational basis states
|k⟩ ≡ |k1 · · · km⟩ ≡ |k1⟩ ⊗ |k2⟩ ⊗ · · · ⊗ |km−1⟩ ⊗ |km⟩. This is the standard physics and mathematics convention. We shall
use both conventions, which are illustrated in Fig. 1. Quantum circuits will be inverted horizontally between these
two conventions, so it is important to keep track of which convention is in use.

2.2.1. Convention 2: Standard Physics/Mathematics

We first work through the details of the QFT for Convention 2, the physics and mathematics convention. We consider
an m-qubit system in which the qubits are ordered from top to bottom, starting with qubit-1 in the upper position
of the circuit and qubit-m at the bottom of the circuit. The quantum system has M = 2m distinct states that can be
indexed by an integer k ∈ {0, 1, · · · ,M − 1}. We can express this integer in the binary form,

k = k1k2 · · · km−1km

= 2m−1k1 + 2m−2k2 + · · · + 21 km−1 + 20 km , (6)

where km is the least significant bit. The computational basis elements are then defined by

|k⟩ = |k1k2 · · · km−1km⟩

= |k1⟩ ⊗ |k2⟩ ⊗ · · · ⊗ |km−1⟩ ⊗ |km⟩ where kr ∈ {0, 1} . (7)

For example, the state labeled by k = 1 is represented by

|1⟩ = |0 · · · 01⟩ = |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |1⟩ , (8)

with km = 1 and all other bits kr = 0. This state will play a critical role in Shor’s algorithm. Note that we are using a
slightly ambiguous notation in which |1⟩ is used in different senses on the left- and right-hand sides of equation (8).
However, the meaning of the state |1⟩ will be clear from context, so this should cause no problems. Furthermore, this
bit convention implies the useful relation

k
M
=

k1

21 +
k2

22 + · · · +
km−1

2m−1 +
km

2m . (9)
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Note that a sum over the index k ∈ {0, 1, · · · ,M − 1} can be converted into m sums over the binary components
kr ∈ {0, 1} for r ∈ {1, 2, · · · ,m},

M−1∑
k=0

=
∑

km∈{0,1}

· · ·
∑

k2∈{0,1}

∑
k1∈{0,1}

. (10)

This allows us to express the quantum Fourier transform (3) in the form

QFT |ℓ⟩ ≡
1
√

M

M−1∑
k=0

e2πi ℓk/M |k⟩ (11)

=
1

2m/2

∑
km

· · ·
∑
k2

∑
k1

e2πi ℓ
(
2m−1k1+2m−2k2+···+21 km−1+20 km

)/
2m
|k1k2 · · · km−1km⟩

=
1

2m/2

∑
k1=0,1

e2πi ℓk1/21
|k1⟩ ⊗

∑
k2=0,1

e2πi ℓk2/22
|k2⟩ ⊗ · · · ⊗

∑
km=0,1

e2πi ℓkm/2m
|km⟩

=
1

2m/2

(
|0⟩ + e2πi ℓ/21

|1⟩
)
1
⊗

(
|0⟩ + e2πi ℓ/22

|1⟩
)
2
⊗ · · · ⊗

(
|0⟩ + e2πi ℓ/2m−1

|1⟩
)
m−1
⊗

(
|0⟩ + e2πi ℓ/2m

|1⟩
)
m
.

(12)

In our current convention, the quantum state indexed by the integer ℓ is given by

|ℓ⟩ = |ℓ1ℓ2 · · · ℓm−1ℓm⟩ with ℓr ∈ {0, 1}

= |ℓ1⟩ ⊗ |ℓ2⟩ ⊗ · · · ⊗ |ℓm−1⟩ ⊗ |ℓm⟩ , (13)

where ℓ takes the binary form

ℓ = ℓ1ℓ2 · · · ℓm−1ℓm = 2m−1ℓ1 + 2m−2ℓ2 + · · · + 21 ℓm−1 + 20 ℓm . (14)

We shall also introduce the notion of binary fractions corresponding to non-negative m-bit phase angles,

Ω ≡ 0.ℓ1ℓ2 · · · ℓm−1ℓm ≡
ℓ1

21 +
ℓ2

22 + · · · +
ℓm−1

2m−1 +
ℓm

2m . (15)

Note that the phase Ω = 0.ℓ1ℓ2 · · · ℓm and the corresponding integer index ℓ = ℓ1ℓ2 · · · ℓm are related by

ℓ = MΩ = 2mΩ , (16)

an expression we shall employ throughout the sequel. We now rewrite the exponential terms in (12) as follows,
working slowly through the algebra, starting with qubit-1:

2πi
ℓ

21 =
2πi
21

[(
2m−1ℓ1 + 2m−2ℓ2 + · · · + 21 ℓm−1

)
+ 20 ℓm

]
= 2πi

[(
2m−2ℓ1 + 2m−3ℓ2 + · · · + 20 ℓm−1

)
+ Ω1

]
(17)

2πi
ℓ

22 =
2πi
22

[(
2m−1ℓ1 + 2m−2ℓ2 + · · · 22ℓm−2

)
+ 21 ℓm−1 + 20 ℓm

]
= 2πi

[(
2m−3ℓ1 + 2m−4ℓ2 + · · · 20ℓm−2

)
+ Ω2

]
(18)

· · ·

2πi
ℓ

2r =
2πi
2r

[(
2m−1ℓ1 + 2m−2ℓ2 + · · · + 2r ℓm−r

)
+ 2r−1 ℓm−r+1 + · · · + 21 ℓm−1 + 20 ℓm

]
= 2πi

[(
2m−r−1ℓ1 + 2m−r−2ℓ2 + · · · + 20 ℓm−r

)
+ Ωr

]
(19)

· · ·

2πi
ℓ

2m−1 =
2πi

2m−1

[(
2m−1ℓ1

)
+ 2m−2ℓ2 + · · · + 21 ℓm−1 + 20 ℓm

]
= 2πi

[(
ℓ1

)
+ Ωm−1

]
(20)

Quanta | DOI: 10.12743/quanta.v12i1.235 September 2023 | Volume 12 | Issue 1 | Page 45

http://dx.doi.org/10.12743/quanta.v12i1.235


2πi
ℓ

2m =
2πi
2m

[
2m−1ℓ1 + 2m−2ℓ2 + · · · + 21 ℓm−1 + 20 ℓm

]
= 2πi

[
Ωm

]
, (21)

where the partial-phase angles are defined by

Ω1 ≡
ℓm

21 = 0.ℓm (22)

Ω2 ≡
ℓm−1

21 +
ℓm

22 = 0.ℓm−1ℓm (23)

· · ·

Ωr ≡
ℓm−r+1

21 + · · · +
ℓm−1

2r−1 +
ℓm

2r = 0.ℓm−r+1 · · · ℓm−1ℓm (24)

· · ·

Ωm−1 ≡
ℓ2

21 +
ℓ3

22 + · · · +
ℓm−2

2m−1 +
ℓm

2m−1 = 0.ℓ2 · · · ℓm−1ℓm (25)

Ωm ≡
ℓ1

21 +
ℓ2

22 + · · · +
ℓm−1

2m−1 +
ℓm

2m = 0.ℓ1 · · · ℓm−1ℓm . (26)

Note that integer multiples of 2πi in the parentheses of equations (17)–(21) do not contribute, as e2πi n = 1 for any
integer n, thereby permitting us to express the QFT operation only in terms of the partial phases

Ωr =

r∑
k=1

ℓm−r+k

2k for r ∈ {1, 2, · · · ,m} . (27)

The quantum Fourier transform (12) of the ℓ-state can therefore be written in any one of three useful forms:

QFT |ℓ⟩ =
1

2m/2

(
|0⟩ + e2πi ℓ/21

|1⟩
)
1
⊗

(
|0⟩ + e2πi ℓ/22

|1⟩
)
2
⊗ · · · ⊗ (28)(

|0⟩ + e2πi ℓ/2m−1
|1⟩

)
m−1
⊗

(
|0⟩ + e2πi ℓ/2m

|1⟩
)
m

=
1

2m/2

(
|0⟩ + e2πi 0.ℓm |1⟩

)
1
⊗

(
|0⟩ + e2πi 0.ℓm−1ℓm |1⟩

)
2
⊗ · · · ⊗ (29)(

|0⟩ + e2πi 0.ℓ2···ℓm−1ℓm |1⟩
)
m−1
⊗

(
|0⟩ + e2πi 0.ℓ1ℓ2···ℓm−1ℓm |1⟩

)
m

=
1

2m/2

(
|0⟩ + e2πiΩ1 |1⟩

)
1
⊗

(
|0⟩ + e2πiΩ2 |1⟩

)
2
⊗ · · · ⊗(

|0⟩ + e2πiΩm−1 |1⟩
)
m−1
⊗

(
|0⟩ + e2πiΩm |1⟩

)
m
. (30)

We next reverse the order of the qubits with a string of SWAP gates to form the state

|ψrev⟩ =
1

2m/2

(
|0⟩ + e2πiΩm |1⟩

)
1
⊗

(
|0⟩ + e2πiΩm−1 |1⟩

)
2
⊗ · · · ⊗ (31)(

|0⟩ + e2πiΩ2 |1⟩
)
m−1
⊗

(
|0⟩ + e2πiΩ1 |1⟩

)
m
.

The state |ψrev⟩ can be represented quite readily by a quantum circuit. To see this, let us start with qubit-m of (31).
Since e2πiΩ1 = e2πi ℓm/2 = (−1)ℓm , and since ℓm takes the binary values 0 and 1, we have

1
√

2

(
|0⟩ + e2πiΩ1(ℓm=0) |1⟩

)
m
=
|0⟩m + |1⟩m
√

2
= H|0⟩m

1
√

2

(
|0⟩ + e2πiΩ1(ℓm=1) |1⟩

)
m
=
|0⟩m − |1⟩m
√

2
= H|1⟩m

 = H|ℓm⟩ (32)

Quanta | DOI: 10.12743/quanta.v12i1.235 September 2023 | Volume 12 | Issue 1 | Page 46

http://dx.doi.org/10.12743/quanta.v12i1.235


for ℓm ∈ {0, 1}, where the single-qubit Hadamard gate is defined by

H =
1
√

2

[
1 1
1 −1

]
with |0⟩ =

[
1
0

]
and |1⟩ =

[
0
1

]
. (33)

We will often place subscripts on the single-qubit basis states such as |ℓm⟩m to explicitly indicate their qubit position
in the quantum circuit. We will also denote the qubit upon which the Hadamard gate acts by a superscript, e.g. Hm

explicitly states that H acts on the m-th qubit. Therefore, we can express (32) in the form

1
√

2

(
|0⟩ + e2πiΩ1 |1⟩

)
m
= Hm|ℓm⟩m with ℓm ∈ {0, 1} . (34)

Moving on to the next qubit, m − 1, we find

1
√

2

(
|0⟩ + e2πiΩ2 |1⟩

)
m−1

=
1
√

2

(
|0⟩ + e2πi ℓm−1/21

· e2πi ℓm/22
|1⟩

)
m−1

. (35)

The first exponential e2πi ℓm−1/2 = eπi ℓm−1 = (−1)ℓm−1 gives a Hadamard gate acting on |ℓm−1⟩m−1, and the second
exponential e2πi ℓm/22

produces a controlled phase gate with angle θ = 2π/22 (call it CR2) acting on the target qubit
|ℓm−1⟩m−1 with the control qubit |ℓm⟩m, so that

1
√

2

(
|0⟩ + e2πiΩ2 |1⟩

)
m−1

= Hm−1 ·CmRm−1
2 |ℓm−1⟩m−1 where ℓm−1 ∈ {0, 1} . (36)

We have used superscripts on the controlled-R gate, writing CcRt
2 to explicitly indicate the control qubit c and the

target qubit t. Finally, let us examine the 1-st qubit, where we find

1
√

2

(
|0⟩ + e2πiΩm |1⟩

)
1
=

1
√

2

(
|0⟩ + e2πi ℓ1/2 · e2πi ℓ2/22

· · · e2πi ℓm−1/2m−1
· e2πi ℓm/2m

|1⟩
)
1

(37)

= H1 ·C2R1
2 · · · C

m−1R1
m−1 ·C

mR1
m |ℓ1⟩1 with ℓ1 ∈ {0, 1} , (38)

where the single-qubit phase operator is defined by

Rn =

[
1 0
0 e2πi/2n

]
. (39)

In terms of the standard phase gate P(θ), we can express the phase rotation by

Rn = P(θn) =
[
1 0
0 eiθn

]
where θn =

2π
2n =

π

2n−1 . (40)

Figure 2: Convention 2 for the QFT: The standard physics/mathematics convention.
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Figure 2 reproduces the corresponding QFT circuit. Note that SWAP gates are required at the end of the circuit to
place the states back into their original order. The inverse QFT † is given by reading the circuit backwards from
right to left, starting with the SWAP gates, and inverting all phase angles (replacing Rn by R†n). The circuit uses
1 + 2 + · · · + m = 1

2 m(m + 1) = O(m2) distinct gates, plus O(m/2) SWAP gates.
What would have happened if we had not used the SWAP gates to reverse the qubit order in state (31), but instead

appealed directly to (30)? We would have found terms like |ℓm⟩1, and the index of ℓ would not have paired properly
with the associated qubit. By performing the SWAP operations, we only find states of the form |ℓk⟩k. It should
therefore cause no confusion if we henceforth drop the subscript on the basis states and simply write |ℓk⟩.

2.2.2. Convention 1: OpenQASM/Qiskit

We now look at the convention used by OpenQASM/Qiskit. Consider an m qubit system in which the circuit for the
computational basis states start with qubit 0 in the upper position and qubit m − 1 in the lower position. There are
M = 2m quantum states in the system, and the index integer k ∈ {0, 1, · · · ,M − 1} can be expressed in a binary form
where k0 is the least significant bit,

k = km−1km−2 · · · k1k0

= 2m−1km−1 + 2m−2km−2 + · · · + 21 k1 + 20 k0 . (41)

The integer k can then be used to label the computational basis states,

|k⟩ = |km−1km−2 · · · k1k0⟩

= |k0⟩ ⊗ |k1⟩ ⊗ · · · ⊗ |km−2⟩ ⊗ |km−1⟩ . (42)

In this convention, the state labeled by k = 1 is given by

|1⟩ = |0 · · · 01⟩ = |1⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩ , (43)

with k0 = 1 and all other bits kr = 0. As previously mentioned, this state will play a critical role in Shor’s algorithm.
We also record here the convenient relation

k
M
=

km−1

21 +
km−2

22 + · · · +
k1

2m−1 +
k0

2m . (44)

As before, we can replace a sum over the index integer k by m sums over the binary components kr ∈ {0, 1} for
r ∈ {0, 1, · · · ,m − 1},

M−1∑
k=0

=
∑

km−1∈{0,1}

· · ·
∑

k1∈{0,1}

∑
k0∈{0,1}

, (45)

so that expression (3) for the quantum Fourier transform becomes

QFT |ℓ⟩ ≡
1
√

M

M−1∑
k=0

e2πi ℓk/M |k⟩ (46)

=
1

2m/2

∑
km−1

· · ·
∑
k1

∑
k0

e2πi ℓ
(
20 k0+21 k1+···+2m−2km−2+2m−1km−1

)/
2m
|km−1km−2 · · · k1k0⟩

=
1

2m/2

∑
k0=0,1

e2πi ℓk0/2m
|k0⟩ ⊗

∑
k1=0,1

e2πi ℓk1/2m−1
|k1⟩ ⊗ · · · ⊗

∑
km−1=0,1

e2πi ℓkm−1/21
|km−1⟩

=
1

2m/2

(
|0⟩ + e2πi ℓ/2m

|1⟩
)
0
⊗

(
|0⟩ + e2πi ℓ/2m−1

|1⟩
)
1
⊗ · · · ⊗(

|0⟩ + e2πi ℓ/22
|1⟩

)
m−2
⊗

(
|0⟩ + e2πi ℓ/21

|1⟩
)
m−1

. (47)
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Next we use the form of the ℓ-state given by our OpenQASM convention,

|ℓ⟩ = |ℓm−1ℓm−2 · · · ℓ1ℓ0 ⟩ with ℓr ∈ {0, 1}

= |ℓ0⟩ ⊗ |ℓ1⟩ ⊗ · · · ⊗ |ℓm−2⟩ ⊗ |ℓm−1⟩ , (48)

where the m-bit integer ℓ takes the binary form

ℓ = ℓm−1ℓm−2 · · · ℓ1ℓ0

= 2m−1ℓm−1 + 2m−2ℓm−2 + · · · + 21 ℓ1 + 20 ℓ0 , (49)

while m-bit binary fractions can be expressed by

Ω = 0.ℓm−1ℓm−2 · · · ℓ1ℓ0 ≡
ℓm−1

21 +
ℓm−2

22 + · · · +
ℓ1

2m−1 +
ℓ0

2m . (50)

Similarly to the previous case, the exponential terms in (47) can be written

2πi
ℓ

2m =
2πi
2m

[
2m−1ℓm−1 + 2m−2ℓm−2 + · · · + 21 ℓ1 + 20 ℓ0

]
= 2πi

[
Ω0

]
(51)

2πi
ℓ

2m−1 =
2πi

2m−1

[(
2m−1ℓm−1

)
+ 2m−2ℓm−2 + · · · + 21 ℓ1 + 20 ℓ0

]
= 2πi

[(
ℓm−1

)
+ Ω1

]
(52)

· · ·

2πi
ℓ

2m−r =
2πi

2m−r

[(
2m−1ℓm−1 + 2m−2ℓm−2 + · · · + 2m−r ℓm−r

)
+ 2m−r−1 ℓm−r−1

+ · · · + 21 ℓ1 + 20 ℓ0
]

= 2πi
[(

2r−1ℓm−1 + 2r−2ℓm−2 + · · · + 20 ℓm−r
)
+ Ωr

]
(53)

· · ·

2πi
ℓ

22 =
2πi
22

[(
2m−1ℓm−1 + 2m−2ℓm−2 + · · · 22ℓ2

)
+ 21 ℓ1 + 20 ℓ0

]
= 2πi

[(
2m−3ℓm−1 + 2m−4ℓm−2 + · · · 20ℓ2

)
+ Ωm−2

]
(54)

2πi
ℓ

21 =
2πi
21

[(
2m−1ℓm−1 + 2m−2ℓm−2 + · · · + 21 ℓ1

)
+ 20 ℓ0

]
= 2πi

[(
2m−2ℓm−1 + 2m−3ℓm−2 + · · · + 20 ℓ1

)
+ Ωm−1

]
, (55)

where the partial phases are now defined by

Ω0 ≡
ℓm−1

21 +
ℓm−2

22 + · · · +
ℓ1

2m−1 +
ℓ0

2m = 0.ℓm−1 · · · ℓ1ℓ0 (56)

Ω1 ≡
ℓm−2

21 +
ℓm−3

22 + · · · +
ℓ1

2m−2 +
ℓ0

2m−1 = 0.ℓm−2 · · · ℓ1ℓ0 (57)

· · ·

Ωr ≡
ℓm−r−1

21 +
ℓm−r−2

22 + · · · +
ℓ1

2m−r−1 +
ℓ0

2m−r = 0.ℓm−r−1 · · · ℓ1ℓ0 (58)

· · ·
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Ωm−2 ≡
ℓ1

21 +
ℓ0

22 = 0.ℓ1ℓ0 (59)

Ωm−1 ≡
ℓ0

21 = 0.ℓ0 . (60)

The general phase takes the form

Ωr =

m−r∑
k=1

ℓm−r−k

2k for r ∈ {0, 1, · · · ,m − 1} , (61)

and the quantum Fourier transform (47) can now be expressed in one of three equivalent ways:

QFT |ℓ⟩ =
1

2m/2

(
|0⟩ + e2πi ℓ/2m

|1⟩
)
0
⊗

(
|0⟩ + e2πi ℓ/2m−1

|1⟩
)
1
⊗ · · · ⊗ (62)(

|0⟩ + e2πi ℓ/22
|1⟩

)
m−2
⊗

(
|0⟩ + e2πi ℓ/21

|1⟩
)
m−1

=
1

2m/2

(
|0⟩ + e2πi 0.ℓ0 |1⟩

)
0
⊗

(
|0⟩ + e2πi 0.ℓ1ℓ0 |1⟩

)
1
⊗ · · · ⊗ (63)(

|0⟩ + e2πi 0.ℓm−2···ℓ1ℓ0 |1⟩
)
m−2
⊗

(
|0⟩ + e2πi 0.ℓm−1···ℓ1ℓ0 |1⟩

)
m−1

=
1

2m/2

(
|0⟩ + e2πiΩ0 |1⟩

)
0
⊗

(
|0⟩ + e2πiΩ1 |1⟩

)
1
⊗ · · · ⊗(

|0⟩ + e2πiΩm−2 |1⟩
)
m−2
⊗

(
|0⟩ + e2πiΩm−1 |1⟩

)
m−1

. (64)

As before, we invert the qubits with SWAP gates to form the state

|ψrev⟩ =
1

2m/2

(
|0⟩ + e2πiΩm−1 |1⟩

)
0
⊗

(
|0⟩ + e2πiΩm−2 |1⟩

)
1
⊗ · · · ⊗ (65)(

|0⟩ + e2πiΩ1 |1⟩
)
m−2
⊗

(
|0⟩ + e2πiΩ0 |1⟩

)
m−1

,

which can be expressed in terms of basic gates to give the following circuit. Starting with qubit-0 of (65), and using
e2πiΩm−1 = e2πi ℓ0/2 = (−1)ℓ0 , we find a state similar to the previous case,

1
√

2

(
|0⟩ + e2πiΩm−1 |1⟩

)
0
= H0|ℓ0⟩ where ℓ0 ∈ {0, 1} . (66)

The other qubits give corresponding results, so we move on to the bottom of the circuit, expressing qubit m − 1 by

1
√

2

(
|0⟩ + e2πiΩ0 |1⟩

)
m−1

=
1
√

2

(
|0⟩ + e2πi ℓm−1/2 · e2πi ℓm−2/22

· · · e2πi ℓ1/2m−1
· e2πi ℓ0/2m

|1⟩
)
m−1

= Hm−1 ·Cm−2Rm−1
2 · · ·C1Rm−1

m−1 ·C
0Rm−1

m |ℓm−1⟩ (67)

with ℓm−1 ∈ {0, 1}, where the phase operators are defined by

Rn =

[
1 0
0 e2πi/2n

]
= P

(
π/2n−1) . (68)

Figure 3 reproduces the commensurate QFT circuit in the OpenQASM/Qiskit convention. The inverse QFT † is given
by reading the circuit in reverse order from right to left, starting with the SWAP gates, and inverting the sign of the
phase gates. Note that the QFT circuits are reversed between the two conventions.

3. Quantum Phase Estimation

We now turn to quantum phase estimation (QPE), which is the workhorse of Shor’s algorithm. Our primary references
for this section are Refs. [8] and [9]. We shall work through the calculations in both Conventions 1 and 2 as outlined
in Section 2.2, corresponding to the OpenQASM and the standard physics conventions, respectively.
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Figure 3: Convention 1 for the QFT: OpenQASM/Qiskit.

3.1. Convention 2: Standard Physics/Mathematics

We first examine Convention 2, the traditional physics and mathematics convention. Consider a linear unitary operator
U with Eigenvalue e2πiθ and Eigenstate |u⟩, where θ is a real phase such that 0 ≤ θ < 1:

U |u⟩ = e2πiθ |u⟩ . (69)

Since U is unitary, its Eigenvalues have a norm of unity. We wish to build a QPE circuit that will output an
approximate (m-bit binary) value for the phase angle θ. The circuit will consist of a front-end and a back-end. There
are two registers in the QPE front-end circuit: (i) a control register consisting of m qubits and (ii) a work register
containing n qubits. We store the Eigenstate |u⟩ in the work register. To construct the front-end circuit, we first apply
Hadamard gates to every control qubit, forming the state

|ψ1⟩ = H|0⟩ ⊗ · · · ⊗ H|0⟩ ⊗ |u⟩ =
1
√

M

M−1∑
k−0

|k⟩ ⊗ |u⟩ , (70)

where M = 2m is the total number of computational basis states. Given the unitary operator U, we assume that
we are able to build a family of m controlled-U p gates for p ∈ {20, 21, · · · , 2m−1} that operate on the work register
containing the state |u⟩. Note that the action of a CU p operator for a single control qubit takes the form

CU pH|0⟩ ⊗ |u⟩ =
1
√

2
CU p

(
|0⟩ + |1⟩

)
⊗ |u⟩ =

1
√

2
|0⟩ ⊗ |u⟩ +

1
√

2
|1⟩ ⊗ U p|u⟩ (71)

=
1
√

2

(
|0⟩ ⊗ |u⟩ + |1⟩ ⊗ e2πip θ|u⟩

)
=

1
√

2

(
|0⟩ + e2πip θ |1⟩

)
⊗ |u⟩ . (72)

This is an example of phase kickback, in which the phase operation in the target register makes its way back into
the control register. We now string these gates together to form the front-end of the circuit composed of the gates
CnU2n

for n ∈ {0, 1, · · · ,m − 1}, as illustrated in Fig. 4, with the least significant power p = 20 attached to the least
significant m-th target qubit (as Convention 2 dictates). We see that the output state of the front-end becomes

|ψ2⟩ =
1

2m/2

(
|0⟩ + e2πi 2m−1θ |1⟩

)
1
⊗

(
|0⟩ + e2πi 2m−2θ |1⟩

)
2
⊗ · · · ⊗ (73)(

|0⟩ + e2πi 21θ |1⟩
)
m−1
⊗

(
|0⟩ + e2πi 20θ |1⟩

)
m
⊗ |u⟩

=
1

2m/2

∑
k1=0,1

e2πi θ 2m−1k1 |k1⟩ ⊗
∑

k2=0,1

e2πi θ 2m−2k2 |k2⟩ ⊗ · · · ⊗
∑

km=0,1

e2πi θ 20km |km⟩ ⊗ |u⟩

=
1

2m/2

∑
k1

∑
k2

· · ·
∑
km

e2πi θ
(
2m−1k1+2m−2k2+···+20km

)
|k1⟩ ⊗ |k2⟩ ⊗ · · · ⊗ |km⟩ ⊗ |u⟩
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Figure 4: QPE front-end: Convention 2 (physics and mathematics).

=
1
√

M

M−1∑
k=0

e2πik θ |k⟩ ⊗ |u⟩ , (74)

where M = 2m and k = 2m−1k1 + 2m−2k2 + · · · 21km−1 + 20km, with kr ∈ {0, 1}.
This result is valid for a general phase angle θ.
For simplicity, let us first suppose that the binary form of the phase angle terminates after exactly m bits, so that

θ = 0.θ1 θ2 · · · θm−1 θm where θr ∈ {0, 1} (75)

=
θ1

2
+
θ2

22 + · · · +
θm−1

2m−1 +
θm

2m . (76)

We will shortly extend the argument to general phase angles that do not not terminate. We see that (76) implies that
Mθ can be written as a binary integer,

ℓθ ≡ Mθ = 2mθ = 2m−1 θ1 + 2m−2 θ2 + · · · + 20 θm (77)

= θ1 θ2 · · · θm ∈ {0, 1, · · · ,M − 1} . (78)

Upon using the relation θ = ℓθ/M, we can now express the output state of the front-end as

|ψ2⟩ =
1
√

M

M−1∑
k=0

e2πi kℓθ/M |k⟩ ⊗ |u⟩ (79)

= QFT |ℓθ⟩ ⊗ |u⟩ , (80)

where we have used the definition of the QFT operator (3). Therefore, the back-end of the QPE circuit will consist of
an inverse QFT acting on the control register, as illustrated in Fig. 5. In Fig. 6 we expand the QFT † circuit explicitly.
In either case, the final output state is given by

|ψ3⟩ = QFT † |ψ2⟩ = |ℓθ⟩ ⊗ |u⟩ , (81)

where ℓθ ≡ 2mθ ∈ {0, 1, · · · ,M − 1}. Some authors denote the state |ℓθ⟩ by |2mθ⟩. Upon measuring the control register,
we will find ℓθ = θ1 · · · θm for θr ∈ {0, 1}, and the corresponding phase is then given exactly by θ = ℓθ/2m = 0.θ1 · · · θm,
in agreement with (75). We see that the QPE circuit in Fig. 5 does indeed extract the correct phase.
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Figure 5: QPE: Convention 2. The QPE circuit with the inverse quantum Fourier transform QFT † represented abstractly by a
box.

Figure 6: The QFT † circuit has been expanded to illustrate the full complexity of the QPE circuit.

3.2. Convention 1: OpenQASM/Qiskit

We now examine the OpenQASM/Qiskit convention. As before, we string the CU p operators together to form the
front-end of the circuit, with the smallest power p being attached to the 0-th qubit (the upper and least significant
qubit of the circuit). The corresponding front-end is illustrated in Fig. 7.
Similarly to (74), the output of the front-end can be expressed by

|ψ2⟩ =
1

2m/2

(
|0⟩ + e2πi 20θ |1⟩

)
0
⊗

(
|0⟩ + e2πi 21θ |1⟩

)
1
⊗ · · · ⊗ (82)(

|0⟩ + e2πi 2m−2θ |1⟩
)
m−2
⊗

(
|0⟩ + e2πi 2m−1θ |1⟩

)
m−1
⊗ |u⟩

=
1
√

M

M−1∑
k=0

e2πik θ |k⟩ ⊗ |u⟩ , (83)

where M = 2m and k = 2m−1km−1 + 2m−2km−2 + · · · 21k1 + 20k0, with kr ∈ {0, 1}. We first consider the simple case of
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Figure 7: QPE front-end: Convention 1 (OpenQASM/Qiskit).

an m-bit phase angle,

θ = 0.θm−1 θm−2 · · · θ1 θ0 where θr ∈ {0, 1}

=
θm−1

21 +
θm−2

22 + · · · +
θ1

2m−1 +
θ0

2m . (84)

As before, this expression implies that Mθ is a binary integer between 0 and M − 1:

ℓθ ≡ Mθ = 2mθ = 2m−1 θm−1 + 2m−2 θm−2 + · · · + 21 θ1 + 20 θ0 (85)

= θm−1 θm−2 · · · θ1 θ0 ∈ {0, 1, · · · ,M − 1} . (86)

Again, the relation θ = ℓθ/M and definition (3) of the QFT imply that the output of the front-end becomes

|ψ2⟩ =
1
√

M

M−1∑
k=0

e2πik θ|k⟩ ⊗ |u⟩ =
1
√

M

M−1∑
k=0

e2πi kℓθ/M |k⟩ ⊗ |u⟩

= QFT |ℓθ⟩ ⊗ |u⟩ . (87)

Upon taking the inverse Fourier transform, the final state of the QPE circuit is

|ψ3⟩ = QFT † |ψ2⟩ = |ℓθ⟩ ⊗ |u⟩ . (88)

The back-end of the QPE circuit therefore consists of an inverse QFT operator, as illustrated in Fig. 8. We also give
the full circuit for the inverse QFT in Fig. 9. We see that a measurement of the control register gives the integer
ℓθ = θm−1 · · · θ0, which in turn provides the correct measured phase θ = ℓθ/2m = 0.θm−1 · · · θ0, in agreement with
(84).

3.3. General Phase Angles

We now turn to the case in which the phase angle θ in (69) is a general real number between 0 and 1. The analysis
here applies for both Conventions. Recall that the output of the front-end in Fig. 4 or Fig. 7 is

|ψ2⟩ =
1
√

M

M−1∑
k=0

e2πik θ |k⟩ ⊗ |u⟩ , (89)
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Figure 8: QPE front- and back-end: Convention 1 (OpenQASM/Qiskit)

Figure 9: QPE: Convention 1. Expanded QFT †.

where this result holds for general phase angles θ. The output of the QPE circuit is then given by |ψ3⟩ = QFT † |ψ2⟩,
where the inverse of the QFT operator takes the form

QFT † =
1
√

M

M−1∑
ℓ=0

M−1∑
k=0

e−2πi kℓ/M |ℓ⟩⟨k| . (90)

We therefore obtain the final state

|ψ3⟩ = QFT †|ψ2⟩ =
1
M

M−1∑
ℓ=0

M−1∑
k=0

e−2πi kℓ/M e2πik θ |ℓ⟩ ⊗ |u⟩ (91)

=
1
M

M−1∑
ℓ=0

M−1∑
k=0

[
e2πi (θ−ℓ/M)]k

|ℓ⟩ ⊗ |u⟩ =
1
M

M−1∑
ℓ=0

1 − e2πi (θ−ℓ/M)M

1 − e2πi (θ−ℓ/M) |ℓ⟩ ⊗ |u⟩ , (92)
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where we have performed an exact finite geometric sum. Since this is such an important result, we summarize it
below:

|ψ3⟩ =

M−1∑
ℓ=0

Aℓ(θ) |ℓ⟩ ⊗ |u⟩ (93)

with amplitudes

Aℓ(θ) ≡
1
M

1 − e2πi (θ−ℓ/M)M

1 − e2πi (θ−ℓ/M) (94)

=
1
M

1 − e2πi (θ−θℓ)M

1 − e2πi (θ−θℓ)
=

1
M

1 − e2πi (ℓθ−ℓ)

1 − e2πi (ℓθ−ℓ)/M
. (95)

In (94) we have expressed the amplitude in terms of the fundamental quantities θ and ℓ, while (95) expresses the
amplitude in terms of the m-bit measured phase θℓ ≡ ℓ/M and the “mode number” ℓθ ≡ θM (which might or might
not be an integer). We now find that the probability of measuring the ℓ-th state is

Pℓ(θ) =
∣∣∣Aℓ(θ)∣∣∣2 =

1
M2

sin2
[
π

(
θ −

ℓ

M

)
M

]
sin2

[
π

(
θ −

ℓ

M

)] (96)

=
1

M2

sin2 [
π
(
θ − θℓ

)
M

]
sin2 [

π
(
θ − θℓ

)] = 1
M2

sin2 [
π
(
ℓθ − ℓ

)]
sin2 [

π
(
ℓθ − ℓ

)
/M

] . (97)

The probability Pℓ(θ) is maximum for the state ℓ ∈ {0, 1, · · · ,M − 1} for which δ = θ − ℓ/M = θ − θℓ is minimum.
For large values of M = 2m, the probability Pℓ(θ) is sharply peaked about θ, as illustrated in Fig. 10. We note that the
value of ℓθ ≡ Mθ need not be an m-bit integer (nor indeed, an integer at all). The point to be emphasized is that when
ℓθ is not an integer, then the QPE circuit becomes probabilistic in nature. This will turn out to be a key feature of
Shor’s factoring circuit.

Figure 10: The probability Pℓ(θ) = |Aℓ(θ)|2 as a function of the measured phase angle θℓ ≡ ℓ/M for M = 24 = 16, where
θ = 1/3. Note that Aℓ(θ) ≈ 1 for θℓ ≈ θ.

In fact, this analysis implicitly assumes that ℓθ = Mθ in amplitude (94) is not an integer, as the expression for Aℓ(θ)
then requires a more delicate treatment. To see this, let us write the amplitude in terms of the quantity ℓθ, so that

Aℓ,ℓθ ≡ Aℓ(ℓθ/M) =
1
M

1 − e2πi (ℓθ−ℓ)

1 − e2πi (ℓθ−ℓ)/M
. (98)
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We have already considered the case in which ℓθ is a non-negative integer in the previous section, and consistency
demands that amplitude (98), or equivalently (94), must collapses to the Kronecker-delta form

Aℓ(θ) = δℓ,ℓθ (99)

when ℓθ becomes an integer. We will now show how the expression for Aℓ(θ) in (98) reduces to this simpler form.
Note that the numerator in (98) vanishes for every integer ℓθ (and therefore for every value of ℓθ − ℓ, as ℓ is itself an
integer). Consequently, the only way one can obtain a non-zero probability is when the denominator also vanishes,
so that we have the indeterminate form 0/0. However, the denominator vanishes only for ℓθ − ℓ such that

(ℓθ − ℓ)/M = n for any n ∈ Z , (100)

or equivalently,

ℓ = ℓθ − nM . (101)

The index ℓ ∈ {0, 1, · · · ,M − 1} is consequently out of range for every value of n ∈ Z except n = 0; therefore,
Aℓ(θ) = 0 except when

ℓ = ℓθ ≡ Mθ . (102)

The value of the amplitude for ℓ = ℓθ must of course be unity (up to an arbitrary phase), and indeed it is. As
previously mentioned, when ℓ = ℓθ in (98), we obtain the indeterminate form 0/0. We therefore replace ℓθ − ℓ by a
small displacement ε and the take the limit ε→ 0, in which case the associated amplitude becomes

A = lim
ε→0

1
M

1 − e2πi ε

1 − e2πi ε/M = 1 , (103)

as expected. This establishes expression (99). In this case, the final state (93) becomes the Eigenstate

|ψ3⟩ = |ℓθ⟩ ⊗ |u⟩ , where ℓθ = Mθ ∈ {0, 1, · · · ,M − 1} , (104)

as we obtained in the previous section.

3.4. Generalized Input States

Suppose now that we choose the work state |u⟩ to be a linear sum over all Eigenstates of U. Then the output |ψ2⟩ in
equation (89) will become a corresponding sum over these Eigenstates. That is to say, for the Eigenstates

U |us⟩ = e2πi θs |us⟩ , (105)

let us populate the work register with the linear combination of states

|u⟩ =
∑

s
as |us⟩ . (106)

We now see that the output of the front-end (89) becomes

|ψ2⟩ =
1
√

M

M−1∑
k=0

∑
s
as e2πik θs |k⟩ ⊗ |us⟩ , (107)

and that the control and work registers are now entangled. The output of QPE circuit is given by |ψ3⟩ = QFT †|ψ2⟩,
and using the form of QFT † in (90), we find

|ψ3⟩ = QFT †|ψ2⟩ =

M−1∑
ℓ=0

∑
s
Aℓ(θs) |ℓ⟩ ⊗ |us⟩ , (108)
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where the amplitudes Aℓ(θs) are defined by

Aℓ(θs) ≡
as

M
1 − e2πi (θs−ℓ/M)M

1 − e2πi (θs−ℓ/M) (109)

=
as

M
1 − e2πi (θs−θℓ)M

1 − e2πi (θs−θℓ)
=

as

M
1 − e2πi (ℓs−ℓ)

1 − e2πi (ℓs−ℓ)/M
(110)

when ℓs ≡ Mθs is not an integer. In contrast, for integer values ℓs ∈ {0, 1, · · · ,M − 1}, then expression (109) reduces
to

Aℓ(θs) ≡ as δℓ,ℓs . (111)

For general values of θs, we therefore find that the probability of measuring a specific ℓ-s state is given by

Pℓ(θs) =
∣∣∣Aℓ(θs)

∣∣∣2 =
|as|

2

M2

sin2
[
π

(
θs −

ℓ

M

)
M

]
sin2

[
π

(
θs −

ℓ

M

)] (112)

=
|as|

2

M2

sin2 [
π
(
θs − θℓ

)
M

]
sin2 [

π
(
θs − θℓ

)] = |as|
2

M2

sin2 [
π
(
ℓs − ℓ

)]
sin2 [

π
(
ℓs − ℓ

)
/M

] . (113)

As before, for large values of M = 2m, the probability is sharply peaked about the control states for which
ℓ ≈ ℓs ≡ Mθs, while the amplitudes as determine the most likely values of θs.

When all of the angles θs become m-bit rational numbers, this analysis simplifies considerably. In this case, the
parameters

ℓs ≡ Mθs = 2mθs (114)

are all integers, and the output of the front-end (107) can be written

|ψ2⟩ =
1
√

M

M−1∑
k=0

∑
s
as e2πi kθs |k⟩ ⊗ |us⟩ (115)

=
∑

s
as

1
√

M

M−1∑
k=0

e2πi kℓs/M |k⟩ ⊗ |us⟩ (116)

=
∑

s
as QFT |ℓs⟩ ⊗ |us⟩ , (117)

and therefore

|ψ3⟩ = QFT † |ψ2⟩ =
∑

s
as |ℓs⟩ ⊗ |us⟩ . (118)

A measurement of the system now yields one of the states |ℓs⟩ ⊗ |us⟩ with probability Ps = |as|
2. All other states have

vanishing probability! This result can also be obtained directly from the general final state (108). In this case, when
all phase angles θs becomes m-bit fractions, then the amplitudes (109) reduce to Aℓ(θs) = as δℓ,ℓs , so that only the
terms for which ℓ = ℓs ≡ Mθs for some value of s will contribute, and the general expression (108) collapses to
(118).

4. Continued Fractions

In an effort to render this work self-contained, in this section we take a mathematical digression to briefly introduce
the theory of continued fractions, a topic with which many readers might not be entirely familiar. In Section 5.4, we
will employ continued fractions in the post-quantum processing stage of Shor’s algorithm to extract the exact phase
ϕs = s/r of the modular exponentiation operator Ua,N from the measured (and approximate) m-bit phase value ϕ̃. As
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we have emphasized, this will provide the requisite period r from which the factors of N can be inferred. Continued
fractions, however, are interesting in their own right, and they provide a number of fascinating connections between
the integers and the real numbers. In classical mathematics, for example, continued fractions were employed to find
rational approximations to many irrational numbers of interest (something quite useful before the advent of modern
computers and calculators). We introduce the subject by considering the following infinite continued fraction

x = 1 +
1

1 +
1

1 +
1

1 +
1

1 +
. . .

, (119)

where the fraction x telescopes downward without end. Note that the denominator of the fractional piece after the
initial 1 takes the same form as the continued fraction itself, so that we can express (119) by the equation

x = 1 +
1
x
. (120)

At the risk of introducing a spurious (negative) solution, we multiply (120) by x to obtain the quadratic equation
x2 = x + 1. The positive solution to this equation is x = (1 +

√
5)/2, which we recognize as the golden mean!

Continued fractions are interesting indeed. In fact, any real number can be expressed as a continued fraction
consisting of a sequence of well-chosen integers using a simple and easily executed algorithm.

We shall concentrate on continued fractions that terminate after a finite number of iterations, thereby producing a
rational number. We define a finite continued fraction as a number of the form

x = a0 +
1

a1 +
1

a2 +
1

a3 +
. . . + 1

an

, (121)

where a0 is an integer (positive or negative) and a1, a2, · · · , an are all positive integers. We will denote a continued
fraction by enumerating its integer coefficients in square brackets, so that x = [a0; a1, a2, · · · , an]. It is traditional to
offset the first integer a0 with a semicolon. For our purposes, the most important attributes of continued fractions are
their so-called convergents, whose definition is formalized below.

Definition 1. Suppose x = [a0; a1, a2, · · · , an] is a continued fraction. Any continued fraction of the form
[a0; a1, a2, · · · , am] for m ≤ n is called a convergent of the original continued fraction for x.

For example,

[a0; a1, a2, a3] = a0 +
1

a1 +
1

a2 +
1
a3

(122)

is a convergent of the continued fraction x = [a0; a1, a2, a3, · · · , an]. In fact, we can regard the convergents of a
continued fraction of x as systematically improving rational approximations to x. As we have emphasized, any
finite continued fraction gives a rational number. It turns out that the converse is also true, namely, that any rational
number can be represented as a finite continued fraction with integer coefficients. There exists a simple and efficient
(polynomial time) algorithm for determining the associated continued fraction of a rational number. The algorithm is
best explained through an example, so let us consider the following rational approximation to π:

3.1415 =
31415
10000

=
6283
2000

= 3 +
283
2000

= 3 +
1

2000
283

(123)
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= 3 +
1

7 +
19
283

= 3 +
1

7 +
1

283
19

= 3 +
1

7 +
1

14 +
17
19

(124)

= 3 +
1

7 +
1

14 +
1
19
17

= 3 +
1

7 +
1

14 +
1

1 +
2
17

(125)

= 3 +
1

7 +
1

14 +
1

1 +
1

17
2

= 3 +
1

7 +
1

14 +
1

1 +
1

8 +
1
2

, (126)

and therefore 3.1415 = [3; 7, 14, 1, 8, 2]. This algorithm consists of successive inversions of rational numbers,
followed by splitting the inverted form into an integer plus a rational piece, and continuing this process again. For
example, in line (123) the rational contribution 283/2000 is inverted to form the equivalent number 1/(2000/283),
and in the first line of (124), the denominator 2000/283 > 1 is then split into its equivalent form 7 + 19/283. We
then invert the rational piece to give 1/(283/19), and we split 283/19 > 1 into an equivalent form 14 + 17/19. We
continue in this fashion until the procedure terminates.

In a certain sense, continued fractions are a more natural representation of real numbers than their decimal
counterparts. This is because the continued fraction representation of rational numbers always terminates after a
finite number of iterations, i.e. x ∈ Q iff x = [a0; a1, · · · , an] for some finite sequence of integer coefficients aℓ. In
contrast, decimal representations of rational numbers need not be finite, e.g. the rational number 2/3 = 0.666 · · ·
has an infinite number of digits, whereas the continued fraction expansion 2/3 = [0; 1, 2] has only two non-zero
coefficients.

Note that we have required the coefficients of continued fractions to be integers. This is because the infinite
continued fraction expansion of an irrational number is then unique. Furthermore, the continued fraction expansion of
a rational number is almost unique. It turns out that there are only two possible continued fraction expansions for any
given rational number, provided the coefficients aℓ are integers (we call this semi-uniqueness). To see this, suppose
that x = [a0; a1, · · · , an] with an > 1 is a continued fraction expansion with integer coefficients. We can rewrite the
last coefficient as an = (an − 1) + 1/1, and consequently we can also express the rational number by the continued
fraction x = [a0; a1, · · · , an − 1, 1]. This means that, without loss of generality, we may take a continued fraction
representation of a rational number to have either an even or an odd number of terms, providing the coefficients are
integers (and we shall use this fact in proving Theorem 3 below). We will, however, sometimes find it convenient to
generalize the notion of a continued fraction to allow for rational (or even real) coefficients aℓ. But we pay a price for
doing so, as we can no longer be assured of the semi-uniqueness of the associated continued fraction.

We now prove three essential theorems concerning continued fractions. The first two establish that the convergents
of a continued fraction take the form pn/qn, where pn and qn are special sequences of relatively prime integers. The
third theorem can be used to relate the period r to the sequence of denominators qn, and as we shall see in the next
section, it will be essential in extracting the period from the measured phase. Our primary references for this section
are Refs. [8] and [9].
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Theorem 1. Let [a0; a1, · · · , am] be a continued fraction, where the coefficients aℓ can be either rational numbers
or integers. The convergents xn ≡ [a0; a1, · · · , an] for n ≤ m are equal to the ratio xn = pn/qn, where pn and qn are
defined through the sequence

pn = an pn−1 + pn−2

qn = anqn−1 + qn−2 (127)

for 2 ≤ n ≤ m, with the seed values

p0 = a0 q0 = 1 (128)

p1 = a1a0 + 1 q1 = a1 . (129)

Furthermore, if the coefficients aℓ are positive integers, then pn and qn are also positive integers (and they strictly
increase in magnitude).

Proof. The proof will be through induction on n. For n = 0, the convergent is just x0 ≡ [a0], which corresponds to
x0 = p0/q0 for p0 = a0 and q0 = 1, thereby validating (128). For n = 1, we have the convergent

x1 ≡ [a0; a1] = a0 +
1
a1
=

a1a0 + 1
a1

, (130)

so that x1 = p1/q1 with p1 = a1a0 + 1 and q1 = a1, thereby validating (129). This takes care of the initial seeding.
To provide a bit of intuition, let us explicitly verify the n = 2 case for x2 ≡ [a0; a1, a2]. From (127) we have

p2 = a2 p1 + p0 = a2a1a0 + a2 + a0 (131)

q2 = a2q1 + q0 = a2a1 + 1 , (132)

and we can therefore express the convergent x2 in the form:

x2 ≡ [a0; a1, a2] = a0 +
1

a1 +
1
a2

(133)

= a0 +
a2

a2a1 + 1
=

a2a1a0 + a0 + a2

a2a1 + 1
=

p2

q2
, (134)

thereby validating the theorem for n = 2. We now assume (127) holds for some n ≥ 3 with xn = [a0; a1, a2, · · · , an],
and we wish to prove that it continues to hold for n + 1. Note that any convergent xn+1 = [a0; a1, · · · , an−1, an, an+1]
(which has n + 1 coefficients) may be expressed in the alternative form

xn+1 = [a0; a1, · · · , an−1, an + 1/an+1]︸                                 ︷︷                                 ︸
n coefficients

, (135)

which contains only n coefficients, albeit rational coefficients. We can therefore apply the induction hypothesis to
(135). To this end, let p̃ℓ/q̃ℓ be the sequence of convergents associated with the second form of the continued fraction
for xn+1. The induction hypothesis now gives

xn+1 = [a0; a1, · · · , an−1 , an + 1/an+1︸        ︷︷        ︸
ãn

] =
p̃n

q̃n
, (136)

where
p̃n

q̃n
=

ãn p̃n−1 + p̃n−2

ãn q̃n−1 + q̃n−2
. (137)

It is clear that p̃n−2 = pn−2, p̃n−1 = pn−1 and q̃n−2 = qn−2, q̃n−1 = qn−1, and we therefore find

xn+1 =

(
an +

1
an+1

)
pn−1 + pn−2(

an +
1

an+1

)
qn−1 + qn−2

=
(anan+1 + 1)pn−1 + pn−2an+1

(anan+1 + 1)pn−1 + pn−2an+1
(138)
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=
an+1(an pn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1
⇐ use (127) (139)

=
an+1 pn + pn−1

an+1qn + qn−1
≡

pn+1

qn+1
. (140)

Thus, the theorem is true for n + 1. It is obvious that if the coefficients aℓ are positive integers, then pn and qn are as
well. This completes the proof. □

Theorem 2. If the coefficients of the continued fraction [a0; a1, a2, · · · , am] are integers, then the integers pn and qn

of Theorem 1 are relatively prime, and satisfy the relation

qn pn−1 − pnqn−1 = (−1)n (141)

for n ≥ 1.

Proof. We prove (141) by induction on n. From (128) and (129) we find

n = 1 : q1 p0 − p1q0 = a1a0 − (a1a0 + 1) · 1 = −1 = (−1)1 , (142)

so that (141) holds for n = 1. Similarly, expressions (131) and (132) imply that

n = 2 : q2 p1 − p2q1 = (a2a1 + 1)(a1a0 + 1) − (a2a1a0 + a2 + a0)a1 = 1 = (−1)2 , (143)

so that (141) also holds for n = 2. Let us now assume that (141) holds for some n ≥ 3, and let us prove that it
continues to hold for n + 1. Taking n→ n + 1 in (127), the induction hypothesis gives

n + 1 : qn+1 pn − pn+1qn = (an+1qn + qn−1)pn − (an+1 pn + pn−1)qn

= −
(
qn pn−1 − pnqn−1

)
= −(−1)n = (−1)n+1 . (144)

Therefore, (127) holds for n + 1, and this completes the proof of the first part of the theorem.
We must now show that pn and qn have no common factors other than unity. Let us therefore assume that kn ≥ 1 is

a common factor of pn and qn, so that

pn = kn p̃n and qn = knq̃n with
pn

qn
=

p̃n

q̃n
. (145)

Let us also assume that kn−1 ≥ 1 is a common factor of pn−1 and qn−1, so that

pn−1 = kn−1 p̃n−1 and qn−1 = kn−1q̃n−1 with
pn−1

qn−1
=

p̃n−1

q̃n−1
. (146)

Then (141) now takes the form

knkn−1
(
q̃n p̃n−1 − p̃nq̃n−1

)
= (−1)n . (147)

It is obvious that p̃n/q̃n has the same continued fraction representation as pn/qn for all n ≥ 1, so that q̃n p̃n−1− p̃nq̃n−1 =

(−1)n, from which it follows that

knkn−1 = 1 . (148)

For n = 1, we have k1k0 = 1. Since 1 = q0 = k0 q̃0, and since k0 and q0 are both integers, we must have k0 = 1 (and
q̃0 = 1). Therefore, k1 = 1. For n = 2, expression (148) becomes k2k1 = 1, and therefore k2 = 1. Continuing in this
fashion, we find kn = 1 for all n ≥ 1, and hence pn and qn are relatively prime. □

We move on to our primary result, the theorem that will allow us to extract the desired period from an approximately
measured phase angle.
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Theorem 3. Let x be a rational number. If two relatively prime integers p and q satisfy∣∣∣∣∣ p
q
− x

∣∣∣∣∣ ≤ 1
2q2 , (149)

then p/q is necessarily a convergent of x.

Proof. Let p/q = [a0; a1, · · · , an] be the continued fraction representation for p/q, and define the convergents pℓ/qℓ
for ℓ = 0, 1, · · · , n as in Theorem 1, so that pn/qn = p/q. The object of the proof is to construct the continued fraction
representation for x, and this will explicitly show that p/q is one of its convergents.

Let us first define the error δ for p/q = pn/qn by

x −
pn

qn
≡

δ

2q2
n
. (150)

Note that inequality (149) gives 0 ≤ δ ≤ 1. We now define the parameter

λ ≡ 2
qn pn−1 − pnqn−1

δ
−

qn−1

qn
, (151)

and with some algebra we can show that equations (150) and (151) imply

x =
λpn + pn−1

λqn + qn−1
. (152)

To see this, note that (151) allows us to write

2
δ

(
qn pn−1 − pnqn−1

)
= λ +

qn−1

qn
=
λqn + qn−1

qn
⇒ (153)

δ

2
=

qn

λqn + qn−1

(
qn pn−1 − pnqn−1

)
. (154)

Using this result in equation (150) gives

x =
pn

qn
+
δ

2
1
q2

n
=

pn

qn
+

qn pn−1 − pnqn−1

qn
(
λqn + qn−1

) (155)

=
pn

(
λqn + qn−1

)
+

(
qn pn−1 − pnqn−1

)
qn

(
λqn + qn−1)

(156)

=

(
λpn + pnqn−1/qn

)
+

(
pn−1 − pnqn−1/qn

)
λqn + qn−1

=
λpn + pn−1

λqn + qn−1
. (157)

Now that we have established (152), Theorem 1 implies x is a continued fraction with coefficients a0, a1, · · · , an, an+1,
where an+1 = λ, i.e.

x = [a0; a1, · · · , an, an+1] = [a0; a1, · · · , an, λ] . (158)

Without loss of generality, we can assume that n is even, so that Theorem 2 gives

λ =
2
δ
−

qn−1

qn
> 2 −

qn−1

qn
> 2 − 1 > 1 . (159)

Thus, λ is a rational number greater one, and it therefore has a continued fraction expansion of the form λ =

[b0; b1, · · · , bm] (since λ > 0 we must have b0 > 0, and we henceforth drop the semicolon after the initial coefficient
b0). Therefore, we find

x = [a0; a1, · · · , an, b0, · · · , bm] , (160)

which shows that x is a finite continued fraction with p/q = pn/qn as one of its convergents. □

Quanta | DOI: 10.12743/quanta.v12i1.235 September 2023 | Volume 12 | Issue 1 | Page 63

http://dx.doi.org/10.12743/quanta.v12i1.235


5. Factoring with Shor’s Algorithm

5.1. Basic Observation

We now address an essential observation on our way to building Shor’s algorithm. Let N be the positive integer we
wish to factor. We assume that N is not even, and not a power of a prime number (otherwise we can find a factor
quickly). We say that two integers a, b ∈ Z are congruent modulo N provided the difference a − b is divisible by N,
and we express this by writing

a = b (mod N) . (161)

That is to say, a and b are congruent modulo N provided there exists another integer m ∈ Z such that

a − b = mN . (162)

Shor’s factoring algorithm relies on the following observation. Suppose we can find a non-trivial or proper square
root of unity modulo N. In other words, suppose that we have found an integer b such that

b2 = 1 (mod N) . (163)

Then b is a modular square root of unity. By a proper square root, we mean that

b , ±1 (mod N) . (164)

Equation (163) implies that there exists an integer m ∈ Z such that

b2 − 1 = mN . (165)

The latter equation is the key to the factoring algorithm, as it can be expressed as

(b + 1)(b − 1) = mN , (166)

and therefore, we see that the greatest common divisors d± ≡ gcd(b ± 1,N) are factors of N. We note that finding the
greatest common divisor of two integers can be performed very quickly (in polynomial time) on a classical computer.
It can be shown that (163) and (164) indeed lead to non-trivial or proper factors, in that d± , 1,N. This is formalized
in the following theorem.

Theorem 4. Let b ∈ Z be a proper square root of unity modulo N. That is to say, let b2 = 1 (mod N) and
b , ±1 (mod N). Then gcd(b + 1,N) and gcd(b − 1,N) are proper factors of N.

Proof. First consider d = gcd(b − 1,N), which is indeed a factor of N. We will show that d , 1 and d , N. The
proof will be by contradiction.

- First assume d = gcd(b − 1,N) = N. Then N divides b − 1, so that b − 1 = mN for some m ∈ Z, or equivalently,
b = 1 (mod N). This contradicts the fact that b is a proper root of unity.

- Now assume d = gcd(b− 1,N) = 1. Since b− 1 and N are relatively prime, there exists integers u, v ∈ Z such that

(b − 1)u + Nv = 1 . (167)

Multiplying both sides by b + 1 gives the expression

b + 1 = (b2 − 1)u + (b + 1)Nv . (168)

Let us divide both sides of this equation by N, and employ equation (165) for the first term (b2 −1)u on the right-hand
side of (168):

b + 1
N
=

b2 − 1
N︸   ︷︷   ︸

integer ≡ m

· u + (b + 1) · v = m · u + (b + 1) · v ∈ Z , (169)

where u, v,m, b are all integers. Thus, N divides b + 1, so that b = −1 (mod N). Again, this contradicts the fact that b
is a proper root of unity. Similar reasoning holds for d = gcd(b + 1,N). □
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5.2. Period Finding and Factorization

Consider two integers a and N such that a < N. The integer N is the number we wish to factor, while a is an initial
“guess” for one of the factors. We will usually refer to a as the base. In fact, we can randomly choose the base
from {2, 3, · · · ,N − 1}, provided that a and N are relatively prime, so that gcd(a,N) = 1 (otherwise we have found a
non-trivial factor of N). Let us now define the order of a modulo N as the least positive integer r such that

ar = 1 (mod N) . (170)

Therefore, if r is even, then b = ar/2 is an integer, and it is a square root of unity. If it is also non-trivial, we can
perform the factoring algorithm outlined above based on this value of b. If the order r is odd and a is not a perfect
square, then we must try a new base a. On the other hand, if r is odd and a is a perfect square, then b = ar/2 is still an
integer square root of unity, and it can be used in the algorithm [11]. For these cases of r and a, we see that b = ar/2

is a square root of unity, and provided that it is non-trivial, then the factors of N are given by gcd(ar/2 ± 1,N).
There is an equivalent way of looking at this that employs the periodic modular exponential function defined by

fa N(x) = ax (mod N) , (171)

where a, x, and N are non-negative integers. We will usually drop the subscripts and simply write f (x). The modular
order r is nothing more than the period of f (x). To see this, note that f (0) = 1, and since r is the smallest integer
such that f (r) = ar (mod N) = 1, we see that f (r) = 1. In fact, for any argument x, we have f (x + r) = f (x), and
thus the order r is the period of f (x). As an example, let us take N = 15. The base a and the number N cannot
have any non-trivial common factors, and the base must satisfy 1 < a < N, which limits the allowed values to

Figure 11: The function f (x) = ax (mod N) for N = 15 and the bases a ∈ {4, 8, 11, 2}.
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a ∈ {2, 4, 7, 8, 11, 13, 14}. Figures 11 and 12 illustrate the functions f (x) for N = 15 for these values of a (note that
a = 14 gives a trivial square root with no factors, so we do not bother to provide a plot). We summarize below the
factorization algorithm from the last section based on the periods r for the cases specified in the Figures. For the
bases a in Fig. 11 we find:

• a = 4⇒ r = 2:
ar/2 − 1 = 41 − 1 = 3 ⇒ gcd(3, 15) = 3
ar/2 + 1 = 41 + 1 = 5 ⇒ gcd(5, 15) = 5

• a = 2⇒ r = 4:
ar/2 − 1 = 22 − 1 = 4 − 1 = 3 ⇒ gcd(3, 15) = 3
ar/2 + 1 = 22 + 1 = 4 + 1 = 5 ⇒ gcd(5, 15) = 5

• a = 11⇒ r = 2:
ar/2 − 1 = 111 − 1 = 10 ⇒ gcd(10, 15) = 5
ar/2 + 1 = 111 + 1 = 12 ⇒ gcd(12, 15) = 3

• a = 8⇒ r = 4:
ar/2 − 1 = 82 − 1 = 64 − 1 = 63 ⇒ gcd(63, 15) = 3
ar/2 + 1 = 82 + 1 = 64 + 1 = 65 ⇒ gcd(65, 15) = 5

• a = 14⇒ r = 2:
ar/2 − 1 = 141 − 1 = 13
ar/2 + 1 = 141 + 1 = 15⇐ trivial

Figure 12: The function f (x) = ax (mod N) for N = 15 and the bases a ∈ {7, 13}.

And for the bases a in Fig. 12 we find:
• a = 7⇒ r = 4:
- ar/2 − 1 = 72 − 1 = 49 − 1 = 48 ⇒ gcd(48, 15) = 3
- ar/2 + 1 = 72 + 1 = 49 + 1 = 50 ⇒ gcd(50, 15) = 5
• a = 13⇒ r = 4:
- ar/2 − 1 = 132 − 1 = 169 − 1 = 168 ⇒ gcd(168, 15) = 3
- ar/2 + 1 = 132 + 1 = 169 + 1 = 170 ⇒ gcd(170, 15) = 5

5.3. The Factorization Circuit

Our primary references for this section are Refs. [8,9,12]. We will show that one can find the period r of the modular
exponential function fa N(x) = ax (mod N) by exploiting the quantum phase estimation (QPE) algorithm developed
in Section 3. The crucial step in this procedure is to define a unitary operator Ua N whose Eigen-phases contain
information about the period r. We then employ the QPE algorithm to find the phases of Ua N , thereby permitting us
to determine the exact value of r. Recall that the QPE algorithm consists of two quantum registers, a control register
and a work register. The control register contains m qubits that dictate the resolution of the measured output phase of
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Ua N , while the work register encodes information about the number N, and we therefore take the number of work
qubits to be n = ⌈log2 N⌉ (the binary length of N). We shall define a linear unitary operator Ua N by its action on the
computational basis states of the work register,

Ua N |w⟩ = |a · w (mod N)⟩ . (172)

We will usually drop the N and a subscripts and write U = Ua N for simplicity. We shall refer to U as either the phase
operator or the modular exponentiation (ME) operator. To continue, let us now solve the Eigenvalue problem for the
ME operator U. This is accomplished by the simple observation that

U |ax (mod N)⟩ = |ax+1 (mod N)⟩ (173)

for any non-negative integer x. Let us now define the r states

|us⟩ =
1
√

r

r−1∑
k=0

e−2πik s/r |ak (mod N)⟩ for s ∈ {0, 1, · · · , r − 1} , (174)

from which equation (173) gives

U |us⟩ = e2πi ϕs |us⟩ with ϕs =
s
r
. (175)

The possible phases of the ME operator U are therefore ϕs = s/r for s ∈ {0, 1, · · · , r − 1}, where r is the period of the
function f (x) = ax (mod N). To prove this result, it is instructive to expand the states in (174) term-by-term,

|us⟩ =
1
√

r

[
|a0 (mod N)⟩ + e−2πi s/r |a1 (mod N)⟩ + e−2πi 2s/r |a2 (mod N)⟩ + · · · +

e−2πi (r−2)s/r |ar−2 (mod N)⟩ + e−2πi (r−1)s/r |ar−1 (mod N)⟩
]
. (176)

The series terminates after r terms because ar (mod N) = 1, which leads us back to the first term |1⟩ = |a0 (mod N)⟩.
From relation (173), we can now easily prove expression (175):

U |us⟩ =
1
√

r

[
|a1 (mod N)⟩ + e−2πi s/r | a2 (mod N)⟩ + e−2πi 2s/r | a3 (mod N)⟩ + · · · +

e−2πi (r−2)s/r | ar−1 (mod N)⟩ + e−2πi (r−1)s/r | ar (mod N)⟩
]

(177)

= e2πi s/r 1
√

r

[
e−2πi s/r |a1 (mod N)⟩ + e−2πi 2s/r |a2 (mod N)⟩ + e−2πi 3s/r |a3 (mod N)⟩

+ · · · + e−2πi (r−1)s/r | ar−1 (mod N)⟩ + e−2πi s︸   ︷︷   ︸
1

| a0 (mod N)⟩
]

(178)

= e2πi s/r |us⟩ . (179)

Also note that the phases e2πik s/r sum to zero over s for any value of the non-zero integers r and k. This is easy to
prove, as the sum is geometric and can be performed exactly:

r−1∑
s=0

e2πi ks/r =

r−1∑
s=0

[
e2πi k/r]s

=
1 −

[
e2πi k/r]r

1 − e2πi k/r =
1 − e2πi k

1 − e2πi k/r = 0 (180)

for any integer k , 0. The sum over s in (176) therefore gives

1
√

r

r−1∑
s=0

|us⟩ = |1⟩ , (181)
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Figure 13: First attempt at Shor’s factoring circuit for the physics and mathematics Convention 2. The control register has m
qubits, and the work register has n = ⌈log2N⌉ qubits. We populate the work register with one of the Eigenstates |us⟩, where
U |us⟩ = e2πiϕs |us⟩ with phase ϕs = s/r for some s ∈ {0, 1, · · · , r − 1}. Measuring the control register projects the wavefunction
into an Eigenstate |ℓ̃ ⟩ ⊗ |us⟩, where the state is indexed by the m-bit integer ℓ̃ = ϕ̃1 · · · ϕ̃m, from which we obtain the measured
phase ϕ̃ℓ = ℓ̃/2m = 0.ϕ̃1 . . . ϕ̃m to m bits of accuracy. We expect ϕ̃ℓ ≈ ϕs, thereby allowing us to determine r. The only problem
with this reasoning is that we do not know the state |us⟩ in advance since we do not a priori know the period r.

which will prove to be a key ingredient for Shor’s algorithm. Note that only the first term |a0 (mod N)⟩ = |1⟩
contributes to the sum, as all other terms have phases that add to zero. In fact, if we multiply (174) or (176) by
e2πi ks/r, we remove the phase of the term |ak (mod N)⟩, and upon summing over s we find the generalized result

1
√

r

r−1∑
s=0

e2πik ϕs |us⟩ = |ak (mod N)⟩ = | f (k)⟩ where ϕs = s/r . (182)

The central observation here is that every phase ϕs = s/r, except ϕ0 = 0, contains the period r. This is the basis of
Shor’s algorithm: by measuring a phase ϕs = s/r of the ME operator U for which s and r are relatively prime, we
can infer the period r of the function f (x). And from the corresponding factoring procedure outlined above, we can
then find non-trivial factors of N.

We can now address the quantum circuit for Shor’s algorithm, the first attempt of which is illustrated in Fig. 13.
We employ a QPE algorithm with the phase operator U as defined in (172). We emphasize that the QPE circuit
consists of a control register of m qubits and a work register of n qubits. As stated above, the work register stores
information about the number N. Suppose that the work register is populated by a specific Eigenstate |us⟩ with
phase ϕs = s/r, so that n = ⌈log2N⌉. Note that there are only r phase states |us⟩ out of a possible 2n work states, so
that the states |us⟩ are very sparse indeed. Upon measuring the final state of the control register, the wavefunction
collapses into an Eigenstate |ℓ̃ ⟩ ⊗ |us⟩ for ℓ̃ ∈ {0, 1, · · · ,M − 1}. The control register index takes the measured value
ℓ̃ = ϕ̃1 · · · ϕ̃m, where each ϕ̃k ∈ {0, 1} is the measured outcome of qubit k ∈ {1, 2, · · · ,m} of the control register. From
this we can readily infer the measured phase to be ϕ̃ℓ = ℓ̃/2m = 0.ϕ̃1 . . . ϕ̃m. From here on, we will place a tilde over
measured quantities. If the m-bit resolution is sufficiently large, then we expect ϕ̃ℓ ≈ ϕs, from which we can extract
the value of r (provided s and r are relatively prime). In fact, as we will establish in the next section, we should
choose m = 2n + 1 to ensure sufficient phase resolution.

By populating the work register with |us⟩, Fig. 13 uses the QPE algorithm to find the phase ϕs = s/r. The problem
with this method, however, is that we do not know the state |us⟩ in advance, as it depends upon the unknown period r.
In fact, if we knew the Eigenstates |us⟩, then we should also know the value of the period r, and we would have no
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Figure 14: Shor’s factoring circuit. Convention 2. We populate the work register with the state |1⟩, which is just a uniform
linear combination of the Eigenstates |us⟩. This requires no prior knowledge of these Eigenstates. Through phase kickback, the
control register becomes a linear combination of terms involving the states |us⟩ and their phases ϕs. Measuring the control
register thereby projects the system into a state |ℓ̃ ⟩ ⊗ |ũs⟩ for some ℓ̃ ∈ {0, 1, · · · ,M − 1} and s ∈ {0, 1, · · · , r − 1}. The control
state is indexed by the m-bit integer ℓ̃ = ϕ̃1 · · · ϕ̃m, where each ϕ̃k ∈ {0, 1} is the measured outcome of qubit k ∈ {1, 2, · · · ,m} of
the control register. We then evaluate the m-bit measured phase ϕ̃ℓ = ℓ̃/2m = 0.ϕ̃1 · · · ϕ̃m, from which we can extract the exact
phase ϕs = s/r using the method of continued fractions (provided s and r are relatively prime).

need for Shor’s algorithm. We can circumvent this difficulty by employing (181), which we repeat here for emphasis:

|1⟩ =
1
√

r

r−1∑
s=0

|us⟩ . (183)

This suggests that we populate the work register with the easily prepared state |1⟩ = |0 · · · 01⟩, which is just a
uniform linear combination of the phase Eigenstates |us⟩. This is achieved by initializing the lowest order qubit
in the work register to the 1-state, and all other work qubits to 0-states. This new circuit is illustrated in Fig. 14.
Populating the work register with a linear superposition of the states |us⟩ has the effect of rendering the state of the
control register (through phase kickback) as a linear combination of the Eigenstates |us⟩ and their corresponding
phases ϕs. More specifically, the state of the quantum system right after the front-end of the circuit (position 2 in the
Figure) will be given by

|ψ2⟩ =
1
√

rM

M−1∑
k=0

r−1∑
s=0

e2πik ϕs |k⟩ ⊗ |us⟩ . (184)

Finally, the QFT † operation (position 3 in the Figure) transforms this state into

|ψ3⟩ =

M−1∑
ℓ=0

r−1∑
s=0

Aℓ(ϕs) |ℓ⟩ ⊗ |us⟩ with ϕs = s/r , (185)

where the amplitudes are defined by

Aℓ(ϕs) ≡
1
√

rM
1 − e2πi (ϕs−ℓ/M)M

1 − e2πi (ϕs−ℓ/M) (186)
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=
1
√

rM
1 − e2πi (ϕs−ϕℓ)M

1 − e2πi (ϕs−ϕℓ)
=

1
√

rM
1 − e2πi (ℓs−ℓ)

1 − e2πi (ℓs−ℓ)/M
, (187)

where ϕℓ ≡ ℓ/M and ℓs ≡ Mϕs. The control register has therefore obtained knowledge of the phases ϕs = s/r and
their corresponding Eigenstates |us⟩.

Finally, we must measure the control register (position 4 in the Figure with the bold red line), which collapses the
quantum state |ψ3⟩ of (185) into a definite Eigenstate state

|ℓ̃ ⟩ ⊗ |us̃⟩ . (188)

In other words, the control register collapses to a state |ℓ̃ ⟩ labeled by the m-bit integer index ℓ̃ = ϕ̃1 ϕ̃2 · · · ϕ̃m ∈

{0, 1, · · · ,M − 1}, where the measured phase is then given by ϕ̃ℓ ≡ ℓ̃/M = 0.ϕ̃1 ϕ̃2 · · · ϕ̃m. Likewise, the work register
is projected into a state |us̃⟩ determined by a random choice of the phase integer s̃ ∈ {0, 1, · · · , r − 1}. The ME phase
angle will be written ϕ̃s = s̃/r, and we define the corresponding mode ℓ̃s = Mϕ̃s. The probability of measuring the
Eigenstate state (188) is therefore

Pℓ̃,s̃ =
∣∣∣Aℓ̃(ϕ̃s)

∣∣∣2 = 1
rM2

sin2
[
π

(
ϕ̃s −

ℓ̃

M

)
M

]
sin2

[
π

(
ϕ̃s −

ℓ̃

M

)] (189)

=
1

rM2

sin2
[
π
(
ϕ̃s − ϕ̃ℓ

)
M

]
sin2

[
π
(
ϕ̃s − ϕ̃ℓ

)] = 1
rM2

sin2
[
π
(
ℓ̃s − ℓ̃

)]
sin2

[
π
(
ℓ̃s − ℓ̃

)
/M

] . (190)

In applying Shor’s algorithm it will be critical that ϕ̃ℓ is a rational number, and that s̃ and r are relatively prime. We
will usually denote the state |us̃⟩ by the simpler form |ũs⟩, in which case we will drop the tilde from the ME phase
and write ϕs = s/r. Note that the control and work registers are entangled, and that the most likely control-output
states ℓ̃ are those for which ϕ̃ℓ ≈ ϕs for some s ∈ {0, 1, · · · , r − 1}. The rub is then to extract the exact phase ϕs from
the approximately measured m-bit phase ϕ̃ℓ, and in particular we must pull out the integer period r from the rational
number ϕ̃ℓ. This requires the mathematical technique of continued fractions, which we shall apply in the next section.
If we obtain the zero-phase state ϕ0 = 0, or if s and r have non-trivial common factors, then the measurement will
fail, and we must try again. Once we have a potential value for the period r, we must explicitly check that r is even,
and that ar = 1 (mod N). We must also ensure that ar/2 , ±1 (mod N). If these criteria are not met, then we must try
again. Thus, Shor’s algorithm is probabilistic in nature, but the chance of a successful run is quite high, and usually
requires at most two or three attempts.

Let us now work through the circuit in Fig. 14 in more detail. First, we must prepare the zero-state

|0⟩⊗m ⊗ |0⟩⊗n , (191)

and then apply an X operator to the lowest order qubit of the work register, thereby producing the initial state

|ψ0⟩ = |0⟩⊗m ⊗ |1⟩ . (192)

We are using a short-hand notation for the states in the n-qubit work register, where we denote the computational
basis states by their corresponding integer index, rather than breaking them out into their respective tensor products
of single-particle qubit states. In the physics Convention 2, the explicit form of the work register would be

|1⟩ = |0⟩1 ⊗ · · · ⊗ |0⟩n−1 ⊗ |1⟩n , (193)

and in the Qiskit Convention 1 we would have

|1⟩ = |1⟩0 ⊗ |0⟩1 ⊗ · · · ⊗ |0⟩n−1 . (194)

We should also note that the phase operator U is distributed over the work register, and it takes different forms
between Conventions 1 and 2.
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Hadamard gates H⊗m are then applied to the control register, which splits the state |0⟩⊗m into a linear superposition
of all possible control states |k⟩ for k ∈ {0, 1, · · · ,M − 1} with M = 2m. Upon using (181), we can therefore express
the resulting state in either of two forms,

|ψ1⟩ =
1
√

M

M−1∑
k=0

|k⟩ ⊗ |1⟩ (195)

=
1
√

rM

M−1∑
k=0

r−1∑
s=0

|k⟩ ⊗ |us⟩ , (196)

each of which reveals something essential about the quantum system. For example, (196) tells us that the state
|ψ1⟩ is in fact just a uniform linear superposition involving the Eigenstates |us⟩, which was crucial to the above
measurement analysis. Next, the circuit operates on the state |ψ1⟩ with a sequence of m controlled-phase operators
CU p for p ∈ {20, 21, · · · , 2m−1}, giving the state

|ψ2⟩ =
1
√

r M

M−1∑
k=0

r−1∑
s=0

e2πik ϕs |k⟩ ⊗ |us⟩ for ϕs =
s
r
. (197)

By employing (182), we can express this state in the alternative form

|ψ2⟩ =
1
√

M

M−1∑
k=0

|k⟩ ⊗

 1
√

r

r−1∑
s=0

e2πi kϕs |us⟩

 (198)

=
1
√

M

M−1∑
k=0

|k⟩ ⊗ |ak (mod N)⟩ =
1
√

M

M−1∑
k=0

|k⟩ ⊗ | f (k)⟩ . (199)

Recall that the period of the function f (x) = ax (mod N) is r, and we therefore find the following sequence of
operations on the state |1⟩:

U1|1⟩ = |a (mod N)⟩

U2|1⟩ = U |a (mod N)⟩ = |a2 (mod N)⟩

· · ·

Uk|1⟩ = U |ak−1 (mod N)⟩ = |ak (mod N)⟩ (200)

· · ·

Ur−1|1⟩ = U |ar−2 (mod N)⟩ = |ar−1 (mod N)⟩

Ur |1⟩ = U |ar−1 (mod N)⟩ = |ar (mod N)⟩ = |1⟩

Ur+1|1⟩ = U |ar (mod N)⟩ = |ar+1 (mod N)⟩ = |a (mod N)⟩

Ur+2|1⟩ = U |ar+1 (mod N)⟩ = |ar+2 (mod N)⟩ = |a2 (mod N)⟩

· · · ,

which can be summarized by

U x|1⟩ = | f (x)⟩ and | f (x + 1)⟩ = U | f (x)⟩ (201)

for any non-negative integer x. We shall use these relations later in the exposition when constructing the ME operators
U. Note that we can express the front-end output state from (199) in the form

|ψ2⟩ =
1
√

M

M−1∑
k=0

|k⟩ ⊗ Uk |1⟩ , (202)

which shows that the ME operators between point-1 and point-2 of Fig. 14 have the effect of augmenting the work
register by Uk|1⟩ for every mode k ∈ {0, 1, · · · ,M − 1}. We have almost finished analyzing the circuit. Now that
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we have state |ψ2⟩ of (197) in hand, we apply the inverse quantum Fourier transform QFT † to the control register,
producing the final state

|ψ3⟩ =

M−1∑
ℓ=0

r−1∑
s=0

Aℓ(ϕs) |ℓ⟩ ⊗ |us⟩ , (203)

where the amplitudes Aℓ(ϕs) are given by (186). We now have a linear superposition of the states |ℓ⟩ ⊗ |us⟩, and as
described above, a measurement on the control register will produce any one of them,

M−1∑
ℓ=0

r−1∑
s=0

Aℓ(ϕs) |ℓ⟩ ⊗ |us⟩ → |ℓ̃⟩ ⊗ |ũs⟩ (204)

with probability Pℓ̃,s = |Aℓ̃(ϕs)|2. The measured phase ϕ̃ℓ is given in terms of the measured output index ℓ̃ of the
control register by ϕ̃ℓ = ℓ̃/2m, and Shor’s algorithm is designed to give dominant peaks close to the exact phases
ϕs = s/r. We will have more to say about the details of this procedure in later sections. For now, we summarize the
action of the Shor circuit in Table 1. Note that when the exact phases ϕs = s/r can be represented by m-bit fractions,
the phase histogram simplifies considerably: There are exactly r equally likely peaks, each corresponding to one of
the phases ϕs. This situation is relatively rare, and does not occur in most cases, thereby allowing for more complex
phase histograms.

Table 1: Quantum Period Finding

1. Initialize the state:

Prepare the state |0⟩⊗m ⊗ |0⟩⊗n, and apply X to the lowest order qubit of the work register to produce the initial
state

|ψ0⟩ = |0⟩⊗m ⊗ |1⟩ , (205)

where the number of work qubits is given by n = ⌈log2 N⌉.

2. Randomize the control register:

Apply H⊗m to the control register to give

|ψ1⟩ =
1
√

M

M−1∑
k=0

|k⟩ ⊗ |1⟩ (206)

=
1
√

rM

M−1∑
k=0

r−1∑
s=0

|k⟩ ⊗ |us⟩ , (207)

where the total number of quantum states is M = 2m.

3. Modular exponentiation (ME):

Conditionally apply the ME operators U p for p ∈ {20, 21, · · · , 2m−1} successively to the control qubits to produce
the state

|ψ2⟩ =
1
√

r M

M−1∑
k=0

r−1∑
s=0

e2πik ϕs |k⟩ ⊗ |us⟩ where ϕs =
s
r

(208)

=
1
√

M

M−1∑
k=0

|k⟩ ⊗ |ak (mod N)⟩ . (209)
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4. Perform the inverse Fourier transform:

|ψ3⟩ = QFT †|ψ2⟩ =

M−1∑
ℓ=0

r−1∑
s=0

Aℓ(ϕs) |ℓ⟩ ⊗ |us⟩ , (210)

where the amplitudes Aℓ(ϕs) are given by (186).

5. Perform a measurement of the control register:

The state then collapses into an Eigenstate,

M−1∑
ℓ=0

r−1∑
s=0

Aℓ(ϕs) |ℓ⟩ ⊗ |us⟩ → |ℓ̃ ⟩ ⊗ |ũs⟩ , (211)

with probability Pℓ̃,s = |Aℓ̃(ϕs)|2. The probability peaks at values of ℓ̃ close to the exact phases ϕs = s/r, and the
outcomes of the measurement are equally distributed between the values of s ∈ {0, 1, · · · , r − 1}.

6. Apply the method of continued fractions to extract the exact phase ϕs = s/r from the approximately measured
m-bit phase ϕ̃ℓ. This provides the exact period r, and therefore the factors of N.

5.4. Extracting the Exact Period from the Measured Phase

We turn now to the (non-trivial) task of extracting the exact phase ϕs = s/r from the approximately measured phase
ϕ̃ℓ of the control resister using the method of continued fractions outlined in Section 4. For ease of notation, we shall
henceforth drop the superfluous ℓ-subscript from ϕ̃ℓ and simply write ϕ̃. Since the measured phase ϕ̃ is a positive
rational number less than one, it can be expressed as a finite continued fraction of the form

ϕ̃ =
1

a1 +
1

a2 +
1

a3 +
. . . + 1

aR

(212)

for some integer R, where a1, a2, · · · , aR are all positive integer coefficients. We shall drop the zero digit a0 = 0, and
simply write ϕ̃ = [a1, a2, · · · , aR] to denote the form of the continued fraction. Suppose now that s and r are two
relatively prime positive integers that satisfy the inequality∣∣∣∣∣ sr − ϕ̃

∣∣∣∣∣ ≤ 1
2r2 . (213)

Then by Theorem 3 of the Section 4, the ratio s/r is necessarily a convergent of the continued fraction (212) for ϕ̃,
so that s/r = [a1, a2, · · · , aq] for some q ≤ R. We shall exploit this fact to extract the exact period r of the modular
exponential function fa,N(x) = ax (mod N).

Continued fractions and their convergents can be calculated efficiently using a variation of the Euclidean
algorithm for finding the greatest common divisor of two integers. Let us call the convergents of ϕ̃ by
s0/r0, s1/r1, · · · , sℓ/rℓ, · · · , sq/rq. We then cycle through these convergents, from the smallest to the largest values
of the r’s, checking to ensure that

r is even (214)

ar/2 , ±1 (mod N) (215)

ar = 1 (mod N) (216)

for each r = rℓ. Condition (215) simply means that b = ar/2 is not a trivial root of unity. In passing, we note that r
can in fact be odd, provided that a is a perfect square, so that b = ar/2 is still an integer [11]. Apart from this caveat,
if any of the conditions (214)–(216) are not met for rℓ, then the trial fails, and we move on to the next convergent.
The special cases sℓ = 0 and sℓ = 1 correspond to the phases ϕ0 = 0/rℓ = 0 and ϕ1 = 1/rℓ. Technically, we cannot
use the method of continued fractions for these cases since 0/rℓ and 1/rℓ are not the ratio of two primes (as 0 and 1
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are not prime). In the former case, ϕ0 = 0 yields no information, and we must move on to the next iteration. However,
ϕ1 = 1/rℓ yields an integer rℓ, which could in principle be the correct period that we are seeking. Therefore we shall
check the case sℓ = 1/rℓ just to make sure, even though 1/rℓ does not satisfy the conditions of Theorem 3. In any
event, a detailed analysis shows that the probability of achieving a solution after just a few trials is quite high. The
solution for the smallest value of rℓ gives the period r = rℓ that we are seeking, and the factors of N are then given by
gcd(ar/2 ± 1,N).

In closing this section, we should call attention to an important feature of the method. We must somehow ensure
that inequality (213) always holds, as it would be quite cumbersome if we had to check this by hand every time.
However, this requirement can be hard-wired into the algorithm itself by choosing an appropriate number of qubits m
for the control register, one that is based on the inequality (213) itself. Recall that the work register has n = ⌈log2 N⌉
qubits, and thus for any phase ϕs = s/r, we have r < N ≤ 2n. This leads to the inequality

1
22n+1 ≤

1
2r2 . (217)

Therefore, if we take the control register to have m = 2n+1 qubits, then a measurement of the phase ϕ̃ will necessarily
have sufficient precision to ensure that∣∣∣∣∣ sr − ϕ̃

∣∣∣∣∣ = ∣∣∣ϕs − ϕ̃
∣∣∣ ≤ 1

22n+1 ≤
1

2r2 , (218)

and then inequality (213) is automatically satisfied. This is the source of our previous requirement that m = 2n + 1.
Of course we must use even more control qubits to account for machine error. For a probability of success at least as
large as 1− ε, where ε > 0 is a small probability of failure, we must use m = 2n+ 1+ nε qubits in the control register,
where nε ≡ ⌈log2

(
2 + 1/(2ε)

)
⌉. With this choice of m, upon taking a measurement of the control register we find: (i)

inequality (213) will always be satisfied, (ii) the exact phase will be of the form ϕs = s/r, where s ∈ {0, 1, · · · , r − 1}
is randomly selected, and (iii) the ratio s/r will be a convergent of the continued fraction for ϕ̃ (provided that s and r
are relatively prime). However, we should emphasize that conditions (214)–(216) must also be satisfied. If they are
not, then the method will fail, and we must move on to another iteration of Shor’s algorithm. However, a complete
error analysis shows that the probability of success is quite high, and typically only a few iterations will be required
before obtaining a factor. We summarize Shor’s algorithm in Table 2.

Table 2: Shor’s Factorization Algorithm

1. Chose a random number a ∈ {2, 3, · · · ,N − 1} for the base. If gcd(a,N) = 1, then proceed to the next step
(otherwise we have found a non-trivial factor of N as required).

2. Use quantum phase estimation (QPE) to measure the phase ϕ̃ of the modular exponentiation operator UaN

defined by
UaN |w⟩ = |a · w (mod N)⟩ with UaN |us⟩ = e2πi s/r |us⟩ ,

where s ∈ {0, 1, · · · , r − 1}. The QPE is the only quantum component of Shor’s algorithm. This is also the
bottleneck of the algorithm, as (i) most of the quantum resources are deployed here, and (ii) a different operator
UaN is required for every choice of a and N.

3. We then use the method of continued fractions to extract the exact period r from the approximately measured
phase ϕ̃. To do this, we examine all convergents ϕs = s/r of ϕ̃ such that∣∣∣∣∣ sr − ϕ̃

∣∣∣∣∣ ≤ 1
2r2 ,

which is achieved by requiring the number of control qubits to be m = 2n + 1. We then check the convergents
from the smallest to the largest values of r. If r is odd, then return to step 1. If ar/2 = ±1 (mod N), then return
to step 1. If ar = 1 (mod N), then we have found a solution for r, and we proceed to the next step; otherwise
return to step 1.

4. Factors of N are now given by gcd(ar/2±1,N). Finding the greatest common divisor can be done very efficiently
on a classical computer using Euclid’s algorithm.
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6. Verifying the Theory: Factoring N = 15

To highlight the principal aspects of Shor’s algorithm, we now build the computational machinery to factor the
number N = 15. In the next section we will employ the scripts developed here to factor larger and more complex
numbers. We shall employ IBM’s circuit simulator Qiskit. This means that we must use the Qiskit qubit ordering
convention in which the upper 0-th qubit corresponds to the lowest order bit. We developed the Shor factorization
circuit in Section 5.3, which is illustrated in Fig. 14. However, this analysis used the physics and mathematics
ordering convention rather than the Qiskit convention. Consequently, we must convert to the Qiskit ordering displayed
in Fig. 15. In this convention, the measurement of the control register (position 4 in the Figure, and indicated by the
bold red line across the register) gives the output state |ℓ̃ ⟩ = |ϕ̃m−1 · · · ϕ̃1 ϕ̃0⟩. Just as in the previous section, we will
employ the convention in which the measured (m-bit) phase in the control register is written with a tilde, and where
the output state is indexed by the binary integer

ℓ̃ ≡ ϕ̃m−1 ϕ̃m−2 · · · ϕ̃1 ϕ̃0 where ϕ̃k ∈ {0, 1} (219)

= 2m−1 ϕ̃m−1 + 2m−2 ϕ̃m−2 + · · · + 21 ϕ̃1 + 20 ϕ̃0 . (220)

One must keep in mind that there is always an implicit m-bit resolution associated with any measured quantity in
the control register, and in particular, the corresponding angular phase is given by the m-bit fraction

ϕ̃ℓ ≡
ℓ̃

2m =
ϕ̃m−1

21 +
ϕ̃m−2

22 + · · · +
ϕ̃1

2m−1 +
ϕ̃0

2m (221)

= 0.ϕ̃m−1 ϕ̃m−2 · · · ϕ̃1 ϕ̃0 . (222)

For ease of notation, we shall drop the ℓ-subscript and denote the measured phase by ϕ̃.
Since we will employ both binary and decimal numbers in this section, we will often denote binary numbers

using a bracket with a 2-subscript, writing ϕ̃ = [0.ϕ̃m−1 ϕ̃m−2 · · · ϕ̃1 ϕ̃0]2. We will always place a tilde over measured
quantities, so that ϕ̃ denotes the phase as determined by a measurement of the m-bit control register, as opposed to
the (as yet undetermined) exact phase ϕs = s/r. If the control register contains a sufficient number of qubits, then the
measurement should be quite accurate, and the measured phase will be very close to the exact phase, ϕ̃ ≈ ϕs = s/r.
Since ϕ̃ and ϕs = s/r are approximately equal, we can extract the exact value of the integers s and r using the
method of continued fractions (provided that s and r are relatively prime). The integer r is the period of the modular
exponential function fa N(x) = ax (mod N) that we seek.

Figure 15: Shor factorization algorithm for Qiskit convention 1. In comparison, Fig. 14 uses the physics Convention 2.
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Figure 16: Qiskit version of Shor’s factoring circuit for N = 15 and a = 8, with m = 9 qubits in the control register and n = 4
qubits in the work register.

Let us now concentrate on the specific example of N = 15. As we have established, the work space requirement is
n = ⌈log2 15⌉ = 4 qubits, and the control register must therefore contain m = 2n + 1 = 9 qubits (for simplicity we
consider only perfect measurements in which nϵ = 0). For a given integer N, we choose the base a to be a random
integer such that 1 < a < N and gcd(a,N) = 1. Therefore, for N = 15 we can only choose a ∈ {2, 4, 7, 8, 11, 13, 14}.
It turns out that a = 14 gives a trivial root of unity, so we can neglect this choice. In fact, in this example we shall
take either a = 4 or a = 8, where the former gives the period r = 2 and the latter gives r = 4. Figure 16 illustrates the
Qiskit circuit for Shor’s algorithm with the base a = 8. The first 9 qubits comprise the control register and are labeled
by the index c, and the last 4 qubits are the work register and are labeled by w. We will therefore denote quantum
states of the work register by |w3w2w1w0⟩. In the Qiskit qubit convention, the work register is initially populated by
the state

|1⟩ = |0001⟩ = |1⟩0 ⊗ |0⟩1 ⊗ |0⟩2 ⊗ |0⟩3 , (223)

with the least significant bit being w0 = 1. The controlled modular exponentiation operators CU p
8,15 for p ∈

{20, 21, · · · , 28} are represented by purple boxes attached to their respective control qubits, and the operator QFT † is
represented by the large purple rectangle on the far right of the control register. At the end of the circuit, the control
register undergoes a measurement on all m qubits. The work register might or might not undergo a measurement, and
we shall return to this point later in the section.

6.1. Modular Exponentiation Operators

Let us now explore the modular exponentiation (ME) operators Ua N in more detail. For every choice of the number N
and the base a, we must design a separate implementation of the operator Ua N , and this is in fact the real bottleneck
of Shor’s algorithm. Indeed, this bottleneck occurs in two senses: (i) the ME operators consume the greatest majority
of the quantum resources of the algorithm, and in the general case this will be of order 72 n3 gates [5], and (ii) even
specialized cases of the ME operators are often highly non-trivial to construct. The ME operators for N = 15 with
a = 4 and a = 8 are illustrated in Fig. 17, and Table 3 gives the corresponding operations Ua,15|w⟩ = |a · w (mod 15)⟩
for every basis element |w⟩ in the work register. Each ME operator Ua,15 has two columns in the Table: One for the
decimal representation of the basis elements |w⟩, and another for the corresponding binary representation |w3w2w1w0⟩,
where in binary form w = [w3w2w1w0]2. The operators Ua,15 in Fig. 17 were determined through simple inspection
of the results of the binary columns in Table 3. For example, the a = 8 operator performs a permutation of the 4-bit
binary work states, U8,15|w3w2w1w0⟩ = |w0w3w2w1⟩, which can be implemented by the three SWAP gates in the right
panel of Fig. 17. Similarly, the ME operator for a = 4 performs two SWAP operations on the work register, so that
U4,15|w3w2w1w0⟩ = |w1w0w3w2⟩. The other ME operators for a ∈ {2, 7, 11, 13} act similarly, and are illustrated in
Fig. 18.
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Figure 17: Modular exponentiation operators Ua,15 for a = 4 in the left panel and a = 8 in the right panel. Their action on
the work space is given by U4,15|w3w2w1w0⟩ = |w1w0w3w2⟩ and U8,15|w3w2w1w0⟩ = |w0w3w2w1⟩, which can be reproduced by a
sequence of SWAP gates.

Table 3: Modular Exponentiation Operators U = Ua,15 for a = 4 and a = 8.

U4,15|w⟩ = |4 · w (mod 15)⟩ U8,15|w⟩ = |8 · w (mod 15)⟩
U |1⟩ = |4⟩ U |0001⟩ = |0100⟩ U |1⟩ = |8⟩ U |0001⟩ = |1000⟩
U |2⟩ = |8⟩ U |0010⟩ = |1000⟩ U |2⟩ = |1⟩ U |0010⟩ = |0001⟩
U |3⟩ = |12⟩ U |0011⟩ = |1100⟩ U |3⟩ = |9⟩ U |0011⟩ = |1001⟩
U |4⟩ = |1⟩ U |0100⟩ = |0001⟩ U |4⟩ = |2⟩ U |0100⟩ = |0010⟩
U |5⟩ = |5⟩ U |0101⟩ = |0101⟩ U |5⟩ = |10⟩ U |0101⟩ = |1010⟩
U |6⟩ = |9⟩ U |0110⟩ = |1001⟩ U |6⟩ = |3⟩ U |0110⟩ = |0011⟩
U |7⟩ = |13⟩ U |0111⟩ = |1101⟩ U |7⟩ = |11⟩ U |0111⟩ = |1011⟩
U |8⟩ = |2⟩ U |1000⟩ = |0010⟩ U |8⟩ = |4⟩ U |1000⟩ = |0100⟩
U |9⟩ = |6⟩ U |1001⟩ = |0110⟩ U |9⟩ = |12⟩ U |1001⟩ = |1100⟩
U |10⟩ = |10⟩ U |1010⟩ = |1010⟩ U |10⟩ = |5⟩ U |1010⟩ = |0101⟩
U |11⟩ = |14⟩ U |1011⟩ = |1110⟩ U |11⟩ = |13⟩ U |1011⟩ = |1101⟩
U |12⟩ = |3⟩ U |1100⟩ = |0011⟩ U |12⟩ = |6⟩ U |1100⟩ = |0110⟩
U |13⟩ = |7⟩ U |1101⟩ = |0111⟩ U |13⟩ = |14⟩ U |1101⟩ = |1110⟩
U |14⟩ = |11⟩ U |1110⟩ = |1011⟩ U |14⟩ = |7⟩ U |1110⟩ = |0111⟩

6.2. The Factorization Circuit

Our next goal is to construct the Python script used in creating the Shor circuit in Fig. 16, after which we shall
run this code on the Qiskit simulator to factor N = 15. We will construct the requisite script slowly in sequences
of Python code segments, each one illustrating an essential element of the algorithm. First, we must import the
necessary python packages:

# import basics

import numpy as np

from random import randint

from math import gcd

# import Qiskit tools

from qiskit import Aer, transpile, assemble

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister

# import plot tools

from qiskit.visualization import plot_histogram

import matplotlib.pyplot as plt
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Figure 18: Modular exponentiation operators Ua,15 for a = 2, 7, 11, 13 as labeled.

The first few imports are for basic mathematical functionality. For example, we can create random inte-
gers with randint(), and find the greatest common divisor with gcd(). We have also imported packages to
run Qiskit, and for post-processing the Qiskit data. We now select N = 15 and the corresponding base a:

# number to factor

N = 15

# random number a in [2,N-1] wtih gcd(a,N)=1

n = 0

while n == 0:

a = randint(2, N-1)

if gcd(a, N) == 1: n = 1

print("**:", a, N, gcd(a, N))

This code segment chooses a random integer between 2 and N − 1 inclusive, and makes sure that the choice does
not contain a non-trivial factor in common with N (otherwise we have found a sought after factor of N). This piece
of code can be omitted if we wish to work only with a specific value of a (provided of course that we set the values
of N and a here).

The next code segment defines the ME operators CU p
a,N for N = 15 for all permissible choices of a. This

is really the heart of Shor’s algorithm. For a general value of N, we would not be able to implement all
values of a (we do this here only for purposes of illustration), as there are an exponentially large number
of them. Finally, we define a subroutine for the inverse Fourier transform QFT †. The code is given below:

Quanta | DOI: 10.12743/quanta.v12i1.235 September 2023 | Volume 12 | Issue 1 | Page 78

http://dx.doi.org/10.12743/quanta.v12i1.235


# modular exponentiation gates: p = 2ˆ0, 2ˆ1, .... , 2ˆ(m-1)

def c_Uamod15(a, p):

U = QuantumCircuit(4)

# concatenate U-factors to form Uˆp

for iteration in range(p):

if a in [2,13]:

U.swap(0,1)

U.swap(1,2)

U.swap(2,3)

if a in [7,8]:

U.swap(2,3)

U.swap(1,2)

U.swap(0,1)

if a in [4, 11]:

U.swap(1,3)

U.swap(0,2)

if a in [7,11,13]:

for q in range(4):

U.x(q)

U = U.to_gate()

U.name = "{0}ˆ{1} mod {2}".format(a, p, N)

c_U = U.control()

return c_U

# inverse QFT

def qft_dagger(n):

qc = QuantumCircuit(n)

for q in range(n//2):

qc.swap(q, n-q-1)

for j in range(n):

for m in range(j):

qc.cp(-np.pi/float(2**(j-m)), m, j)

qc.h(j)

qc.name = "QFT†"

return qc

Next we construct the quantum circuit itself. We must set the work register to 4 qubits and the control register to 9
qubits. We must also apply a Hadamard gate to every qubit in the control register, and we must populate the work
register with the state |1⟩ (using the Qiskit conventions). We then construct the ME gates to form the operators CU p

for the powers p ∈ {20, 21, · · · , 28}. Finally, we perform the inverse QFT operation, after which we make the final
measurements on the control register. We also draw the circuit and save it as a JPG file. This leads to the following
code segment:

# Initialize registers and the quantum circuit

n_work = 4 # L

n_control = 2 * n_work + 1 # 2*L+1

c = QuantumRegister(n_control, name=’c’)

w = QuantumRegister(n_work, name=’w’)

cl = ClassicalRegister(n_control, name=’cl’)

qc = QuantumCircuit(c, w, cl)

# Initialize control qubits

for q in range(n_control):
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qc.h(q)

# Populate work register with state |1>

qc.x(n_control)

# Controlled-Uˆp operations formed by concatenation

for k in range(n_control):

qc.append(c_Uamod15(a, 2**k),

[k] + [i+n_control for i in range(n_work)])

# Inverse-QFT

qc.append(qft_dagger(n_control), range(n_control))

# Measure control register

qc.measure(c, cl)

qc.draw(fold=-1)

plt.savefig(’circuit_{0}.jpg’.format(a))

plt.show()

In constructing the modular exponentiation operators U p for p ∈ {21, 22, · · · , 28}, we have simply concate-
nated the operator U. This procedure will not do for general values of m, as it leads to an exponen-
tially large number of gates. For a general m, we must produce m distinct operators U p for each power
p ∈ {20, 21, · · · , 2m−1}. This reduces the gate count to a polynomial order, and we will have more to say
about this in the next section. In any event, this is the Qiskit code that produced Fig. 16, and it is ad-
equate for any (small-ish) N, assuming of course that we modify the ME operators c_Uamod15 accord-
ingly. Finally, we must run the circuit on the Aer simulator (the QASM simulator has been deprecated):

# simulate

aer_sim = Aer.get_backend(’aer_simulator’)

t_qc = transpile(qc, aer_sim)

obj = assemble(t_qc)

results = aer_sim.run(obj, shots=1024).result()

counts = results.get_counts()

plot_histogram(counts, title=’N = {0} a = {1}’.format(N, a), figsize=(6,8))

plt.savefig(’hist_{0}.jpg’.format(a))

plt.show()

Figure 19 illustrates the output phase histogram of an ensemble of 1024 Qiskit runs for both a = 4 and a = 8.
The histograms count the output measurements of the control register, and they consist of a series of well defined
peaks at specific (binary integer) values ℓ̃ = [ϕ̃m−1ϕ̃m−2 · · · ϕ̃1ϕ̃0]2. For example, a = 4 gives two peaks in the
histogram, while a = 8 gives four peaks. From the peak values ℓ̃, we then construct the measured phases ϕ̃ = ℓ̃/2m =

[0.ϕ̃m−1ϕ̃m−2 · · · ϕ̃1ϕ̃0]2, from which the exact period r can be extracted by the method of continued fractions.

6.3. The Spectrum for a = 4

Let us examine the a = 4 histogram in the left panel of Fig. 19. Recall that the control register has m = 9 qubits, and
therefore the binary integers ℓ̃ are 9 bits long. We see that there are two peaks at locations

ℓ̃0 = [000000000]2 = 0

ℓ̃1 = [100000000]2 = 28 = 256 , (224)

where we are now using subscripts to distinguish the different measurements. It is of course no accident that there
are two peaks, as the modular exponential function f4,15(x) has a period r = 2, as verified by the upper-left panel of
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Figure 19: The phase histograms for N = 15. The left and right panels show the output of Shor’s algorithm for two Qiskit
simulations in which the control register has m = 9 qubits and the work register has n = 4 qubits. The results for the base a = 4
are illustrated in the left panel, while the a = 8 simulation is shown in the right panel. The histograms peak at specific evenly
spaced values ℓ̃ = [ϕ̃m−1 · · · ϕ̃0]2, and the corresponding phases are given by ϕ̃ = ℓ̃/2m = [0.ϕ̃m−1 · · · ϕ̃0]2, where m = 9. The
period r of the modular exponential function fa N(x) = ax (mod N) is encoded in the phase ϕ̃ ≈ ϕs = s/r for s ∈ {0, 1, · · · , r − 1}.

Fig. 11. The peaks ℓ̃n (for n = 0, 1) correspond to positive (and rational) phase angles ϕ̃n = ℓ̃n/2m, which take the
values

ϕ̃0 = [0.000000000]2 = 0

ϕ̃1 = [0.100000000]2 = 1/2 . (225)

These are the measured phases of the ME operator U4,15. Since the control register consists of 9 qubits, and all bits
except the most significant bit are zero, the measurements can be regarded as exact. Consequently, there is no need
to employ continued fractions for this example. The first peak at ϕ̃0 = 0 is guaranteed not to provide a factor, so
we move on to the second peak at ϕ̃1 = 1/2. This gives an even period of r = 2, so that condition (214) is met.
Furthermore, conditions (215) and (216) are also satisfied, since

ar/2 (mod N) = 41 (mod 15) = 4 , ±1 (mod 15) (226)

ar (mod N) = 42 (mod 15) = 16 (mod 15) = 1 . (227)

The factors of N = 15 are therefore given by gcd(ar/2 − 1,N) = gcd(3, 15) = 3 and gcd(ar/2 + 1,N)= gcd(5, 15) = 5.

6.4. The Spectrum for a = 8

We now turn to the a = 8 phase histogram in the right panel of Fig. 19. Again, upon changing subscript notation
slightly, there are four peaks at locations

ℓ̃0 = [000000000]2 = 0

ℓ̃1 = [010000000]2 = 128
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ℓ̃2 = [100000000]2 = 256 (228)

ℓ̃3 = [110000000]2 = 384 ,

which correspond to the phase angles

ϕ̃0 = [0.000000000]2 = 0

ϕ̃1 = [0.010000000]2 = 1/4

ϕ̃2 = [0.100000000]2 = 1/2 (229)

ϕ̃3 = [0.110000000]2 = 3/4 .

Again, these angles can be regarded as exact, and we can immediately extract the period r. We must, however, check
every potential r to make sure that conditions (214)–(216) hold. We can skip the first peak at ϕ̃0 = 0, so let us now
consider the third peak at ϕ̃2 = 1/2. The period r = 2 is even, but it does not satisfy requirement (216):

ar (mod N) = 82 (mod 15) = 4 , 1 . (230)

This illustrates that Shor’s algorithm can fail for a given phase measurement ϕ̃. However, the probability of success is
quite high, and the algorithm usually requires at most a few tries before finding a factor. Let us move on to the second
and fourth peaks, whose phases ϕ̃1 = 1/4 and ϕ̃3 = 3/4 give the period r = 4. Note that conditions (214)–(216) are
indeed satisfied, since r = 4 is even, and

ar/2 (mod N) = 82 (mod 15) = 4 , ±1 (mod 15) (231)

ar (mod N) = 84 (mod 15) = 1 . (232)

Thus, r = 4 is the exact period that we seek, which is confirmed by the upper-right panel of Fig. 11. The
factors of N = 15 are therefore determined by ar/2 = 82 = 64, so that gcd(ar/2 − 1,N) = gcd(63, 15) = 3 and
gcd(ar/2 + 1,N) = gcd(65, 15) = 5.

The results of this simulation are free from machine error, which would not be the case on a real quantum computer.
One could build noise models for the various gates in Shor’s algorithm, and then place acceptable error bounds on
the circuit. This would require taking nϵ > 0, which would increase the number of control qubits. In this document,
we shall instead perform a simplified error analysis by just adding a 1 to the least significant bit of the phases ϕ̃. That
is to say, let us suppose the measurements are given by

ℓ̃0 = [000000001]2 = 1

ℓ̃1 = [010000001]2 = 129

ℓ̃2 = [100000001]2 = 257

ℓ̃3 = [110000001]2 = 385 , (233)

which produces the phases

ϕ̃0 = [0.000000001]2 = 1/29 = 0.001953125 = 1/512

ϕ̃1 = [0.010000001]2 = 1/22 + 1/29 = 0.251953125 = 129/512

ϕ̃2 = [0.100000001]2 = 1/21 + 1/29 = 0.501953125 = 257/512

ϕ̃3 = [0.110000001]2 = 1/21 + 1/22 + 1/29 = 0.751953125 = 385/512 . (234)

The method of continued fractions will now be required. We recommend a useful Python package called contfrac,
which can be installed as follows [13]:

$ pip install contfrac
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We can pick a phase ϕ̃ at random, or we can examine every phase sequentially. Let us concentrate on ϕ̃3 = 385/512
as an example. With the above Python package, one can effortlessly find the continued fraction representation of the
measured phase and its various convergents using the following code segment (with output included):

# import packages

import contfrac

#

phi = (385, 512) # phi3=[0.110000001]_2=0.751953125=385/512

coefficients = list(contfrac.continued_fraction(phi))

convergents = list(contfrac.convergents(phi))

#

print("cont frac of phi:",coefficients)

print("convergents of phi:", convergents)

output:

cont frac of phi: [0, 1, 3, 31, 1, 3]

convergents of phi: [(0,1),(1,1),(3,4),(94,125),(97,129),(385,512)]

Therefore, we can express the phase by the following continued fraction,

ϕ̃3 = [0.110000001]2 =
385
512
= [0; 1, 3, 31, 1, 3] . (235)

The convergents of ϕ̃3 have also been calculated:

s0/r0 = [0] = 0/1

s1/r1 = [0, 1] = 1/1

s2/r2 = [0, 1, 3] = 3/4 ⇐ solution: r = 4 (236)

s3/r3 = [0, 1, 3, 31] = 94/125

s4/r4 = [0, 1, 3, 31, 1] = 97/192

s5/r5 = [0, 1, 3, 31, 1, 3] = 385/512 ⇐ trivial solution: r = 512 = 4 × 128 .

We must examine every convergent on the list, but fortunately there are only a handful of them. The convergents
take the form sℓ/rℓ, where sℓ and rℓ are relatively prime. Since we are interested in the smallest value of rℓ such that
(214)–(216) are satisfied, we must work our way up the list of convergents, from the smallest to the largest values
of rℓ, testing every rℓ. This determines the exact period r = rℓ from the approximately measured phases. The first two
convergents s0/r0 = 0 and s1/r1 = 1 are unacceptable, so we continue on to the convergent s2/r2 = 3/4, which gives
the period r2 = 4. This value indeed satisfies (214)–(216), giving the factors 3 and 5 as we have seen. We can stop
here, but it is pedagogically useful to consider the other convergents. Note that r3 = 125 and r4 = 192 do not satisfy
(216), and are therefore ruled out as possible periods. In contrast, note that r5 = 512 is even and it does satisfies
equation (216),

ar5 (mod N) = 8512 (mod 15) = 4096 (mod 15) = 1 . (237)

This is because 512 = 128 × 4 is a multiple of 4, and r = 4 satisfies (216). Note, however, that

ar5/2 (mod N) = 8256 (mod 15) = 1 , (238)

and therefore b = ar5/2 = 8256 is a trivial root of unity, contrary to condition (215). This analysis can be automated
using the following Python script. The first part of the script takes the binary input of the peak ℓ̃, denoted by l_phi,
and then converts it to a fraction ϕ̃ℓ = sℓ/rℓ with no common factors other than unity:

Quanta | DOI: 10.12743/quanta.v12i1.235 September 2023 | Volume 12 | Issue 1 | Page 83

http://dx.doi.org/10.12743/quanta.v12i1.235


# import basics

import contfrac

from numpy import gcd

# construct decimal value of l_phi

n = 0

l_tilde = 0

for l in l_phi[::-1]:

n += 1

l_tilde = l_tilde + 2**(n-1) * int(l)

print("l_measured :", l_phi, l_tilde)

# construct decimal value of phi

n = 0

phi_tilde = 0

for l in l_phi:

n -= 1

phi_tilde = phi_tilde + 2**n * int(l)

print("phi_phase_bin :", "0."+l_phi)

print("phi_phase_dec:", phi_tilde)

# express phi_tilde as a fraction

res = len(str(phi_tilde)) - 2 # subtract 2 for "0."

print("res:", res)

scale = 10**res # automated scale set by res

num = int(phi_tilde*scale)

den = int(scale)

# in lowest terms

c = gcd(num, den)

num = int(num / c)

den = int(den / c)

phi = (num, den)

print("phi:", phi)

We now pass the measured phase phi into the continued fraction package to find the convergents, and then we
check each convergent to confirm that conditions (214)–(216) are satisfied. If they are not, we move on to the next
peak in the histogram:

# construct convergents for phi

coefficients = list(contfrac.continued_fraction(phi))

convergents = list(contfrac.convergents(phi))

print("cont frac of phi:",coefficients)

print("convergents of phi:", convergents)

# check convergents for solution

for conv in convergents:

r = conv[1]

test1 = r % 2 # 0 if r is even

test2 = (a**int(r/2)-1) % N # 0 if aˆr/2 is a trivial root

test3 = (a**int(r/2)+1) % N # 0 if aˆr/2 is a trivial root

test4 = a**r % N # 1 if r is a solution

if (test1==0 and test2!=0 and test3!=0 and test4==1):

print("conv:", conv, "r =", r, ": factors")

print("factor1:", gcd(a**int(r/2)-1, N))
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print("factor2:", gcd(a**int(r/2)+1, N))

else:

print("conv:", conv, "r =", r, ": no factors found")

As an example of the script, we use the peak ℓ̃3 = [110000001]2. As we see, this reproduces the previous analysis.

ℓ̃3 = [110000001]2 = 385:

l_measured : 110000001 385

phi_phase_bin: 0.110000001

phi_phase_dec: 0.751953125

res: 9

phi: (385, 512)

cont frac of phi : [0, 1, 3, 31, 1, 3]

convergents of phi: [(0, 1), (1, 1), (3, 4), (94, 125), (97, 129), (385, 512)]

conv: (0, 1) r = 1 : no factors found

conv: (1, 1) r = 1 : no factors found

conv: (3, 4) r = 4 : factors

factor1: 3

factor2: 5

conv: (94, 125) r = 125 : no factors found

conv: (97, 129) r = 129 : no factors found

conv: (385, 512) r = 512 : no factors found

For completeness, we use the script to analyze the other three peaks of the histogram, starting with the 0-th peak.
ℓ̃0 = [000000001]2 = 1:

l_measured : 000000001 1

phi_phase_bin: 0.000000001

phi_phase_dec: 0.001953125

res: 9

phi: (1, 512)

cont frac of phi : [0, 512]

convergents of phi: [(0, 1), (1, 512)]

conv: (0, 1) r = 1 : no factors found

conv: (1, 512) r = 512 : no factors found

ℓ̃2 = [010000001]2 = 129:

l_measured : 010000001 129

phi_phase_bin: 0.010000001

phi_phase_dec: 0.251953125

res: 9

phi: (129, 512)

cont frac of phi : [0, 3, 1, 31, 4]

convergents of phi: [(0, 1), (1, 3), (1, 4), (32, 127), (129, 512)]

conv: (0, 1) r = 1 : no factors found

conv: (1, 3) r = 3 : no factors found

conv: (1, 4) r = 4 : factors

factor1: 3

factor2: 5

conv: (32, 127) r = 127 : no factors found

conv: (129, 512) r = 512 : no factors found

ℓ̃3 = [100000001]2 = 257:
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l_measured : 100000001 257

phi_phase_bin: 0.100000001

phi_phase_dec: 0.501953125

res: 9

phi: (257, 512)

cont frac of phi : [0, 1, 1, 127, 2]

convergents of phi: [(0, 1), (1, 1), (1, 2), (128, 255), (257, 512)]

conv: (0, 1) r = 1 : no factors found

conv: (1, 1) r = 1 : no factors found

conv: (1, 2) r = 2 : no factors found

conv: (128, 255) r = 255 : no factors found

conv: (257, 512) r = 512 : no factors found

We see that ℓ̃1 and ℓ̃3 give the period r = 4, which results in the factors 3 and 5, while the other two peaks do not pass
the requisite tests.

6.5. Analysis of the Phase Histogram

We close this section with a theoretical analysis of the phase histogram of the control register for a general number of
qubits m. Our main focus will be calculating the locations of the peaks ℓ̃n. We have already examined the situation
for m = 9, in which Fig. 19 illustrates the Qiskit output histograms for N = 15 with the bases a = 4 and a = 8. In this
section we will primarily concentrate on the a = 8 histogram with four peaks. Before looking at a general value of
m, however, let us first examine the simpler case of m = 5 qubits (with a = 8), where the Qiskit phase histogram is
illustrated in Fig. 20.

Figure 20: The phase histogram from Qiskit for N = 15 and a = 8, as in the right panel of Fig. 19, except that the control
register has m = 5 qubits. There are a total of M = 25 = 32 states, and the peaks occur at ℓ̃0 = 0, ℓ̃1 = 8, ℓ̃2 = 16, and ℓ̃3 = 24.
The corresponding phases are ϕ̃0 = 0, ϕ̃1 = 1/4, ϕ̃2 = 1/2, and ϕ̃3 = 3/4. From these phases, we can infer that r = 4. Note that
Fig. 19 uses m = 9 qubits, and the peaks therefore occur at different values of ℓ̃n, although the phases turn out to be the same.
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We do this because the m = 5 case can be calculated quite easily using a minimum of algebra. The histogram
peaks now lie at different values of ℓ̃n from those of the m = 9 simulation since the value of m differs, but the phases
ϕ̃n = ℓ̃n/2m are identical. For m = 5 there are M = 25 = 32 quantum states, and the corresponding output phases are
given by

ℓ̃0 = [00000]2 = 0

ℓ̃1 = [01000]2 = 8

ℓ̃2 = [10000]2 = 16

ℓ̃3 = [11000]2 = 24

ϕ̃0 = [0.00000]2 = 0

ϕ̃1 = [0.01000]2 = 1/4

ϕ̃2 = [0.10000]2 = 1/2 (239)

ϕ̃3 = [0.11000]2 = 3/4 .
Just as in Fig. 15, we measured the m = 5 control registers after the inverse Fourier transform QFT † was applied
(at position 4 in the Figure). Note that the control and work registers are entangled at position 2 (just before
the QFT † operator) because of the action of the ME operators CU p. The measurement of the control register at
position 4 therefore collapses the quantum state of the work register. While we have not yet talked about work
register measurements, there is no reason why we should not be able to simultaneously measure the work register
and the control register, as illustrated in position 4 in the top panel of Fig. 21. The work register measurement is
indicated by the short red bar across the register at position 4, right after the QFT † operation acts on the control
register. In fact, we could measure the work register before the QFT † operation, at position 3 in the bottom panel
of Fig. 21. When the work register is measured in this way, the state of the control register collapses at position 2, but
we must obtain the same result as in previous measurement at position 4.

Let us examine this situation in more detail. We have in fact essentially performed this calculation near the end of
Section 3.4, but the following method brings out additional physics. Note that the wavefunction of the control- and
work-register system at position 2 takes the form (before the measurement),

|ψ2⟩ =
1
√

32

31∑
k=0

|k⟩ ⊗
∣∣∣8k (mod 15)

〉
. (240)

As we have seen, the modular exponential function f (x) = 8x (mod 15) has a period r = 4, and it takes the values
f (0) = 1, f (1) = 8, f (2) = 4, and f (3) = 2. We can therefore express the state |ψ2⟩ in (240) by the following:

|ψ2⟩ =
1
√

32

31∑
k=0

|k⟩ ⊗ |8k (mod 15)⟩︸          ︷︷          ︸
1,8,4,2

(241)

=
1
√

32

[
|0⟩ ⊗ |1⟩ + |1⟩ ⊗ |8⟩ + |2⟩ ⊗ |4⟩ + |3⟩ ⊗ |2⟩ +

|4⟩ ⊗ |1⟩ + |5⟩ ⊗ |8⟩ + |6⟩ ⊗ |4⟩ + |7⟩ ⊗ |2⟩ +

|8⟩ ⊗ |1⟩ + |9⟩ ⊗ |8⟩ + |10⟩ ⊗ |4⟩ + |11⟩ ⊗ |2⟩ + (242)

|12⟩ ⊗ |1⟩ + |13⟩ ⊗ |8⟩ + |14⟩ ⊗ |4⟩ + |15⟩ ⊗ |2⟩ +

|16⟩ ⊗ |1⟩ + |17⟩ ⊗ |8⟩ + |18⟩ ⊗ |4⟩ + |19⟩ ⊗ |2⟩ +

|20⟩ ⊗ |1⟩ + |21⟩ ⊗ |8⟩ + |22⟩ ⊗ |4⟩ + |23⟩ ⊗ |2⟩ +

|24⟩ ⊗ |1⟩ + |25⟩ ⊗ |8⟩ + |26⟩ ⊗ |4⟩ + |27⟩ ⊗ |2⟩ +

|28⟩ ⊗ |1⟩ + |29⟩ ⊗ |8⟩ + |30⟩ ⊗ |4⟩ + |31⟩ ⊗ |2⟩
]
.

Since M = 25 = 32 is so small, we have been able to write down every term in the wavefunction. Upon collecting
like states in the work register, we find

|ψ2⟩ =
1
√

32

[(
|0⟩ + |4⟩ + |8⟩ + |12⟩ + |16⟩ + |20⟩ + |24⟩ + |28⟩

)
⊗ |1⟩ +(

|1⟩ + |5⟩ + |9⟩ + |13⟩ + |17⟩ + |21⟩ + |25⟩ + |29⟩
)
⊗ |8⟩ + (243)
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Figure 21: Changing the order of measurements.

(
|2⟩ + |6⟩ + |10⟩ + |14⟩ + |18⟩ + |22⟩ + |26⟩ + |30⟩

)
⊗ |4⟩ +(

|3⟩ + |7⟩ + |11⟩ + |15⟩ + |19⟩ + |23⟩ + |27⟩ + |31⟩
)
⊗ |2⟩

]
=

1
√

4

[
|w0⟩ ⊗ | f (0)⟩ + |w1⟩ ⊗ | f (1)⟩ + |w2⟩ ⊗ | f (2)⟩ + |w3⟩ ⊗ | f (3)⟩

]
, (244)

where the four control register states are defined by

|w0⟩ =

√
4

32

(
|0⟩ + |4⟩ + |8⟩ + |12⟩ + |16⟩ + |20⟩ + |24⟩ + |28⟩

)
(245)
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|w1⟩ =

√
4

32

(
|1⟩ + |5⟩ + |9⟩ + |13⟩ + |17⟩ + |21⟩ + |25⟩ + |29⟩

)
(246)

|w2⟩ =

√
4

32

(
|2⟩ + |6⟩ + |10⟩ + |14⟩ + |18⟩ + |22⟩ + |26⟩ + |30⟩

)
(247)

|w3⟩ =

√
4

32

(
|3⟩ + |7⟩ + |11⟩ + |15⟩ + |19⟩ + |23⟩ + |27⟩ + |31⟩

)
. (248)

We can re-express (244) in the more general form

|ψ2⟩ =
1
√

r

r−1∑
s=0

|ws⟩ ⊗ | f (s)⟩ , (249)

which also holds for period r = 2, although the states |ws⟩ and | f (s)⟩ will be different. Returning to r = 4, we can
now generalize (245)–(248) to arbitrary m, where M = 2m:

|ws⟩ =

√
4
M

M/4−1∑
k=0

|s + 4k⟩ for s ∈ {0, 1, 2, 3} . (250)

This form relies on a special feature of N = 15, namely that M/r = 2m/4 = 2m−2 is an integer for r = 4. Also note
that M/r = M/2 = 2m−1 is also an integer for r = 2. This leads to the further generalization

|ws⟩ =

√
r
M

M/r−1∑
k=0

|s + rk⟩ for s ∈ {0, · · · , r − 1} . (251)

When r = 2 we have s ∈ {0, 1}, and when r = 4 we have s ∈ {0, 1, 2, 3}.
Returning again to r = 4, let us now measure the state |ψ2⟩ at position 2, as illustrated by the lower panel of Fig. 21.

This leads to wavefunction collapse, so that

|ψ2⟩ =
1
√

4

3∑
s=0

|ws⟩ ⊗ | f (s)⟩ → |ws⟩ ⊗ | f (s)⟩ , (252)

where s ∈ {0, 1, 2, 3} is randomly selected with a uniform probability of 1/4. We must now apply the inverse Fourier
transform to the control register, thereby giving the state

QFT † |ws⟩ ≡

M−1∑
ℓ=0

Aℓ,s |ℓ⟩ . (253)

The next step is to find the amplitudes Aℓ,s by performing the inverse Fourier transform on the state |ws⟩, which can
be calculated exactly:

QFT † |ws⟩ =

√
4
M

M/4−1∑
k=0

QFT † |s + 4k⟩ =

√
4
M

M/4−1∑
k=0

1
√

M

M−1∑
ℓ=0

e−2πi ℓ(s+4k)/M |ℓ⟩ (254)

=
2
M

M−1∑
ℓ=0

e−2πi ℓs/M
M/4−1∑

k=0

e−8πi kℓ/M |ℓ⟩ (255)

=
2
M

M−1∑
ℓ=0

e−2πi ℓs/M 1 −
[
e−8πi ℓ/M]M/4

1 − e−8πi ℓ/M |ℓ⟩ (256)

=
2
M

M−1∑
ℓ=0

e−2πi ℓs/M 1 − e−2πi ℓ

1 − e−8πi ℓ/M |ℓ⟩ . (257)
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We therefore find

Aℓ,s = e−2πi ℓs/M 2
M

1 − e−2πi ℓ

1 − e−8πi ℓ/M for ℓ ∈ {0, 1, · · · ,M − 1} . (258)

Note that the s-dependence lies only in the complex phases, and therefore the probabilities Pℓ = |Aℓ,s|2 can be
expressed by

Pℓ =
4

M2

∣∣∣∣∣∣ 1 − e−2πi ℓ

1 − e−8πi ℓ/M

∣∣∣∣∣∣2 = 4
M2

1 − cos(2πℓ)
1 − cos(8πℓ/M)

(259)

=
4

M2

sin2(πℓ)
sin2(4πℓ/M)

for ℓ ∈ {0, 1, · · · ,M − 1} . (260)

Also note that the numerator vanishes for every integer ℓ, so the only way we can obtain a non-zero probability
is when the denominator also vanishes (so that we have the indeterminate form 0/0). However, the denominator
vanishes only for ℓ such that

4πℓ
M
= nπ for n ∈ Z , (261)

or equivalently for

ℓn =
nM
4

for n ∈ {0, 1, 2, 3} . (262)

We have dropped the tilde over ℓn since this is a theoretical prediction and not a measurement. The value of n is
restricted to {0, 1, 2, 3} because ℓ = ℓn must be a non-negative integer that cannot exceed M − 1. Note that expression
(261) means that

sin(4πℓn/M) = 0 (263)

cos(4πℓn/M) = ±1 , (264)

relations that we shall use momentarily. From the probability (260), we see that Pℓ vanishes for all values of ℓ
except for ℓ = ℓn. Thus, Pℓ vanishes at all but four of its 2m possibilities! We must next calculate the corresponding
probabilities at the four poles ℓ = ℓn, and it should come as no surprise that they are all equally likely with probability
P = 1/4.

Let us now turn to calculating these probabilities. In the language of quantum field theory, we must perform a
regularization procedure on the function (260), thereby eliminating the poles at ℓn = nM/4. To do this, we shall (i)
displace each pole ℓn by a small distance ε, (ii) evaluate this regularized probability exactly for a non-zero ε, and (iii)
only afterward take the limit of zero displacement ε→ 0. Therefore, let us make the shift

ℓn → ℓn + ε (265)

in expression (260). Upon using the more suggestive notation P(ℓ) ≡ Pℓ, we thereby define the regularized
probabilities by

Pn ≡ lim
ε→0

P(ℓn + ε) . (266)

We can now calculate the probabilities at the poles ℓ = ℓn:

Pn =
4

M2 lim
ε→0

[
sin(πℓn + πε)

sin(4πℓn/M + 4πε/M)

]2

(267)

=
4

M2 lim
ε→0

[
sin(πℓn) cos(πε) + cos(πℓn) sin(πε)

sin(4πℓn/M) cos(4πε/M) + cos(4πℓm/M) sin(4πε/M)

]2

(268)
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Figure 22: Probabilities Pℓ for ℓ ∈ {0, 1, · · · ,M − 1}. Top panel is for a = 8 (period r = 4) , and the bottom panel is for a = 4
(period r = 2).

=
4

M2 lim
ε→0

[
sin(πε)

sin(4πε/M)

]2

=
4

M2 lim
ε→0

[
πε

4πε/M

]2

=
1
4
, (269)

where we have used relations (263) and (264). These are the only non-zero values of Pℓ, and the graph of the
probabilities for a = 8 is shown in the top panel of Fig. 22. For the period r = 2, we would find

ℓn =
nM
2

for n ∈ {0, 1} , (270)

with Pn = 1/2, which is illustrated in the bottom panel of Fig. 22.
Let us now check this calculation against the previous Qiskit output for m = 5 and m = 9.

(i) a = 8 or r = 4: For M = 25 = 32, we find ℓn = 8n, or ℓ0 = 0, ℓ1 = 8, ℓ2 = 16, ℓ3 = 24, in agreement with (239).
For M = 29, we have ℓn = 128n, or ℓ0 = 0, ℓ1 = 128, ℓ2 = 256, ℓ3 = 384, in agreement with (228).

(ii) a = 4 or r = 2: For m = 9 we have M = 29, and therefore ℓn = 256n. Thus, ℓ0 = 0 and ℓ1 = 256, in agreement
with (224).

This analysis is actually a special case of a result that we have already derived. In Section 3.4 we showed that when
the phase angle θ is such that ℓθ ≡ 2mθ is an integer for m control qubits, then the amplitude simplifies to Aℓ(θ) = δℓ,ℓθ .
This is exactly what we have shown here for N = 15 and a = 4, 8, since the phases are ϕs = s/r with the periods
r = 2, 4, which are just powers of 2.
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U |w⟩ =
∣∣∣2 · w (mod 21)

〉
U |1⟩ = |2⟩ U |00001⟩ = |00010⟩
U |2⟩ = |4⟩ U |00010⟩ = |00100⟩
U |4⟩ = |8⟩ U |00100⟩ = |01000⟩
U |8⟩ = |16⟩ U |01000⟩ = |10000⟩

U |16⟩ = |11⟩ U |10000⟩ = |01011⟩
U |11⟩ = |1⟩ U |01011⟩ = |00001⟩

Figure 23: N = 21, a = 2, r = 6: The left panel illustrates the modular exponential function f2,21(x) = 2x (mod 21), while the
right panel shows the action of the ME operator U2,21 on the closed sequence [1, 2, 4, 8, 16, 11, 1].

7. Further Examples

7.1. Factoring Larger Numbers: N = 21 = 3 × 7, a = 2, r = 6

We now turn to factoring numbers larger than N = 15, where we will need to construct more complex modular
exponentiation (ME) operators Ua N for an appropriate base a. While the N = 15 operators were rather easy to
construct, this is not the case for larger values of N. The ME operators Ua,15 were completely general, valid for
any permissible base a, and acting on any computational basis element in the work-state Hilbert space. In contrast,
creating such general operators for larger values of N appears to be extremely difficult. However, we do not require the
general structure of the ME operators. This is because the first operation of Ua N acts on the work-state |1⟩ = |0 · · · 01⟩,
and the next operation acts on the output of the first, and so on. Since

U x
a N |1⟩ =

∣∣∣ fa N(x)
〉

for any x ∈ {0, 1, 2, · · · } , (271)

we therefore only need to find the operation of Ua N on the states | fa N(x)⟩ for x = 0, 1, · · · , r − 1, where r is the period
of fa N(x). Let us return momentarily to a general number of work qubits n. We see that the work space, which we
shall denote byWn, has dimension 2n, and a general ME operator U can act on this entire Hilbert space. Consider
now the r-dimensional subspace defined by

Ur ≡ Span
{ ∣∣∣ f (x)

〉 ∣∣∣∣ x ∈ {0, 1, · · · , r − 1}
}
⊆ Wn . (272)

As discussed above, the U operator transforms one basis element ofUr into another basis element, that is to say,
the ME operator U leaves the r-dimensional spaceUr invariant, so that U[Ur] = Ur. Thus, as the U operator acts
successively, the states in the work register only vary over the r-dimensional subspace Ur. The operators CU p

therefore entangle the control register and the subspaceUr (and not the entire work space), and this plays a crucial
role in the exponential speedup of Shor’s algorithm. We have reduced the problem to the action of ME operator U on
the lower dimensional subspaceUr of the exponentially large work spaceWn, and we can henceforth restrict our
attention to this subspaceUr. This is quite similar to Grover’s search algorithm that reduces to movement within a
2-dimensional subspace.

In the case of N = 21 with base a = 2, the left panel of Fig. 23 illustrates the modular exponential function
f2,21(x). The period is observed to be r = 6, with the closed cycle [1, 2, 4, 8, 16, 11, 1], as illustrated in the right panel
of the Figure. Thus, we only need to consider U2,21 on the states |1⟩, |2⟩, |4⟩, |8⟩, |16⟩, and |11⟩. We must employ
n = ⌈log2 21⌉ = 5 qubits to enumerate these states in the work register.
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The work states can therefore be indexed by a binary string of the form w4w3w2w1w0 with wk ∈ {0, 1}, and we
can use a collection of multi-control CnX and X gates to transform this string into the next string in the sequence.
Furthermore, we must measure the phase in the m-bit control register with sufficient accuracy to extract the correct
period. For r = 6, the permissible Eigen-phases of the ME operator are ϕs = s/6 for s ∈ {0, 1, · · · , 5}, and we must
therefor be able to resolve a phase difference of ∆ϕ = 1/6 ≈ 0.16666. We showed earlier in the text that the continued
fractions method requires m = 2n + 1 = 11 control qubits (for n = 5); however, since r = 6 is so small, it turns out
that we can get by with only m = 5. Therefore, the Shor circuit for N = 21 and a = 2 will have the same structure as
the one illustrated in Fig. 16, except that the number of control qubits will be reduced to m = 5.

We will have to construct the appropriate ME operators U p
2,21 for p ∈ {20, 21, 22, 23, 24}, namely U,U2,U4,U8,U16,

since there are five control qubits. Later in this section we shall consider m = 6 control qubits, in which case we will
also require U32. For the time being, we will only construct the U operator, and then concatenate this operator to
form the composite operators U p for p > 1. We will refer to this procedure by version number u ver = 0. It is clear
that this method will not work for general N, as it requires an exponentially large number of concatenations. We will
shortly illustrate how to directly construct the set of composite operators U p for p > 1, but for the time being we
shall continue with our current line of development using simple concatenation.

Figure 24: N = 21, a = 2, r = 6: The quantum circuit for the modular exponentiation (ME) operator U2,21. The quantum gates
between the barriers transform the state from one value of f2,21(x) to the next in the closed sequence [1, 2, 4, 8, 16, 11, 1]. We
will call this version of the ME operator by u ver = 0.

Figure 24 illustrates the ME operator U = U2,21. This operator is constructed only from multi-control-NOT
gates CnX and single-qubit NOT gates X. The operator U2,21 is partitioned into six sections, where each section is
indexed by an integer x = 0, 1, · · · , 5, and the gates in section x transform the work-state | f (x)⟩ ≡ |w4 · · ·w0⟩ into
| f (x + 1)⟩ ≡ |w′4 · · ·w

′
0⟩. For example, since U |1⟩ = |2⟩, the SWAP gate between the first barrier changes the initial

state |1⟩ = |00001⟩ into the next state |2⟩ = |00010⟩. The second SWAP operation transforms |2⟩ = |00010⟩ into
|4⟩ = |00100⟩, and so on. This is illustrated in the right panel of Fig. 23, and by the annotations under the barriers in
Fig. 24. We shall use this restricted version of the ME operator U2,21 in Shor’s algorithm. For m = 5 control qubits
and n = 5 work qubits, Fig. 25 illustrates the output phase histogram from a Qiskit simulation using 4096 shots. The
abscissa indexes the possible phases, and the ordinate provides their corresponding probabilities. In agreement with
the phase histogram of Fig. 25, Shor’s algorithm is designed so that the most dominant phases correspond to the
Eigen-phases of U2,21, which take the simple form ϕs = s/6 fors ∈ {0, 1, · · · , 5}. The phases for which gcd(s, 6) = 1
(namely s = 1 and s = 5) lead to the factors of N = 21, and these peaks are plotted in red. The code output for
these phases is detailed in Table 4. Note that the phase histogram for N = 21 is considerably more complex than the
N = 15 histogram in Fig. 20.

Let us examine the phase histogram in Fig. 25 in a little more detail. As noted above, the abscissa gives the phases
of the ME operator U2,21. They are represented by 5-bit integers ℓ̃ = ϕ̃4 · · · ϕ̃0, and correspond to the binary phases
ϕ̃ = ℓ̃/25 = 0.ϕ̃4 · · · ϕ̃0, where ϕ̃k ∈ {0, 1} is the measured value of qubit k in the control register. The ordinate gives
the probability that the given phase will be observed during a measurement of the control register. As noted in the
previous paragraph, we expect the phase histogram to have large peaks close to the six phases of the ME operator,

ϕ0 = 0 = 0.00000 · · ·
ϕ1 = 1/6 = 0.16666 · · ·
ϕ2 = 2/6 = 0.33333 · · · (273)
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ϕ3 = 3/6 = 0.50000 · · ·
ϕ4 = 4/6 = 0.66666 · · ·
ϕ5 = 5/6 = 0.83333 · · · .

And indeed it does, as the six dominant peaks in Fig. 25 occur at

ℓ̃0 = [00000]2 = 0 ϕ̃0 = [0.00000]2 = 0.00000 = ϕ0
ℓ̃1 = [00101]2 = 5 ϕ̃1 = [0.00101]2 = 0.15625 ≈ ϕ1 ⇐ factors : 3, 7
ℓ̃2 = [01011]2 = 11 ϕ̃2 = [0.01011]2 = 0.34375 ≈ ϕ2
ℓ̃3 = [10000]2 = 16 ϕ̃3 = [0.10000]2 = 0.50000 = ϕ3 (274)
ℓ̃4 = [10101]2 = 21 ϕ̃4 = [0.10101]2 = 0.65625 ≈ ϕ4
ℓ̃5 = [11011]2 = 27 ϕ̃5 = [0.11011]2 = 0.84375 ≈ ϕ5 ⇐ factors : 3, 7 .

A phase measurement ϕ̃s will typically not exactly equal the associated Eigen-phase ϕs because of the finite resolution
of the control register. However, each peak ϕ̃s lies very close to an actual phase ϕs = s/6, although only the phases
s = 1 and s = 5 produce the factors of 3 and 7. The probability of finding a factor during each shot is about
2/6 ≈ 30%, and we are therefore almost guaranteed to find a factor after only a few iterations.

Let us next examine the first entry in Table 4 in some detail. This entry corresponds to the first red peak in the
phase histogram, ℓ̃1 = [00101]2 = 5, which gives a measured phase of ϕ̃1 = [0.00101]2 = 0.15625. This lies very
close to ϕ1 = 1/6 = 0.16666 · · · . In general, the difference between each measured phase and the exact ME phase is
of order 0.01, which is less than the resolution 2−5 = 0.03125. We also list the frequency of occurrence out of the
total number of shots of 4096. The Python continued fraction module contfrac prefers fractional inputs, so we
convert the decimal value of the phase to a fraction, ϕ̃1 = 5/32, and the corresponding continued fraction is found to
be

ϕ̃1 = 0.15625 = 5/32 = [0; 0, 6, 2, 2] . (275)

The module contfrac then calculates all possible convergents of the rational number ϕ̃1 = 5/32, thereby giving
c0 = 0/1, c1 = 1/6, c2 = 2/13, c3 = 5/32. Note that these fractions are represented by the ordered pairs (0, 1),

Figure 25: The phase histogram for N = 21, a = 2 and m = 5 for u ver = 0 from a Qiskit simulation with 4096 runs.
The six dominant peaks of the histogram occur very close to the six Eigen-phases ϕs = s/6 of the ME operator U2,21, where
s ∈ {0, 1, · · · , 5}. The phases that produce factors are shown in red, occurring at the (binary) values ϕ̃1 = [0.00101]2 ≈ ϕ1 = 1/6
and ϕ̃5 = [0.11011]2 ≈ ϕ5 = 5/6. Note that these phase peaks lie well above the noise.
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Table 4: The output of Shor’s algorithm for N = 21, a = 2 and m = 5 for version u ver = 0. Only the two phase values
that produced factors are listed. The variable l measured corresponds to the control register state indexed by the integer
ℓ̃ = ϕ̃4 · · · ϕ̃0, while phi phase bin corresponds to the 5-bit binary (measured) phase ϕ̃ = ℓ̃/25 = 0.ϕ̃4 · · · ϕ̃0. The decimal
representation of the phase is also provided for convenience. The continued fraction representation, and the associated
convergents (from the Python package contfrac) are also given, where each convergent c = s/r is represented by an ordered
pair (s, r). The code checks to see if the denominator r is a solution to (214)–(216). If r is a solution, then the factors are given
by gcd(ar/2 ± 1,N).

l_measured : 00101 5 frequency: 466

phi_phase_bin: 0.00101

phi_phase_dec: 0.15625

phi: (5, 32)

cont frac of phi : [0, 6, 2, 2]

convergents of phi: [(0, 1), (1, 6), (2, 13), (5, 32)]

conv: (0, 1) r = 1 : no factors found

conv: (1, 6) r = 6 : factors

factor1: 7

factor2: 3

conv: (2, 13) r = 13 : no factors found

conv: (5, 32) r = 32 : no factors found

l_measured : 11011 27 frequency: 458

phi_phase_bin: 0.11011

phi_phase_dec: 0.84375

phi: (27, 32)

cont frac of phi : [0, 1, 5, 2, 2]

convergents of phi: [(0, 1), (1, 1), (5, 6), (11, 13), (27, 32)]

conv: (0, 1) r = 1 : no factors found

conv: (1, 1) r = 1 : no factors found

conv: (5, 6) r = 6 : factors

factor1: 7

factor2: 3

conv: (11, 13) r = 13 : no factors found

conv: (27, 32) r = 32 : no factors found

(1, 6), (2, 13) and (5, 32) in the continued fraction package. We then sequence through this small list of convergents
cℓ = sℓ/rℓ, testing each value of r = rℓ for a solution to (214)–(216). As we expect, only r1 = 6 provides such a
solution. As a matter of completeness, we provide below the code output for phase ϕ̃2, which does not produce factors.

Code output for N = 21, a = 2, r = 6, m = 5, peak ϕ̃2 = [0.01011]2 = 0.34375 (no factors):

l_measured : 01011 11 frequency: 480

phi_phase_bin: 0.01011

phi_phase_dec: 0.34375

phi: (11, 32)

cont frac of phi : [0, 2, 1, 10]

convergents of phi: [(0, 1), (1, 2), (1, 3), (11, 32)]

conv: (0, 1) r = 1 : no factors found

conv: (1, 2) r = 2 : no factors found

conv: (1, 3) r = 3 : no factors found

conv: (11, 32) r = 32 : no factors found

It is interesting to increase the number of control qubits to m = 6. This involves the operator U32
2,21, which can be
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Figure 26: The corresponding phase histogram for m = 6. There is a dominant and sub-dominate peak for each ME phase ϕs.
Note that sub-dominant peaks can also produce factors.

constructed from U2,21 by simple concatenation, albeit with the price of increasing the number of gates substantially.
Figure 26 illustrates the output phase histogram from another Qiskit run with 4096 shots. The top panel of the Figure
shows all output phases, while the bottom panel gives only the most likely phases.

The measured phases are peaked near each of the exact phases ϕs, and they lie within the resolution 2−6 = 0.015625
of these phases. Note, however, that most phases have a dominant and a sub-dominant peak, labeled by ϕ̃ℓ and ϕ̃ℓ,k
respectively, where k = ±1 depending on whether the sub-dominant peak lies to the left or right of the dominant peak.
Note that the sub-dominant peaks for s = 1 and s = 5 also produce factors. The measured values of each of these
peaks are given below:

ℓ̃0 = [000000]2 = 0 ϕ̃0 = [0.000000]2 = 0.000000 = ϕ0
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Figure 27: N = 21, a = 2, r = 6: The ME operators U2,U4,U8 and U16 for version u ver = 1 given in expression (277).

ℓ̃1,−1 = [001010]2 = 10 ϕ̃1,−1 = [0.001010]2 = 0.156250 ≈ ϕ1 ⇐ factors : 3, 7
ℓ̃1 = [001011]2 = 11 ϕ̃1 = [0.001011]2 = 0.171875 ≈ ϕ1 ⇐ factors : 3, 7
ℓ̃2 = [010101]2 = 21 ϕ̃2 = [0.010101]2 = 0.328125 ≈ ϕ2
ℓ̃2,1 = [010110]2 = 22 ϕ̃2,1 = [0.010110]2 = 0.343750 ≈ ϕ2
ℓ̃3 = [100000]2 = 32 ϕ̃3 = [0.100000]2 = 0.500000 = ϕ3 (276)

ℓ̃4,−1 = [101010]2 = 42 ϕ̃4,−1 = [0.101010]2 = 0.656250 ≈ ϕ4
ℓ̃4 = [101011]2 = 43 ϕ̃4 = [0.101011]2 = 0.671875 ≈ ϕ4
ℓ̃5 = [110101]2 = 53 ϕ̃5 = [0.110101]2 = 0.828125 ≈ ϕ5 ⇐ factors : 3, 7
ℓ̃5,1 = [110110]2 = 54 ϕ̃5,1 = [0.110110]2 = 0.84375 ≈ ϕ5 ⇐ factors : 3, 7 .

We are now ready to address the concatenation issue. Let us return to m = 5 control qubits. Up to now we have
produced U2,U4,U8 and U16 by simply concatenating the operator U from Fig. 24. However, we only require
the five operators U p on the 6-dimensional subspace Ur=6 ⊆ Wn=5. Note that the operator U2 acts on every
other element of the sequence [1, 2, 4, 8, 16, 11, 1], producing two closed sub-sequences [1, 4, 16, 1] and [2, 8, 11, 2].
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Figure 28: N = 21, a = 2, r = 6, m = 5: Phase histogram for ME operator version u ver = 1 agrees with the original phase
histogram of Fig. 25. As before, the phases that produce factors are shown in red.

Similarly, U4 chooses every 4-th element of the sequence and so on, so that the ME operators U2, U4, U8, and U16

all act on pairs of closed sub-sequences:

U2,21 : [1, 2, 4, 8, 16, 11, 1]
U2

2,21 : [1, 4, 16, 1] and [2, 8, 11, 2]
U4

2,21 : [1, 16, 4, 1] and [2, 11, 8, 2] (277)
U8

2,21 : [1, 4, 16, 1] and [2, 8, 11, 2]
U16

2,21 : [1, 16, 4, 1] and [2, 11, 8, 2] ,

where we have restored the N = 21 and a = 2 subscripts on the ME operator U = U2,21 for clarity. The corresponding
circuits that produce these sequences are given in Fig. 27, and we will refer to this collection as version number
u ver = 1. Figure 28 illustrates the phase histogram from Shor’s algorithm with these ME operators. The graph is
identical to that of Fig. 25 (as it should be). We see that the phases ϕ̃1 = [0.00101]2 ≈ 1/6 and ϕ̃5 = [0.11011]2 ≈ 5/6
still lie well above the noise, producing the correct factorization.

At this point, one can (and should) levy another charge against this procedure: we have used the entire cycle
[1, 2, 4, 8, 16, 11, 1] for the ME operator U2,21, which means that we know a priori that the period of the modular
exponential function f2,21(x) is r = 6. In other words, if we knew the complete closed-sequence for a general N, then
this is equivalent to knowing the period r, so there is no need for Shor’s algorithm. However, we do not require the
complete sequence! This is because when employing the method of continued fractions, it is not necessary to know
the exact phase, but only an approximate phase. Therefore, we require only as much resolution in the phases ϕ̃s as to
extract the corresponding convergents s/r using continued fractions. Figure 29 illustrates a truncated version of the
operators U,U2,U4,U8, and U16, in which we have omitted several stages from each ME operator U p. We shall refer
to this as version u ver = 2. We see from the phase histogram in Fig. 30 that employing these operators in Shor’s
algorithm still permits one to extract the appropriate phases, and therefore the correct factors. Not surprisingly, the
phase histogram has more noise, but this does not overwhelm the signal. We have explored a number of truncation
procedures, and they all produce similar results. We will see in the next section that these methods continue to work
for even larger values of N.

Before continuing on to larger numbers, however, let us confirm a result derived in the previous sections. We
have shown that when ℓs = 2mϕs is an integer for all s ∈ {0, 1, · · · , r − 1}, then the final state amplitudes are non-zero
only for ℓ = ℓs. In the upper panel of Fig. 31, we see that the modular exponential function for N = 21 and a = 13
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Figure 29: N = 21 and a = 2: Truncated ME operators U,U2,U4,U8 and U16 for ME operator version u ver = 2.

Figure 30: N = 21, a = 2, r = 6, m = 5: Phase histogram for version u ver = 2, which employs the truncated ME operators in
Fig. 29. The signal agrees with the previous two versions, with only slightly more noise, and the peaks in red correspond to
phases that produce the factors of 3 and 7.
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U |w⟩ =
∣∣∣14 · w (mod 21)

〉
U |1⟩ = |13⟩ U |00001⟩ = |01101⟩
U |13⟩ = |1⟩ U |01101⟩ = |00001⟩

Figure 31: N = 21, a = 13, r = 2: The left panel illustrates the modular exponential function f2,13(x) = 2x (mod 21), while the
right panel shows the action of the ME operator U2,13 on the closed sequence [1, 13, 1] .

has a period of r = 2. The lower panel gives the corresponding ME operator, while Fig. 32 illustrates the phase
histogram for m = 6. There are exactly two peaks at the values ℓ̃0 = 000000 and ℓ̃1 = 100000, as expected. These
peaks correspond to the phase angles ϕ̃0 = 0.000000 and ϕ̃1 = 0.100000 = 1/2, and the latter produces the correct
factors of 3 and 7.

7.2. More Factoring

We now turn to factoring even large numbers N. As pointed out in Ref. [7], the difficulty for Shor’s algorithm lies not
in the size of the number N, but in the length of the period r. As illustrated in Table 5, we have therefore chosen a
collection of composite numbers, N = 21, 35, 33, 143, 247, and corresponding bases a, that cover a wide range of
periods from r = 6 to r = 36.

Note that we require larger values of m for the control register with increasing period r. We plot the corresponding
modular exponential functions fa N(x) in Fig. 33 for each value of N and its respective base a. For readability, the
plots in Fig. 33 are restricted to small values of the domain variable x. In general, however, the function fa N(x) looks
highly random over the entire domain of x (although it is not), as illustrated in Fig. 34, where we plot the exponential
function f5,143(x) over an extended domain of x-values.

7.2.1. N = 35 = 5 × 7, a = 4, r = 6

Having examined N = 21, we now address N = 35 = 5 × 7 with the base a = 4. As illustrated in the top panel of
Fig. 35 (and the top-left of Fig 33), these parameters give a modular exponential function f4,35(x) with period r = 6,
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Figure 32: N = 21, a = 13, r = 2: The corresponding phase histogram for m = 6 and u ver = 0. The red peak produces the
factors of 3 and 7.

just as with N = 21 and a = 2. We can therefore get by with m = 5 control register qubits. However, we must
increase the work register to n = ⌈log2 35⌉ = 6 qubits. We see that the ME operator U4,35 only acts on the closed
cycle [1, 4, 16, 29, 11, 9, 1], and the corresponding circuit representation of U4,35 is given in the lower panel of Fig 35.
Note that qubit w5 is not used. Finally, the phase histogram of Shor’s algorithm from a Qiskit simulation of 4096
runs is presented in Fig. 36. Again, we call this version u ver = 0, as the operators U p

4,35 are formed by simple
concatenation of U4,35. The two peaks in red occur at ℓ̃1 = [00101]2 and ℓ̃5 = [11011]2, which correspond to the
phases ϕ̃1 = [0.00101]2 ≈ 1/6 and ϕ̃5 = [0.11011]2 ≈ 5/6. Each such phase provides the factors of 5 and 7. Note
that the two red phase peaks occur at the same values as for N = 21 and a = 2, although these peaks give different
factors because N and a differ.

Recall that by concatenating the ME operator U4,35 to form the composite operators U p
4,35, we will eventually

employ an exponential number of terms, and this procedure will consequently break down for large values of N. As
before, we can address this problem by noting that the ME operators U p

4,35 for p = 1, 2, 4, 8, 16 possess the following
closed cycles:

U4,35 : [1, 4, 16, 29, 11, 9, 1]
U2

4,35 : [1, 16, 11, 1] and [4, 29, 9, 4]
U4

4,35 : [1, 11, 16, 1] and [4, 9, 29, 4] (278)
U8

4,35 : [1, 16, 11, 1] and [4, 29, 9, 4]
U16

4,35 : [1, 11, 16, 1] and [4, 9, 29, 4] .

We can now construct operators U p
4,35 that reproduce these cycles by concatenating commensurate cycle-pairs

together; for example, we must ensure that U2
4,35 reproduces the double cycle [1, 16, 11, 1, 4, 29, 9, 4], and we refer

to this procedure as version number u ver = 1. The composite operators U p
4,35 for p > 1 are illustrated in Fig. 37,

while the corresponding phase histogram from a Qiskit simulation with 4096 runs is given in Fig. 38. We see that the

Table 5: Composite numbers N = p × q for primes p and q, together with the corresponding Shor parameters: the work-space
length n = ⌈log2 N⌉, the base a, the period r of fa N(x), and the length m of the control register.

N = p × q n a r m
21 = 3 × 7 5 2 6 5, 6
35 = 5 × 7 6 4 6 5
33 = 3 × 11 6 7 10 6
143 = 13 × 11 8 5 20 8, 9, 10
247 = 13 × 19 8 2 36 9, 10
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Figure 33: The modular exponential functions fa,N(x) = ax (mod N) for the numbers N and bases a in Table 5. We shall use
these in Shor’s algorithm: the top left corresponds to N = 35 and a = 4, the top right is for N = 33 and a = 7, the bottom left is
for N = 143 and a = 5, and the bottom right is for N = 247 and a = 2.

results still agree with the previous version from Fig. 36, in which we concatenated the U4,35 operator to form the
U p

4,35 operators.

Finally, Figs. 39 and 40 illustrates a truncated version of the ME operators U p
4,35, with the corresponding phase

histogram given in Fig. 41. We see that the truncated operators U p
4,35 still provide the correct peaks in the phase

histogram, albeit with more noise.

7.2.2. N = 33 = 3 × 11, a = 7, r = 10

We now move on to factoring a number with a larger period: N = 33 = 3 × 11 with base a = 7 has period r = 10. It
turns out that m = 6 control qubits give sufficient resolution for r = 10, while the number of work qubits must be
set to n = ⌈log2 33⌉ = 6, as with the previous example. The circuit representation of the ME operator is shown in
Fig. 42, while the corresponding modular exponential function f7,33(x) is plotted in the left panel of Fig. 43, with the
action of the ME operator U7,33 on the closed sequence [1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1] given in the right panel.
As usual, we form the composite operators U p for p > 1 by concatenation, and call this version u ver = 0. The
phase histogram for 4096 runs is illustrated in Fig. 44, where the top panel gives the histogram over the full range of
phases from the Qiskit simulation, while the bottom panel shows only the most frequent peaks.

Note that the ten dominant peaks in Fig. 44 lie close to the ME Eigen-phases ϕs = s/10 for s ∈ {0, 1, · · · , 9}, as
they should. Furthermore, the peaks corresponding to the factors of 3 and 11 occur only when gcd(s, 10) = 1, or for
s = 1, 3, 7, 9, and they are plotted in red. The phase values of all ten dominant peaks are listed below:
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Figure 34: The range of f5,143(x) has been extended. The function appears random, and the period r = 20 is not apparent at first
glance.

U |w⟩ =
∣∣∣4 · w (mod 35)

〉
U |1⟩ = |4⟩ U |000001⟩ = |000100⟩
U |4⟩ = |16⟩ U |000100⟩ = |010000⟩

U |16⟩ = |29⟩ U |010000⟩ = |011101⟩
U |29⟩ = |11⟩ U |011101⟩ = |001011⟩
U |11⟩ = |9⟩ U |001011⟩ = |001001⟩
U |9⟩ = |1⟩ U |001001⟩ = |000001⟩

Figure 35: N = 35, a = 4, r = 6: The top-left panel shows the modular exponential function f4,35(x) = 4x (mod 35), which is
seen to have period r = 6. The top-right panel gives the action of the ME operator U4,35 on the closed sequence [1, 4, 16, 11, 9, 1].
The bottom panel illustrates the circuit formulation of U4,35. Note that qubit w5 is not used.
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Figure 36: N = 35, a = 4, r = 6, m = 5: The six dominant peaks of the phase histogram occur very close to the six phases
ϕs = s/6 of the ME operator U4,35, where s ∈ {0, 1, · · · , 5}. The phases that produce factors are shown in red, and and occur at
ϕ̃1 = [0.00101]2 ≈ 1/6 and ϕ̃5 = [0.11011]2 ≈ 5/6, each providing the factors of 3 and 7. These peaks are amplified above the
noise by Shor’s algorithm.

ϕ̃0 = [0.000000]2 = 0.000000 = 0
ϕ̃1 = [0.000110]2 = 0.093750 ≈ 1/10 ⇐ factors : 3, 11
ϕ̃2 = [0.001101]2 = 0.203125 ≈ 2/10
ϕ̃3 = [0.010011]2 = 0.296875 ≈ 3/10 ⇐ factors : 3, 11
ϕ̃4 = [0.011010]2 = 0.406250 ≈ 4/10 (279)
ϕ̃5 = [0.100000]2 = 0.500000 = 5/10
ϕ̃6 = [0.100110]2 = 0.593750 ≈ 6/10
ϕ̃7 = [0.101101]2 = 0.703125 ≈ 7/10 ⇐ factors : 3, 11
ϕ̃8 = [0.110011]2 = 0.796875 ≈ 8/10
ϕ̃9 = [0.111010]2 = 0.906250 ≈ 9/10 ⇐ factors : 3, 11 .

Let us now construct the composite operators U p for p = 20, 21, · · · , 25. Note that these operators possess the
following cycles:

U7,33 : [1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1]
U2

7,33 : [1, 16, 25, 4, 31, 1] and [7, 13, 10, 28, 19, 7]
U4

7,33 : [1, 25, 31, 16, 4, 1] and [7, 10, 19, 13, 28, 7] (280)
U8

7,33 : [1, 31, 4, 25, 16, 1] and [7, 19, 28, 10, 13, 7]
U16

7,33 : [1, 4, 16, 31, 25, 1] and [7, 28, 13, 19, 10, 7]
U32

7,33 : [1, 16, 25, 4, 31, 1] and [7, 13, 10, 28, 19, 7] .

The operators U p for p > 1 are given in Figs. 45 and 46, and the corresponding phase histogram for 4096 runs is
shown in Fig. 47. We will call this version u ver = 1, and it agrees with the previous result.

As we have seen, the choice of ME operators seems to be rather forgiving, as long as they encode sufficient
correlations to yield an approximate phase for which the continued fractions algorithm can be employed. For example,
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Figure 37: N = 35, a = 4, r = 6: The ME operators U2,U4,U8 and U16 for version u ver = 1.

consider the case in which we ignore half of the cycles in the previous version:

U7,33 : [1, 7, 16, 13, 25, 10, 4]
U2

7,33 : [1, 16, 25, 4, 31, 1]
U4

7,33 : [1, 25, 31, 16, 4, 1] (281)
U8

7,33 : [1, 31, 4, 25, 16, 1]
U16

7,33 : [1, 4, 16, 31, 25, 1]
U32

7,33 : [1, 16, 25, 4, 31, 1] .

We shall call this version u ver = 2. The operators are given in Figs. 48 and 49, and the phase histogram given by
Fig. 50 agrees with the previous results (although there is a bit more noise). The lesson here is that much freedom is
permitted when constructing the ME operators.

7.2.3. N = 143 = 13 × 11, a = 5, r = 20

The next number we shall factor is N = 143 = 11 × 13. As illustrated in the left panel of Fig. 51, the base a = 5 gives
a modular exponential function f5,143(x) with a period of r = 20. The work register must have n = ⌈log2 143⌉ = 8
qubits, and the corresponding ME operator U5,143 is given in Fig. 52. We will perform a resolution study on the
control register by taking m = 8, 9, 10. We will start our analysis with m = 8, so we must implement the ME operators
U p

5,143 for p = 20, 21, · · · , 27, i.e. we require the operators U5,143,U2
5,143,U

4
5,143,U

8
5,143,U

16
5,143,U

32
5,143,U

64
5,143 and
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Figure 38: N = 35, a = 4, r = 6, m = 5: Phase histogram for ME operator version u ver = 1 from Fig. 37.

Figure 39: N = 35, a = 4, r = 6: The ME operators U8,U16 for version u ver = 2.

U128
5,143. For m = 9 control qubits, we will also require the operator U256

5,143, and for m = 10 we must implement U512
5,143.

As always, we refer to the concatenated operators by u ver = 0. The phase histogram for m = 8 is given in Fig. 53.
The top panel of the Figure gives the histogram over the full range of phases, while the bottom panel only plots the
most frequent phases, with red phases providing factors.

The 20 phases of the ME operator U5,143 are supposed to occur at ϕs = s/20 for s ∈ {0, 1, · · · , 19}, with the factors
coming from the phases for which gcd(s, 20) = 1, that is to say, at the eight phases ϕs = 1/20, 3/20, 7/20, 9/20, 11/20,
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Figure 40: N = 35, a = 4, r = 6: The ME operators U,U2,U4 for version u ver = 2.

13/20, 17/20, 19/20. Note, however, that the red peaks of the phase histogram only contain six of the eight phases:

ϕ̃1 = [0.00001101]2 = 0.05078125 ≈ ϕ1 = 1/20 (282)

ϕ̃3 = [0.00100110]2 = 0.14843750 ≈ ϕ3 = 3/20 (283)

ϕ̃9 = [0.01110011]2 = 0.44921875 ≈ ϕ9 = 9/20 (284)

ϕ̃11 = [0.10001101]2 = 0.55078125 ≈ ϕ11 = 11/20 (285)

ϕ̃17 = [0.11011010]2 = 0.85156250 ≈ ϕ17 = 17/20 (286)

ϕ̃19 = [0.11110011]2 = 0.94921875 ≈ ϕ19 = 19/20 . (287)

The two phases corresponding to ϕ7 = 7/20 and ϕ13 = 13/20 are absent. This is actually a resolution problem: when
we increase the control register to m = 9 qubits, we obtain all eight phases, as the phase histogram of Fig. 54 reveals.
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Figure 41: N = 35, a = 4, r = 6, m = 5: Phase histogram for ME operator version u ver = 2.

Figure 42: The circuit formulation of U7,33.

U |w⟩ =
∣∣∣7 · w (mod 33)

〉
U |1⟩ = |7⟩ U |000001⟩ = |000111⟩
U |7⟩ = |16⟩ U |000111⟩ = |010000⟩

U |16⟩ = |13⟩ U |010000⟩ = |001101⟩
U |13⟩ = |25⟩ U |001101⟩ = |011001⟩
U |25⟩ = |10⟩ U |011001⟩ = |001010⟩
U |10⟩ = |4⟩ U |001010⟩ = |000100⟩
U |4⟩ = |28⟩ U |000100⟩ = |011100⟩
U |28⟩ = |31⟩ U |011100⟩ = |011111⟩
U |31⟩ = |19⟩ U |011111⟩ = |010011⟩
U |19⟩ = |1⟩ U |010011⟩ = |000001⟩

Figure 43: N = 33, a = 7, r = 10: The left panel gives the modular exponential function f7,33(x) = 7x (mod 33), and the right
panel shows the action of the ME operator U7,33 on the closed sequence [1, 7, 16, 13, 25, 10, 4, 28, 31, 19, 1].

Note that sub-dominant peaks have appeared, and they too can provide factors. The situation is even more dramatic
for m = 10, where further sub-dominant peaks emerge, as illustrated in the phase histogram in Fig. 55.
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Figure 44: N = 33, a = 7, r = 10, m = 6: Phase histogram for the ME operator of version u ver = 0. The top panel illustrates
the histogram over the full range of phases, while the bottom panel shows only the most frequent peaks.

Figure 45: N = 33, a = 7, r = 10: The ME operators U32 for version u ver = 1.
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Figure 46: N = 33, a = 7, r = 10: The ME operators U2,U4,U8 and U16 for version u ver = 1.

Figure 47: N = 33, a = 7, r = 10, m = 6: Phase histogram for ME operator version u ver = 1.

Finally, let us turn to constructing the composite operators U p without using concatenation. These operators have
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Figure 48: N = 33, a = 7, r = 10: The ME operators U32 for version u ver = 2.

the following pairs of cycles:

U5,143 : [1, 5, 25, 125, 53, 122, 38, 47, 92, 31, 12, 60, 14, 70, 64, 34, 27, 135, 103, 86, 1]
U2

5,143 : [1, 25, 53, 38, 92, 12, 14, 64, 27, 103, 1] and [5, 125, 122, 47, 31, 60, 70, 34, 135, 86, 5]
U4

5,143 : [1, 53, 92, 14, 27, 1] and [5, 122, 31, 70, 135, 5]
U8

5,143 : [1, 92, 27, 53, 14, 1] and [5, 31, 135, 122, 70, 5]
U16

5,143 : [1, 27, 14, 92, 53, 1] and [5, 135, 70, 31, 122, 5] (288)
U32

5,143 : [1, 14, 53, 27, 92, 1] and [5, 70, 122, 135, 31, 5]
U64

5,143 : [1, 53, 92, 14, 27, 1] and [5, 122, 31, 70, 135, 5]
U128

5,143 : [1, 92, 27, 53, 14, 1] and [5, 31, 135, 122, 70, 5] .

For simplicity we have not included all possible cycles, and we will refer to the procedure given by (288) as version
number u ver = 1 (so this can also be regarded as a truncated version of the ME operators). The composite operators
U p are given in Figs. 61 and 62 in Appendix A.1, and the corresponding phase histogram from a Qiskit simulation
with 4096 runs is given in Fig. 56. As usual, the top panel plots all output phases, and the bottom panel plots only the
most frequent ones. Note that the noise in the top Figure has increased significantly, but the signal still dominates.

7.2.4. N = 247 = 13 × 19, a = 2, r = 36

As our last example, let us factor N = 247 into 13 and 19. For the base a = 2, the top-left panel of Fig. 57 shows that
the period of the modular exponential function f2,247(x) is r = 36. For this period, m = 9 control qubits is sufficient
to resolve the phase difference ∆ϕ = 1/36. Also note that we require n = ⌈log2 246⌉ = 8 work qubits. The action of
the ME operator U2,247 on the work state |1⟩ = |00000001⟩ is illustrated top-right panel of Fig. 57, and its circuit
representation is given in the bottom panel of the Figure. Since m = 8, we shall also require the ME operators U p

2,247
for p = 1, 2, 4, · · · , 256. As usual, we can construct these operators by concatenating U2,247, and we will refer to this
as version number u ver = 0. The phase histogram from Shor’s algorithm is illustrated in Fig. 58. The phases of the
U2,247 operator that provide factors are supposed to occur at ϕs = s/36 for s ∈ {0, 1, · · · , 35}, where r = 36 and s
have no non-trivial common factors. This gives 12 possible phases: ϕs = 1/36, 5/36, 7/36, 11/36, 13/36, 17/36, 19/36,
23/36, 25/36, 29/36, 31/36, 35/36. The phase histogram in Fig. 58 exhibits eight of these phases. As before, the top
panel shows every phase from the simulation, while the bottom panel gives only the most frequent phases. However,
if we increase the phase resolution to m = 10 control qubits, Fig 59 shows that we capture all 12 possible phases.

Let us examine the phase histogram of Fig. 58 in a bit more detail. Note that the phases that produce factors of
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Figure 49: N = 33, a = 7, r = 10: The ME operators U,U2,U4,U8,U16 and U32 for version u ver = 2.

Quanta | DOI: 10.12743/quanta.v12i1.235 September 2023 | Volume 12 | Issue 1 | Page 112

http://dx.doi.org/10.12743/quanta.v12i1.235


Figure 50: N = 33, a = 7, r = 10, m = 6: Phase histogram for truncated ME operator version u ver = 2.

N = 247 = 13 × 19 are given in red, and take the following values:

ϕ̃1 = [0.000001110]2 = 0.027343750 ≈ 1/36

ϕ̃5 = [0.001000111]2 = 0.138671875 ≈ 5/36

ϕ̃13 = [0.010111001]2 = 0.361328125 ≈ 13/36

ϕ̃17 = [0.011110010]2 = 0.472656250 ≈ 17/36 (289)

ϕ̃19 = [0.100001110]2 = 0.527343750 ≈ 19/36

ϕ̃23 = [0.101000111]2 = 0.638671875 ≈ 23/36

ϕ̃31 = [0.110111001]2 = 0.861328125 ≈ 31/36

ϕ̃35 = [0.111110010]2 = 0.972656250 ≈ 35/36 .
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U |w⟩ =
∣∣∣5 · w (mod 143)

〉
U |1⟩ = |5⟩ U |00000001⟩ = |00000101⟩
U |5⟩ = |25⟩ U |00000101⟩ = |00011001⟩

U |25⟩ = |125⟩ U |00011001⟩ = |01111101⟩
U |125⟩ = |53⟩ U |01111101⟩ = |00110101⟩
U |53⟩ = |122⟩ U |00110101⟩ = |01111010⟩
U |122⟩ = |38⟩ U |01111010⟩ = |00100110⟩
U |38⟩ = |47⟩ U |00100110⟩ = |00101111⟩
U |47⟩ = |92⟩ U |00101111⟩ = |01011100⟩
U |92⟩ = |31⟩ U |01011100⟩ = |00011111⟩
U |31⟩ = |12⟩ U |00011111⟩ = |00001100⟩
U |12⟩ = |60⟩ U |00001100⟩ = |00111100⟩
U |60⟩ = |14⟩ U |00111100⟩ = |00001110⟩
U |14⟩ = |70⟩ U |00001110⟩ = |01000110⟩
U |70⟩ = |64⟩ U |01000110⟩ = |01000000⟩
U |64⟩ = |34⟩ U |01000000⟩ = |00100010⟩
U |34⟩ = |27⟩ U |00100010⟩ = |00011011⟩
U |27⟩ = |135⟩ U |00011011⟩ = |10000111⟩

U |135⟩ = |103⟩ U |10000111⟩ = |01100111⟩
U |103⟩ = |86⟩ U |01100111⟩ = |01010110⟩
U |86⟩ = |1⟩ U |01010110⟩ = |00000001⟩

Figure 51: N = 143, a = 5, r = 20: The left panel gives the modular exponential function
f5,143(x) = 5x (mod 143), and the right gives the action of the ME operator U5,143 on the closed sequence
[1, 5, 25, 125, 53, 122, 38, 47, 92, 31, 12, 60, 14, 70, 64, 34, 27, 135, 103, 86, 1].

Figure 52: N = 143, a = 5, r = 20: The modular exponentiation operator U5,143.

This is in agreement with the theoretical predictions of ϕs = s/36 for gcd(s, 36) = 1, except that the phases for
s = 7, 11, 25, 29 are missing. As we have seen before, we can recover these phases by increasing the resolution of the
control register. As noted above, for m = 10 we find that all expected phases are observed, as shown in Fig. 59.

Let us now address the composite operator issue for U p
2,247 with p > 1. Returning to m = 9, so that p =

1, 2, 4, · · · , 256, some of the closed cycles are given by

U2,247 : [1, 2, 4, 8, 16, 32, 64, 128, 9, 18, 36, 72, 144, 41, 82, 164, 81, 162, 77, 154, (290)
61, 122, 244, 241, 235, 223, 199, 151, 55, 110, 220, 193, 139, 31, 62, 124, 1]

U128
2,247 : [1, 4, 16, 64, 9, 36, 144, 82, 81, 77, 61, 244, 235, 199, 55, 220, 139, 62, 1] and

[2, 8, 32, 128, 18, 72, 41, 164, 162, 154, 122, 241, 223, 151, 110, 193, 31, 124, 2]

U2
2,247 : [1, 16, 9, 144, 81, 61, 235, 55, 139, 1] and [2, 32, 18, 41, 162, 122, 223, 110, 31, 2]

[4, 64, 36, 82, 77, 244, 199, 220, 62, 4] and [8, 128, 72, 164, 154, 241, 151, 193, 124, 8]

U4
2,247 : [1, 16, 9, 144, 81, 61, 235, 55, 139, 1] and [2, 32, 18, 41, 162, 122, 223, 110, 31, 2]

[4, 64, 36, 82, 77, 244, 199, 220, 62, 4] and [8, 128, 72, 164, 154, 241, 151, 193, 124, 8]
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Figure 53: N = 143, a = 5, r = 20, m = 8: Phase histogram for ME operator version u ver = 0 The peaks in red correspond to
the ME phases ϕs = s/20 with s ∈ {0, 1, · · · , 19} and gcd(s, 20) = 1. Thus the eight phases s = 1, 3, 7, 9, 11, 13, 17, 19 provide
the factors of 11 and 13. Note, however, that the peaks for s = 7, 13 are missing. This is because m = 8 does not provide
sufficient resolution.

U8
2,247 : [1, 9, 81, 235, 139, 16, 144, 61, 55, 1] and [2, 18, 162, 223, 31, 32, 41, 122, 110, 2]

[4, 36, 77, 199, 62, 64, 82, 244, 220, 4] and [8, 72, 154, 151, 124, 128, 164, 241, 193, 8]

U16
2,247 : [1, 81, 139, 144, 55, 9, 235, 16, 61, 1] and [2, 162, 31, 41, 110, 18, 223, 32, 122, 2]

[8, 154, 124, 164, 193, 72, 151, 128, 241, 8] and [4, 77, 62, 82, 220, 36, 199, 64, 244, 4]

U32
2,247 : [1, 139, 55, 235, 61, 81, 144, 9, 16, 1] and [2, 31, 110, 223, 122, 162, 41, 18, 32, 2]

[8, 124, 193, 151, 241, 154, 164, 72, 128, 8] and [4, 62, 220, 199, 244, 77, 82, 36, 64, 4]
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Figure 54: N = 143, a = 5, r = 20, m = 9: Phase histogram for ME operator version u ver = 0. Increasing the phase
resolution to m = 9 provides all ten phases associated with factors.

U64
2,247 : [1, 55, 61, 144, 16, 139, 235, 81, 9, 1] and [2, 110, 122, 41, 32, 31, 223, 162, 18, 2]

[8, 193, 241, 164, 128, 124, 151, 154, 72, 8] and [4, 220, 224, 217, 79, 146, 126, 14,
29, 113, 40, 224, 4]

U128
2,247 : [1, 61, 16, 235, 9, 55, 144, 139, 81, 1] and [2, 122, 32, 223, 18, 110, 41, 31, 162, 2]

[8, 241, 128, 151, 72, 193, 164, 124, 154, 8] and [4, 244, 64, 199, 36, 220, 82, 62, 77, 4]

U256
2,247 : [1, 16, 9, 144, 81, 61, 235, 55, 139, 1] and [2, 32, 18, 41, 162, 122, 223, 110, 31, 2]

[4, 64, 36, 82, 77, 244, 199, 220, 62, 4] and [8, 128, 72, 164, 154, 241, 151, 193, 124, 8] .
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Figure 55: N = 143, a = 5, r = 20, m = 10: Phase histogram for ME operator version u ver = 0.

For simplicity, we have not included all closed sub-cycles, and we will refer to this by version number u ver = 1
(this can be regarded as a truncated version of the ME operators). The composite operators U p are given in Figs. 64,
65, and 66 of Appendix A.2, and the corresponding phase histogram is presented in Fig. 60. We see that the results
agree with the previous version, although there is more noise.
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Figure 56: N = 143, a = 5, r = 20, m = 8: Phase histogram for ME operator version u ver = 1. Despite the noise relative to
the previous version u ver = 0, the signal is quite discernible.

8. Conclusions and Outlook

It is an interesting mathematical fact that factoring is a notoriously difficult problem. That is to say, given an
exponentially large integer, it is exceedingly hard to find the corresponding prime factors. In fact, all known
factorization algorithms that run on a traditional classical (or digital) computer require an exponential time to factor
such large numbers: A typical digital computer would take the age of the universe to factor a several thousand
bit number used for encryption. Exponential computational costs are incurred because a classical computer must
sequentially check almost every number less than the one being factored. Indeed, this is the basis upon which the
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U |w⟩ =
∣∣∣2 · w (mod 247)

〉
U |1⟩ = |2⟩ U |00000001⟩ = |00000010⟩
U |2⟩ = |4⟩ U |00000010⟩ = |00000100⟩
U |4⟩ = |8⟩ U |00000100⟩ = |00001000⟩

U |8⟩ = |16⟩ U |00001000⟩ = |00010000⟩
U |16⟩ = |32⟩ U |00010000⟩ = |00100000⟩
U |32⟩ = |64⟩ U |00100000⟩ = |01000000⟩
U |64⟩ = |128⟩ U |01000000⟩ = |10000000⟩
U |128⟩ = |9⟩ U |10000000⟩ = |00001001⟩
U |9⟩ = |18⟩ U |00001001⟩ = |00010010⟩
U |18⟩ = |36⟩ U |00010010⟩ = |00100100⟩
U |36⟩ = |72⟩ U |00100100⟩ = |01001000⟩
U |72⟩ = |144⟩ U |01001000⟩ = |10010000⟩
U |144⟩ = |41⟩ U |10010000⟩ = |00101001⟩
U |41⟩ = |82⟩ U |00101001⟩ = |01010010⟩
U |82⟩ = |164⟩ U |01010010⟩ = |10100100⟩
U |164⟩ = |81⟩ U |10100100⟩ = |01010001⟩
U |81⟩ = |162⟩ U |01010001⟩ = |10100010⟩
U |162⟩ = |77⟩ U |10100010⟩ = |01001101⟩
U |77⟩ = |154⟩ U |01001101⟩ = |10011010⟩
U |154⟩ = |61⟩ U |10011010⟩ = |10011010⟩
U |61⟩ = |122⟩ U |10011010⟩ = |01111010⟩
U |122⟩ = |244⟩ U |01111010⟩ = |11110100⟩
U |244⟩ = |241⟩ U |11110100⟩ = |11110001⟩
U |241⟩ = |235⟩ U |11110001⟩ = |11101011⟩
U |235⟩ = |223⟩ U |11101011⟩ = |11011111⟩
U |223⟩ = |199⟩ U |11011111⟩ = |11000111⟩
U |199⟩ = |151⟩ U |11000111⟩ = |10010111⟩
U |151⟩ = |55⟩ U |10010111⟩ = |00110111⟩
U |55⟩ = |110⟩ U |00110111⟩ = |01101110⟩
U |110⟩ = |220⟩ U |01101110⟩ = |11011100⟩
U |220⟩ = |193⟩ U |11011100⟩ = |11000001⟩
U |193⟩ = |139⟩ U |11000001⟩ = |10001011⟩
U |139⟩ = |31⟩ U |10001011⟩ = |00011111⟩
U |31⟩ = |62⟩ U |00011111⟩ = |00111110⟩
U |62⟩ = |124⟩ U |00111110⟩ = |01111100⟩
U |124⟩ = |1⟩ U |01111100⟩ = |00000001⟩

Figure 57: N = 247, a = 2, r = 36: The top panel is the modular exponential function f2,247(x) = 2x (mod 247), while the
bottom panel shows the modular exponentiation operator U2,247.

security of many public key cryptographic protocols rests. More specifically, the security of public key cyrto-systems
relies on the principle that certain mathematical problems are intrinsically difficult to solve. For example, the RSA [2]
system relies on the difficulty in factoring large numbers into their prime constituents, while Diffie–Hellman [3, 4]
public key distribution relies on the difficulty in solving the discrete logarithm problem (a problem that is closely
related to factoring). However, Shor’s algorithm utilizes a quantum circuit that can factor exponentially large numbers
in polynomial time (and a variant of the algorithm can also quickly solve the discrete logarithm problem) [1]. This
is achieved by exploiting the massive parallelism inherent in quantum mechanics, so that all possibilities can be
tested simultaneously rather than sequentially, thereby providing for a polynomial factorization process. Since Shor’s
algorithm can solve these very hard problems so quickly, the implications are quite sobering for the security of public
key cryptography in particular, and digital security in general.

In this work we have presented a rigorous and pedagogical presentation of Shor’s factoring algorithm. We have
assumed no prior knowledge of the algorithm, except a familiarity with the circuit model of quantum computing, and
we have walked the reader through the framework required to understand the algorithm, which is at the same time
both elegant and complex. There are a number of moving parts to Shor’s algorithm, and we have worked through
each of them in turn, culminating in the requisite quantum factoring circuit.

The mathematical basis for Shor’s algorithm has no connection with quantum mechanics, but rather rests upon a
deep but quite simple result from number theory. Suppose we wish to factor an integer N, and we have a “guess”
a ∈ {2, 3, · · · ,N − 1}. We will usually refer to the guess a as the base. Let us further assume that the base a and
the number N that we wish to factor contain no common factors, so that gcd(a,N) = 1, otherwise gcd(a,N) is one
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Figure 58: N = 247, a = 2, r = 36, m = 9: Phase histogram for ME operator version u ver = 0.

of the factors of N that we seek (and the problem is solved). Suppose now that we can find a non-trivial modular
square root of unity, so that b2 = 1 (mod N). The latter condition ensures that b2 − 1 = mN for some integer m. We
can write this expression in the form (b + 1)(b − 1) = mN, and we immediately see that factors of N are given by
gcd(b + 1,N) and gcd(b − 1,N). The greatest common divisor can be computed quickly on a classical computer in
polynomial time. We can find b by looking at the modular exponential function fa,N(x) = ax (mod N). This function
is periodic with some period r, which means that ar = 1 (mod N). Therefore, b = ar/2 is a square root of unity, and
the factors of N are thus gcd(ar/2 ± 1,N). We have now reduced the factoring problem to finding the period of the
function fa,N(x)! However, there are several caveats: the conditions (214)–(216) must all be met. First, equation
(214) requires that the period r be even, so that b = ar/2 is an integer. Second, (216) requires that r be a solution

Quanta | DOI: 10.12743/quanta.v12i1.235 September 2023 | Volume 12 | Issue 1 | Page 120

http://dx.doi.org/10.12743/quanta.v12i1.235


Figure 59: N = 247, a = 2, r = 36 m = 10: Phase histogram for ME operator version u ver = 0.

to ar = 1 (mod N), so that b = ar/2 is indeed a square root of unity. Third, while b = ar/2 is a square root of unity,
equation (215) prohibits it from being a trivial square root, in that b , ±1 (mod N). In passing, we note that r can in
fact be odd, provided that a is a perfect square, in which case b = ar/2 is still an integer [11].

In contrast, the computational foundation for Shor’s algorithm is a bit involved, and rests upon two fundamental
quantum algorithms: the quantum Fourier transform (QFT) and quantum phase estimation (QPE). The QFT
implements the discrete Fourier transform on a quantum computer, and the QPE algorithm finds the complex phases
or the Eigenvalues of an arbitrary unitary linear operator. We spent Section 2 developing the theory of the QFT,
and Section 3 covered the QPE, deriving these algorithms from scratch. Shor’s algorithm is just a special case
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Figure 60: N = 247, a = 2, r = 36, m = 9: Phase histogram for ME operators version u ver = 1.

of the QPE algorithm, with a well-chosen unitary modular exponentiation (ME) operator, denoted by Ua N . The
ME operator is defined by its action on the computational basis by Ua N |w⟩ = |a · w (mod N)⟩, and it is related
to the modular exponential function by U x

a N |1⟩ = | fa N(x)⟩. The Eigenvalue problem for the ME operator takes
the form Ua N |us⟩ = e2πi ϕs |us⟩, where the phases are given by ϕs = s/r with s ∈ {0, 1, · · · , r − 1}. With the ME
operators in hand, we combined the QFT and the QPE to construct Shor’s factoring circuit in Section 5. The result
is a hybrid approach requiring both classical processing and quantum computation for the QPE analysis. In the
classical post-processing stage, the method of continued fractions allows one to extract the exact period r from the
approximately measured phase ϕ̃, thereby obtaining the period of the modular exponential function fa N(x). As we
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have seen, this period is directly related to the factors of the number N, and the QPE cleverly extracts r to provide
these sought after factors. Since continued fractions might not be familiar to the average reader, we gave a brief
introduction to the subject in Section 4, proving a number of fundamental theorems. More specifically, Theorem 3
ensures that the phases ϕs = s/r that we are seeking will necessarily be one of the convergents of the continued
fraction representation of ϕ̃. We therefore simply construct all such convergents sℓ/rℓ, verifying that each value
r = rℓ satisfies the necessary conditions (214)–(216). If so, then the smallest such value of rℓ is the exact period that
we are seeking, thus permitting us to calculate the factors of N in polynomial time.

In Section 6, we presented a detailed example by factoring the number N = 15 using the Qiskit simulator, providing
the necessary Python source code to reproduce the results. In particular, we looked more closely at how continued
fractions are utilized to extract the exact phase ϕs = s/r from the approximately measured m-bit phase ϕ̃. We also
performed a theoretical analysis of the output phase histograms for N = 15 with bases a = 4, 8, calculating the
expected histograms exactly for a general number of control qubits m. The Qiskit simulations agree precisely with
the exact calculations.

After verifying the formalism by factoring N = 15, the smallest number accessible to Shor’s algorithm, in
Section 7 we moved on to factoring the more interesting composite numbers N = 21, 33, 35, 143, 247. The difficulty
in factoring a number with Shor’s algorithm does not lie in the size of the number itself, but in the magnitude of the
period r of the modular exponential function f (x) [7]. The numbers N have therefore been chosen, along with their
respective bases a, to provide a wide range of periods, running from r = 2 to r = 36. We go on to develop a general
procedure that will find the appropriate modular exponentiation operator U for any semi-prime N = p × q, where
p and q are prime. The principle behind this technique rests upon the fact that the modular exponential function
f (x) creates a sequence of states | f (x)⟩ as we increment the argument x successively over its range of permissible
values x = 0, 1, 2, · · · , r − 1. These states are the basis elements of an invariant r-dimensional subspaceUr of the
exponentially large work spaceWn. To be more precise, note that the ME operator U first acts on the work state
|1⟩, and the next operation acts on the output of the first, and so on. Since U x|1⟩ = | f (x)⟩, this technique encodes
the sequence of states generated by f (x) into the ME operator U. One might think that we have gained nothing,
since this method is equivalent to knowing the exact period r, and therefore Shor’s algorithm would be unnecessary.
However, the ME operators are quite forgiving, and they do not require knowing the full sequence of states. We
can approximate the ME operator U by a truncated version using only a subset of the states. This is because the
continued fraction method does not require knowing the exact phase ϕs, but only a sufficiently precise approximate
phase ϕ̃. This suggests that implementing Shor’s algorithm might not be as difficult as first suspected.

In closing this work, we should briefly discuss some practical aspects of realizing Shor’s algorithm. References [11,
14–16] have already succeeded in factoring the numbers N = 15, 21, 35 on a range of existing quantum computers.
However, these authors did not implement complete versions of Shor’s algorithm, but rather so called compiled
versions that take advantage of the specific base a to minimize the qubit count. This is because current machines
lack a sufficient number of qubits even for such small numbers. For more realistic cases, to factor a number N
with n = 1024 bits, we would need m = 2n + 1 = 2049 control qubits, with the total number of qubits being
n + m = 3073. For n = 4096 bits, these numbers increase to m = 2n + 1 = 8193 control qubits and n + m = 12289
total qubits. Breaking RSA therefore requires thousands to tens of thousands of high quality qubits. Modern quantum
computers are currently quite far from this domain, although future machines will undoubtedly be able to handle
these requirements. The gate count for the ME operators is also problematic. Reference [5] indicates that one would
require 72n3 ∼ 8 × 1010 gates for n = 1024 and 72n3 ∼ 5 × 1012 gates for n = 4096 work qubits. The technique
outlined in this work might well lower this gate count, but the requisite number of ME gates would still be quite
large. Clearly, automation would be required for such a large number of gates. Even for the cases considered in this
work, we employed a python script to write the Qiskit gates. Finally, implementing the QFT might seem to be the
real challenge, as one requires astonishingly small phase angles for large numbers of qubits. Recall that the phase
rotation angle is given by θk = 2π/2k, and for k = 1000, this gives an angle of order 2π/21000 ∼ 10−301! However,
this problem has already been addressed in Refs. [17–19]. These authors show that for very small phase angles, one
can simply ignore the corresponding phase rotation. In other words, we only need to consider phase angles larger
than θmin = 2π/2kmax for some cutoff kmax ∼ 20 [17]. This is not surprising, as we do not require the exact QFT, but
only an approximate form that captures sufficient phase accuracy so that the method of continued fractions may
be applied during the post-quantum processing. We see that there are indeed very large obstacles to overcome in
breaking RSA with Shor’s algorithm, but none of them seem insurmountable in the long run. For the immediate
future, however, it seems that RSA will remain secure.
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Supplementary Materials

The online version of this article contains Python scripts together with README file for their use.

A. Modular Exponentiation Operators

A.1. Composite ME operators for N = 143, a = 5, r = 20, m = 8, u ver=1

The composite operators U p
5,143 from (288) for p = 2, 4, · · · , 128.

Figure 61: N = 143, a = 5, r = 20, u ver = 1: U64
5,143,U

128
5,143.
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Figure 62: N = 143, a = 5, r = 20, u ver = 1: U4
5,143,U

8
5,143,U

16
5,143,U

32
5,143.
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Figure 63: N = 143, a = 5, r = 20, u ver = 1: U2
5,143.
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A.2. Composite ME operators for N = 247, a = 2, r = 36, m = 9, u ver=1

The composite operators U p
2,247 from (290) for p = 2, 4, · · · , 256.

Figure 64: N = 247, a = 2, r = 36, u ver = 1: U64
2,247, U128

2,247, U256
2,247
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Figure 65: N = 247, a = 2, r = 36, u ver = 1: U8
2,247, U16

2,247, U32
2,247.
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Figure 66: N = 247, a = 2, r = 36, u ver = 1: U2
2,247, U4

2,247.
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