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Until recently, a quantum instrument was de-
fined to be a completely positive operation-
valued measure from the set of states on a

Hilbert space to itself. In the last few years, this defi-
nition has been generalized to such measures between
sets of states from different Hilbert spaces called the
input and output Hilbert spaces. This article presents
a theory of such instruments. Ways that instruments
can be combined such as convex combinations, post-
processing, sequential products, tensor products and
conditioning are studied. We also consider marginal,
reduced instruments and how these are used to define
coexistence (compatibility) of instruments. Finally, we
present a brief introduction to quantum measurement
models where the generalization of instruments is es-
sential. Many of the concepts of the theory are illus-
trated by examples. In particular, we discuss Holevo
and Kraus instruments.
Quanta 2023; 12: 27–40.

1 Introduction

In classical physics a measurement of a physical sys-
tem does not alter the state of the system. Because of
this, a measurement does not interfere with later measure-
ments. An important characteristic of quantum mechanics
is that the state of a system can change into an updated
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state when a measurement is performed. An even more
surprising and radical possibility has been recently intro-
duced [1–4]. These works have pointed out that when
the initial state ρ of a quantum system is represented by
a density operator on an input Hilbert space H, then the
updated state after a measurement is performed may be
represented by a density operator ρ1 in a different output
Hilbert space H1. Not only can the state of the system
change as the result of a measurement, but the entire
system can be altered so it is described by a different
Hilbert space. This is truly an amazing new possibility!
In this work we represent measurements by instruments
acting on states of a Hilbert space. We present a theory of
quantum instruments that emphasizes this new possibility.

Ways that instruments can be combined such as convex
combinations, post-processing, tensor products, sequen-
tial products and conditioning are studied [5–9]. We also
consider marginal and reduced instruments. These con-
cepts are employed to define coexistence (compatibility)
of instruments and observables. Although compatibility
has been well presented in the literature [1–4, 10], we
point out some of its features here. Even when two instru-
ments have different output spaces, if their input space H
is the same, then the observables they measure are on H.
Because of this, we can compare these measured observ-
ables. Finally, we consider measurement models that can
be used to measure instruments [11, 12]. These models
strongly rely on the fact that instruments can have differ-
ent input and output spaces. Many of the concepts of the
theory are illustrated by examples. In particular, a theory
of Holevo and Kraus instruments are considered [13–15].

Section 2 presents the basic concepts and defini-
tions of the theory. In particular, we discuss the con-
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cepts of effects, observables, operations and instruments
[5, 11, 12, 16, 17]. Section 3 gives examples of various
instruments that illustrate the theory. An important role
is played by Holevo and Kraus instruments [13–15]. In
Section 4, we discuss theorems and results concerning
instruments and observables. For example, we show that
an observable conditioned on an instrument coexists with
the observable measured by the instrument. Section 5
introduces the concept of a quantum measurement model.
The instrument that such a model measures employs a
Lüders instrument [18]. We also give a new definition of
the sequential product of measurement models [5].

2 Basic Definitions and Concepts

In this work, all of our Hilbert spaces are assumed to
be finite dimensional. Although this is a strong restric-
tion, it is general enough to include theories of quantum
computation and information [11, 12]. We retain this re-
striction for mathematical simplicity even though many
of our results can be extended to the infinite dimensional
case. The set of (bounded) linear operators on a Hilbert
space H is denoted by L(H) and the zero and identity
operators are 0 and I, respectively. When it is neces-
sary to distinguish the Hilbert space, we write IH instead
of I. An operation from H to H1 is a completely posi-
tive, trace non-increasing, linear mapJ : L(H)→ L(H1)
[11,12,17]. We denote the set of operations from H to H1
by O(H,H1). For simplicity, we write O(H) = O(H,H)
when H = H1. If J1 ∈ O(H,H1), J2 ∈ O(H1,H2),
their sequential product J1 ◦ J2 ∈ O(H,H2) is given
by J1 ◦ J2(A) = J2 (J1(A)). If J ∈ O(H,H1) is
trace preserving we call J a channel. Every operation

J ∈ O(H,H1) has the form J(A) =
n∑

i=1
JiAJ∗i where

Ji : H → H1 is a linear operator with adjoint J∗i and
n∑

i=i
J∗i Ji ≤ IH [11, 12]. The operators Ji, i = 1, 2, . . . , n are

called Kraus operators for J [15]. We have that J is a
channel if and only if

∑n
i=1 J∗i Ji = IH . If J ∈ O(H,H1)

we define the unique dual map J∗ : L(H1) → L(H) by
tr [BJ∗(A)] = tr [J(B)A] for all B ∈ L(H), A ∈ L(H1)

[9]. If J has Kraus decomposition J(A) =
n∑

i=1
JiAJ∗i

then J∗(B) =
∑n

i=1 J∗i BJi. If J is a channel, then
J∗(IH1) = IH because

tr
[
BJ∗(IH1)

]
= tr

[
J(B)IH1

]
= tr [J(B)] = 1 = tr(BIH)

for all B ∈ L(H). A positive operator ρ ∈ L(H) with
trace tr(ρ) = 1 is called a state on H. A state describes
the condition of a quantum system and the set of states
on H is denoted by S(H). We see that if ρ ∈ S(H) and

J ∈ O(H,H1) is a channel, then J(ρ) ∈ S(H1). Also, it
is easy to check that (J1 ◦ J2)∗ = J∗2 ◦ J

∗
1 .

A (finite) instrument is a finite set I = {Ix : x ∈ ΩI}
where Ix ∈ O(H,H1) such that I =

∑
x∈ΩI
Ix is a chan-

nel [11, 12, 17]. An instrument is sometimes called an
operation-valued measure. We callΩI the outcome space
for I and designate the set of instruments from H to H1
by In(H,H1). We think of I ∈ In(H,H1) as an apparatus
or experiment that has outcomes x ∈ ΩI. The probabil-
ity that outcome x occurs when I is measured and the
system is in state ρ ∈ S(H) is given by the Born rule
tr

[
Ix(ρ)

]
[11,12]. Since Ix is positive and I is a channel,

we have that 0 ≤ tr
[
Ix(ρ)

]
≤ 1 and

∑
x∈ΩI

tr
[
Ix(ρ)

]
= 1

so x 7→ tr
[
Ix(ρ)

]
is a probability measure on ΩI. If

tr
[
Ix(ρ)

]
, 0 and ρ ∈ S(H) is the initial state of the sys-

tem, then Ix(ρ)/tr
[
Ix(ρ)

]
∈ S(H1) is the updated state

after the outcome x occurs. As pointed out in Section 1,
this updated state can be in a different Hilbert space H1
than the input space H. If I ∈ In(H,H1) we call the
probability measure ΦIρ (x) = tr

[
Ix(ρ)

]
the ρ-distribution

of I. As we shall see, two different instruments can
have the same ρ-distribution for all ρ ∈ S(H). A bi-
instrument I ∈ In(H,H1) is an instrument whose out-
come space has the product form ΩI = Ω1 ×Ω2 and we
write Ixy(ρ), x ∈ Ω1, y ∈ Ω2. In this case, we define the
1-marginal and 2-marginal of I by I1

x(ρ) =
∑
y∈Ω2

Ixy(ρ)

and I2
y =

∑
x∈Ω1

Ixy(ρ), respectively. This gives us the three

instruments I,I1,I2 ∈ In(H,H1). Notice that these in-
struments give the same channels because

I(ρ) =
∑
xy

Ixy(ρ)

=
∑

x

∑
y

Ixy(ρ)

=
∑

x

I1
x(ρ) = I 1(ρ)

and similarly, I(ρ) = I 2(ρ) for all ρ ∈ S(H).
If I ∈ In(H,H1) and J ∈ In(H1,H2), the sequen-

tial product of I then J is the bi-instrument I ◦ J ∈
In(H,H2) given by

(I ◦ J)xy(ρ) = Jy (Ix(ρ))

for all ρ ∈ S(H), x ∈ ΩI, y ∈ ΩJ . Notice that ΩI◦J =
ΩI ×ΩJ . We call the 2-marginal

(J | I)y(ρ) = (I ◦ J)2
y(ρ)

=
∑

x

(I ◦ J)xy(ρ)

=
∑

x

Jy (Ix(ρ)) = Jy
(
I(ρ)

)
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the instrument J given (or conditioned by or in the con-
text of ) I and we call the 1-marginal

(ITJ)x(ρ) = (I ◦ J)1
x(ρ)

=
∑
y

(I ◦ J)xy(ρ)

=
∑
y

Jy (Ix(ρ)) = J (Ix(ρ))

the instrument I then J [6, 9]. If K ∈ In(H,H1 ⊗

H2) we have the reduced instruments K1 ∈ In(H,H1),
K2 ∈ In(H,H2) given by the partial traces K1x(ρ) =
trH2

[
Kx(ρ)

]
, K2x(ρ) = trH1

[
Kx(ρ)

]
. Notice that K1,K2

have the same ρ-distributions for all ρ ∈ S(H).
If Ii ∈ In(H,H1), i = 1, 2, . . . , n, with the same out-

come space Ω and λi ∈ [0, 1] with
n∑

i=1
λi = 1, then

I =
n∑

i=1
λiIi given by Ix =

n∑
i=1
λiIix, x ∈ Ω, is called

a convex combination of the Ii [7]. We have that

Φ
∑
λiIi
ρ (x) = tr

 n∑
i=1

λiIix(ρ)


=

n∑
i=1

λitr
[
Iix(ρ)

]
=

n∑
i=1

λiΦ
Ii
x (ρ)

for all ρ ∈ S(H). Thus, the distribution of a convex
combination is the convex combination of the distribu-
tions. Convex combinations are an important way of
combining instruments. We now consider another im-
portant way. If I ∈ In(H,H1) and λxz ∈ [0, 1] with∑
z
λxz = 1 for all x ∈ ΩI, then the instrument P ∈

In(H,H1) given by Pz(ρ) =
∑
x
λxzIx(ρ) is called a post-

processing of I [1, 11]. Two instruments I ∈ In(H,H1)
and J ∈ In(H,H2) coexist (are compatible) [10], de-
noted by I coJ , if there exists a joint bi-instrument
K ∈ In(H,H1 ⊗ H2) with ΩK = ΩI × ΩJ such that
for all x ∈ ΩI, y ∈ ΩJ , ρ ∈ S(H) we have

K1
1x(ρ) =

∑
y∈ΩJ

trH2

[
Kxy(ρ)

]
= Ix(ρ)

K2
2y(ρ) =

∑
x∈ΩI

trH1

[
Kxy(ρ)

]
= Jy(ρ)

Thus, two coexisting instruments can be constructed from
the same bi-instrument so they are simultaneously mea-
surable. A complete discussion of this concept is found
in [1–4].

Lemma 1. If I coJ and P is a post-processing of I,
then P coJ .

Proof. Suppose I ∈ In(H,H1) and J ∈ In(H,H2) and
let K ∈ In(H,H1 ⊗ H2) be a joint bi-instrument for I,J .

If Pz =
∑
x
λxzIx is a post-processing of I, define the

bi-instrument Lzy =
∑
x
λxzKxy. We then obtain

L1
1z(ρ) =

∑
y

trH2

[
Lzy(ρ)

]
=

∑
x,y

λxztrH2

[
Kxy(ρ)

]
=

∑
x

λxzK
1
1z(ρ) =

∑
x

λxzIx(ρ) = Pz(ρ)

and

L2
2y(ρ) =

∑
z

trH1

[
Lzy(ρ)

]
=

∑
x,z

λxztrH1

[
Kxy(ρ)

]
=

∑
x

trH1

[
Kxy(ρ)

]
= K2

2y(ρ) = Jy(ρ)

Hence, L is a joint bi-instrument for P and J so P coJ .
□

If A, B ∈ L(H) satisfy ⟨ϕ, Aϕ⟩ ≤ ⟨ϕ, Bϕ⟩ for all ϕ ∈ H
we write A ≤ B and if 0 ≤ a ≤ I we call a an effect.
An effect corresponds to a true-false (yes-no) experiment
and 0, I are the effects that are always false or always
true, respectively. We denote the set of effects on H by
E(H). If ρ ∈ S(H), a ∈ E(H), the ρ-probability of a is
tr(ρa). Thus, tr(ρa) is the probability that a is true (has
result yes) when the system is in state ρ. If a is true,
then its complement a′ = I − a ∈ E(H) is false. An
observable is a finite set of effects A = {Ax : x ∈ ΩA},
Ax ∈ E(H), that satisfies

∑
x∈ΩA

Ax = I. We call ΩA the

outcome space for A and denote the set of observables
on H by Ob(H). An observable is also called a positive
operator-valued measure (POVM) [11, 12, 17]. If ρ ∈
S(H) the ρ-probability distribution of A ∈ Ob(H) is given
by ΦA

ρ (x) = tr(ρAx), x ∈ ΩA. The observable measured

by I ∈ In(H,H1) is the unique Î ∈ Ob(H) satisfying
tr(ρÎx) = tr

[
Ix(ρ)

]
for all ρ ∈ S(H). Since tr

[
Ix(ρ)

]
=

trρI∗x(IH1) we see that Îx = I
∗
x(IH1) for all x ∈ ΩI = ΩÎ.

We also have the distribution

ΦÎρ (x) = tr(ρÎx) = tr
[
Ix(ρ)

]
= ΦIρ (x)

for all x ∈ ΩI = ΩÎ. Although an instrument measures
a unique observable, as we shall see, an observable is
measured by many instruments.

Let A, B ∈ Ob(H) and suppose I ∈ In(H,H1) with
Î = A. We define the I-sequential product of A then B
to be the observable A [I] B ∈ Ob(H) given by

(A [I] B)y =
∑

x

I∗x(By)

As with instruments a bi-observable is an observable of
the form

A =
{
Axy : (x, y) ∈ Ω1 ×Ω2

}
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If B ∈ Ob(H), I ∈ In(H,H1), we define B given I
to be the bi-observable (B | I)xy = I

∗
x(By). We then

have (A [I] B)y =
∑

x(B | I)xy. Two observables A, B ∈
Ob(H) coexist, denoted A co B, if there exists a joint bi-
observable C ∈ Ob(H) with marginals C1

x =
∑
y

Cxy = Ax

and C2
y =

∑
x Cxy = By [1–4, 10, 11]

Lemma 2. (i) If I ∈ In(H,H1), J ∈ In(H1,H2), then
(I◦J)∗ = J∗◦I∗. (ii) If I ∈ In(H,H1),J ∈ In(H1,H2)
and I coJ , then Î co Ĵ . (iii) Let I ∈ In(H,H1) be a
convex combination I =

∑
λiIi. Then I =

∑
i
λiIi and(∑

i
λiIi

)∧
=

∑
i
λiÎi.

Proof. (i) For all ρ ∈ S(H), T ∈ L(H2) we have

tr
[
ρJ∗ ◦ I∗(T )

]
= tr

[
ρI∗

(
J∗(T )

)]
= tr

[
I(ρ)J∗(T )

]
= tr

[
J (I(ρ)) T

]
= tr

[
(I ◦ J)(ρ)T

]
= tr

[
ρ(I ◦ J)∗(T )

]
and the result follows.
(ii) Since I coJ , there exists a bi-instrument K ∈

In(H,H1 ⊗ H2) such that K1
1x = Ix, K2

2y = Jy. De-

fine the bi-observable Cxy ∈ Ob(H) by Cxy = K̂xy. Then
for all ρ ∈ S(H) we obtain

tr

ρ∑
y

Cxy

 = tr

ρ∑
y

K̂xy

 =∑
y

tr
[
Kxy(ρ)

]
=

∑
y

tr
[
trH2

(
Kxy(ρ)

)]
= tr

trH2

∑
y

Kxy(ρ)




= tr
[
K1

1x(ρ)
]
= tr

[
Ix(ρ)

]
= tr(ρÎx)

Hence,
∑
y

Cxy = Îx and similarly
∑
x

Cxy = Ĵy so Î co Ĵ .

(iii) We have that

I =
∑

x

Ix =
∑

x

∑
i

λiIix =
∑

i

λi

∑
x

Iix =
∑

i

λiIi

Moreover, for all ρ ∈ S(H) we obtain

tr

ρ ∑
i

λiIi

∧ = tr

∑
i

λiIi(ρ)

 =∑
i

λitr
[
Ii(ρ)

]
=

∑
i

λi(ρÎi) = tr

ρ∑
i

λiÎi


so

(∑
i
λiIi

)∧
=

∑
i
λiÎi. □

For a bi-instrumentK ∈ In(H,H1⊗H2) we defined the
marginals K1

1 and K2
2 . We also have the mixed marginals

K2
1x,K

1
2y given by

K2
1y(ρ) =

∑
x∈ΩI

trH2

[
Kxy(ρ)

]
K1

2x(ρ) =
∑
y∈ΩJ

trH1

[
Kxy(ρ)

]
Example 1. The simplest example of an instrument is a
trivial instrument J ∈ In(H,H2) given by Jy(ρ) = βy for
all ρ ∈ S(H), where βy ∈ E(H2) with β =

∑
βy ∈ S(H2).

Then I coJ for all I ∈ In(H,H1). Indeed, let K ∈
In(H,H1 ⊗ H2) be the bi-instrument Kxy(ρ) = Ix(ρ) ⊗ βy,
x ∈ ΩI. Then for all ρ ∈ S(H) we have

K1
1x(ρ) =

∑
y

trH2

[
Kxy(ρ)

]
=

∑
y

trH2

[
Ix(ρ) ⊗ βy

]
= Ix(ρ)

K2
2y(ρ) =

∑
x

trH1

[
Kxy(ρ)

]
=

∑
x

trH1

[
Ix(ρ) ⊗ βy

]
= βy = Jy(ρ)

Hence, K is a joint instrument for I and J so I coJ .
Notice that the mixed marginals of K become:

K2
1y(ρ) =

∑
x

trH2

[
Kxy(ρ)

]
=

∑
x

trH2

[
Ix(ρ) ⊗ βy

]
= trH2

[
I(ρ) ⊗ βy

]
= tr(βy)I(ρ)

K1
2x(ρ) =

∑
y

trH1

[
Kxy(ρ)

]
=

∑
y

trH1

[
Ix(ρ) ⊗ βy

]
= tr

[
Ix(ρ)

]∑
y

βy = tr
[
Ix(ρ)

]
β

We also have J(ρ) = β for all ρ ∈ S(H) and since

tr(ρĴy) = tr
[
Jy(ρ)

]
= tr(βy) = tr

[
ρtr(βx)IH

]
we obtain Ĵy = tr(βy)IH . We call Ĵy an identity observ-
able [7].

LetJ ∈ In(H,H1) be a trivial instrument withJx(ρ) =
βx, βx ∈ E(H1). If I ∈ In(H1,H2) is arbitrary, we have
the sequential product J ◦ I ∈ In(H1,H2) given by

(J ◦ I)xy(ρ) = Iy (Jx(ρ)) = Iy(βx)

We then have J ◦ I(ρ) = I(β) for all ρ ∈ S(H). Since

tr
[
ρ(J ◦ I)∧xy

]
= tr

[
(J ◦ I)xy(ρ)

]
= tr

[
Iy(βx)

]
= tr

[
ρtr

(
Iy(βx)

)
IH

]
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we obtain (J ◦ I)∧xy = tr
[
Iy(βx)

]
IH which is an identity

bi-observable. The conditional instrument (I | J) ∈
In(H1,H2) becomes

(I | J)y(ρ) = Iy
(
J(ρ)

)
= Iy(β)

for all ρ ∈ S(H). If I ∈ In(H0,H) is arbitrary, we have
the sequential product I ◦ J ∈ In(H0,H1) given by

(I ◦ J)xy(ρ) = Jy (Ix(ρ)) = tr
[
Ix(ρ)

]
βy

We then have I ◦ J(ρ) = β for all ρ ∈ S(H0). Since

tr
[
ρ(I ◦ J)∧xy

]
= tr

[
(I ◦ J)xy(ρ)

]
= tr

[
Ix(ρ)tr(βy)

]
= tr(ρÎx)tr(βy)

= tr
[
ρtr(βy)Îx

]
we obtain (I ◦ J)∧xy = tr(βy)Îx. The conditional instru-
ment (J | I) ∈ In(H0,H1) becomes

(J | I)y(ρ) = Jy
(
I(ρ)

)
= βy = Jy(ρ)

so (J | I) = J . □

If A ∈ Ob(H1), B ∈ Ob(H2), define the tensor product
bi-observable A⊗B ∈ Ob(H1⊗H2) by (A⊗B)xy = Ax⊗By
[7]. We then have (A⊗B)1

x = Ax⊗ IH2 , (A⊗B)2
y = IH1⊗By

and the identity observables (A ⊗ B)1
2x = tr(Ax)IH2 , (A ⊗

B)2
1y = tr(By)IH1 . Now A ⊗ B is a joint bi-observable for

A, B in the sense that 1
n2

(A⊗ B)1
1x = Ax and 1

n1
(A⊗ B)2

2y =

By where n2 = dim H2, n1 = dim H1.
If I ∈ O(H1,H3), J ∈ O(H2,H4), define the tensor

product K = I ⊗ J to be the operation K ∈ (H1 ⊗

H2,H3 ⊗ H4) that satisfies

K(C ⊗ D) = I(C) ⊗ J(D)

for all C ∈ L(H1), D ∈ L(H2). To show that K
exists, suppose I and J have Kraus decompositions
I(C) =

∑
i

KiCK∗i , J(D) =
∑
j

J jDJ∗j where
∑
i

K∗i Ki ≤

IH1 ,
∑
j

J∗j J j ≤ IH2 . Then for E ∈ L(H1 ⊗ H2) we define

K(E) =
∑
i, j

Ki ⊗ J jEK∗i ⊗ J∗j

Then∑
i, j

(K∗i ⊗ J∗j )(Ki ⊗ J j) =
∑
i, j

(K∗i Ki ⊗ J∗j J j)

=
∑

i

K∗i Ki ⊗
∑

j

J∗j J j

≤ IH1 ⊗ IH2

and K ∈ O(H1 ⊗ H2,H3 ⊗ H4) satisfies

K(C ⊗ D) =
∑
i, j

Ki ⊗ J jC ⊗ DK∗i ⊗ J∗j

=
∑
i, j

(KiCK∗i ) ⊗ (J jDJ∗j )

=
∑

i

KiCK∗i ⊗
∑

j

J jDJ∗j = I(C) ⊗ J(D)

for all C ∈ L(H1), D ∈ L(H2).
If I ∈ In(H1,H3), J ∈ In(H2,H4) define the tensor

product K = I ⊗ J to be the bi-instrument K ∈ In(H1 ⊗

H2,H3 ⊗ H4) defined by Kxy(ρ) = Ix ⊗ Jy(ρ) for all ρ ∈
S(H1⊗H2). We have seen thatKxy ∈ O(H1⊗H2,H3⊗H4)
and K is a channel because K = I ⊗ J and I,J are
channels. The next result shows that I ⊗ J is a type of
joint instrument for I,J .

Theorem 3. Let I ∈ In(H1,H3), J = In(H2,H4) and
let K = I ⊗ J . (i) K̂xy = Îx ⊗ Ĵy. (ii) For all ρ ∈
S(H1 ⊗ H2) we have K1

1x(ρ) = Ix
[
trH2(ρ)

]
, K2

2y(ρ) =
Jy

[
trH1(ρ)

]
. (iii) If n1 = dim H1, n2 = dim H2, ρ1 ∈

S(H1), ρ2 = S(H2) we have

1
n2
K1

1x(ρ1 ⊗ IH2) = Ix(ρ1)
1
n1
K2

2y(IH1 ⊗ ρ2) = Jy(ρ2)

Proof. (i) For all ρ = ρ1 ⊗ ρ2 ∈ L(H1 ⊗ H2) we have

tr(ρK̂xy) = tr
[
Kxy(ρ)

]
= tr

[
Ix ⊗ Jy(ρ1 ⊗ ρ2)

]
= tr

[
Ix(ρ1) ⊗ Jy(ρ2)

]
= tr

[
Ix(ρ1)

]
tr

[
Jy(ρ2)

]
= tr(ρ1Îx)tr(ρ2Ĵy) = tr(ρ1Îx ⊗ ρ2Ĵy)

= tr(ρ1 ⊗ ρ2Îx ⊗ Ĵy) = tr(ρÎx ⊗ Ĵy)

Since any A ∈ L(H1 ⊗ H2) has the form A =
∑
i, j

Bi ⊗ C j,

Bi ∈ L(H1), C j ∈ L(H2), the result holds for ρ = A.
Hence, K̂xy = Îx ⊗ Ĵy.
(ii) For all ρ = ρ1 ⊗ ρ2 ∈ L(H1 ⊗ H2) we have

K1
1x(ρ) = trH4

∑
y

Kxy(ρ)


= trH4

∑
y

Ix ⊗ Jy(ρ1 ⊗ ρ2)


= trH4

∑
y

Ix(ρ1) ⊗ Jy(ρ2)


=

∑
y

trH4

[
Ix(ρ1) ⊗ Jy(ρ2)

]
= trH4

[
Ix(ρ1) ⊗ J(ρ2)

]
= Ix(ρ1) = Ix

[
trH2(ρ)

]
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As in (i) the result follows for all ρ ∈ S(H1 ⊗ H2).
(iii) Applying (i) we obtain

K1
1x(ρ1 ⊗ IH2) = Ix

[
trH2(ρ1 ⊗ IH2)

]
= Ix

[
tr(IH2)ρ1

]
= n2Ix(ρ1)

Hence, 1
n2
K1

1x(ρ1 ⊗ IH2) = I(ρ1). Similarly, 1
n1
K2

2y(IH1 ⊗

ρ2) = Jy(ρ2). □

3 Examples of Instruments

Two important instruments are the Holevo and Kraus in-
struments. These instruments are useful for illustrating
the definitions and concepts presented in Section 2. If
A ∈ Ob(H) and α = {αx : x ∈ ΩA} ⊆ S(H1), the corre-
sponding Holevo instrument H (A,α) ∈ In(H,H1) has the
form H (A,α)

x (ρ) = tr(ρAx)αx for all ρ ∈ S(H) [6, 13, 14].
Notice thatH (A,α) is indeed an instrument because∑

x

tr(ρAx) = tr

ρ∑
x

Ax


= tr(ρ) = 1

for every ρ ∈ S(H) so
∑

x tr(ρAx)αx is a convex combina-
tion of states which is a state. Since

tr
[
ρH (A,α)∗

x (a)
]
= tr

[
H

(A,α)
x (ρ)a

]
= tr

[
tr(ρAx)αxa

]
= tr

[
ρtr(αxa)Ax

]
we have that H (A,α)∗

x (a) = tr(αxa)Ax for all a ∈ E(H1).
We conclude thhat

(H (A,α)
x )∧ = H (A,α)∗

x (IH1) = Ax

so H (A,α)∧ = A. We also have H
(A,α)

(ρ) =
∑
x

tr(ρAx)αx

which, as we showed previously is a state.
If H (A,α) ∈ In(H,H1) and H (B,β) ∈ In(H1,H2), then

their sequential product becomes[
H (A,α) ◦ H (B,β)

]
xy

(ρ) = H (B,β)
y

[
H

(A,α)
x (ρ)

]
= H

(B,β)
y

[
tr(ρAx)αx

]
= tr(ρAx)H (B,β)

y (αx)

= tr(ρAx)tr(αxBy)βy

= tr
[
ρtr(αxBy)Ax

]
βy

= H
(Cyβ)
xy (ρ)

We conclude that H (A,α) ◦ H (B,β) = H (C,β) where C ∈
Ob(H) is the bi-observable given by Cxy = tr(αxBy)Ax.

The conditioned instrument (H (B,β) | H (A,α) ∈ In(H,H2)
becomes

(H (B,β) | H (A,α))y(ρ) = H
(B,β)
y

[
H (A,α)ρ

]
= H

(Bβ)
y

∑
x

H
(A,α)
x (ρ)


=

∑
x

H
(B,β)
y

[
H

(A,α)
x (ρ)

]
=

∑
x

H
(C,β)
xy (ρ) = H (C,β)2

y (ρ)

We conclude that (H (B,β) | H (A,α)) is the marginal instru-
mentH (C,β)2. We also have

(H (A,α) TH (B,β))x(ρ) = H (B,β)
[
H

(A,α)
x (ρ)

]
=

∑
y

H
(B,β)
y

[
H

(A,α)
x (ρ)

]
=

∑
y

H
(C,β)
xy (ρ) = H (C,β)1

x (ρ)

Hence, (H (A,α) TH (B,β)) is the marginal instrument
H (C,β)1. Notice that C1

x = Ax so C1 = A and

C2
y =

∑
x

tr(αxBy)Ax

Since
∑
x

tr(αxBy) = 1 for every y ∈ ΩB, C2 is a post-

processing of A.
Let Axy ∈ Ob(H) be a bi-observable, α ={
αxy : (x, y) ∈ ΩA

}
⊆ S(H1 ⊗ H2) and define the Holevo

bi-instrument in In(H,H1 ⊗ H2) by

H
(A,α)
xy (ρ) = tr(ρAxy)αxy

The marginals become

H
(A,α)1
xy (ρ) =

∑
y

H
(A,α)
xy =

∑
y

tr(ρAxy)αxy

H
(A,α)2
xy (ρ) =

∑
x

H
(A,α)
xy =

∑
x

tr(ρAxy)αxy

We then have the reduced and mixed marginals

H
(A,α)1
1x (ρ) =

∑
y

tr(ρAxy)trH2(αxy) ∈ In(H,H1)

H
(A,α)2
2y (ρ) =

∑
x

tr(ρAxy)trH1(αxy) ∈ In(H,H2)

H
(A,α)2
1y (ρ) =

∑
x

tr(ρAxy)trH2(αxy) ∈ In(H,H1)

H
(A,α)1
2x (ρ) =

∑
y

tr(ρAxy)trH1(αxy) ∈ In(H,H2)

We say thatH (A,α) is a product instrument if αxy = βx⊗γy,
βx ∈ S(H1), γy ∈ S(H2) and in this case we have

H
(A,α)1
1x (ρ) =

∑
y

tr(ρAxy)βx
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H
(A,α)2
2y (ρ) =

∑
x

tr(ρAxy)γy

Notice thatH (A,α)1
1x = H

(B,β)
x where Bx =

∑
y

Axy = A1
x and

H
(A,α)2
2y = H

(C,γ)
y where Cy =

∑
x

Axy = A2
y.

Suppose H (A,α) ∈ In(H,H1), H (B,β) ∈ In(H,H2) and
H (A,α) so H (B,β). If their joint instrument is H (C,γ) ∈

In(H,H1 ⊗ H2) then for all ρ ∈ S(H) we have

tr(ρAx)αx = H
(A,α)
x (ρ) = H (C,γ)1

1x

=
∑
y

tr(ρCxy)trH2(γxy)

tr(ρBy)βy = H
(B,β)
y (ρ) = H (C,γ)2

2y

=
∑

x

tr(ρCxy)trH1(γxy)

If C is a product instrument with γxy = εx ⊗ δy we obtain

tr(ρAx)αx =
∑
y

tr(ρCxy)εx

= tr

ρ∑
y

Cxy

 εx

= tr(ρC1
x)εx

tr(ρBy)βy =
∑

x

tr(ρCxy)δy

= tr

ρ∑
x

Cxy

 δy
= tr(ρC2

y)δy

It follows that εx = αx, Ax = C1
x and βy = δy, By = C2

y .
Moreover, γxy = αx ⊗ βy.

A Kraus instrument K ∈ In(H,H1) has the form
Kx(ρ) = KxρK∗x where Kx : L(H) → L(H1) are linear
operators satisfying

∑
x

K∗x Kx = IH [15]. We call Kx the

Kraus operators for K . Notice that 0 ≤ K∗x Kx ≤ IH so
K∗x Kx ∈ E(H) for all x ∈ ΩK . Since

tr
[
Kx(ρ)a

]
= tr(KxρK∗xa) = tr(ρK∗xaKx)

for every a ∈ L(H1) we have K∗x (a) = K∗xaKx. It follows
that the measured observable K̂ ∈ Ob(H) is

K̂x = K
∗
x (IH1) = K∗x Kx

for all x ∈ ΩK . Let K ∈ In(H,H1), J ∈ In(H1,H2)
be Kraus instruments with operators Kx, Jy, respectively.
Then K ◦ J ∈ In(H,H2) is the bi-instrument given by

(K ◦ J)xy(ρ) = Jy
[
Kx(ρ)

]
= Jy(KxρK∗x)J∗y

= JyKxρ(JyKx)∗ = Lxy(ρ)

where Lxy is the Kraus bi-instrument with Kraus opera-
tors Lxy = JyKx. It follows that (J | K) ∈ In(H,H2) is
given by

(J | K)y(ρ) = Jy
(
K(ρ)

)
= Jy

∑
x

KxρK∗x


=

∑
x

[
Jy(KxρK∗x)

]
=

∑
x

(JyKxρK∗x J∗y)

=
∑

x

Lxy(ρ) = L2
y(ρ)

We also have

(K TJ)x(ρ) = J
[
Kx(ρ)

]
=

∑
y

Jy(KxρK∗x)

=
∑
y

JyKxρK∗x J∗y

=
∑
y

Lxy(ρ) = L1
x(ρ)

LetH (A,α) ∈ In(H1,H2) be Holevo and K ∈ In(H,H1)
be an arbitrary instrument. We then have the bi-
instrument K ◦H (A,α) ∈ In(H,H2) as follows

(K ◦H (A,α))xy(ρ) = H
(A,α)
y (Kx(ρ)) = tr

[
Kx(ρ)Ay

]
αy

= tr
[
ρK∗x (Ay)

]
αy = H

(B,α)
xy (ρ)

where B ∈ Ob(H) is the bi-observable given by Bxy =

K∗x (Ay). We conclude that

(K ◦H (A,α))∧xy = Bxy = K
∗
x (Ay)

We also have

(H (A,α) | K)y(ρ) = H
(A,α)
y (K(ρ)) = H (A,α)

y

∑
x

Kx(ρ)


= tr

ρ∑
x

K∗x (Ay)

αy = tr(ρB2
y)αy

= H
(B2,α)
y (ρ)

Hence, (H (A,α) | K) = H (B2,α) which is Holevo. More-
over,

(K TH (A,α))x(ρ) = H (A,α) [Kx(ρ)
]

=
∑
y

tr
[
Kx(ρ)Ay

]
αy

=
∑
y

tr
[
ρK∗x (Ay)

]
αy

=
∑
y

tr
[
ρBxy

]
αy

=
∑
y

H
(B,α)
xy (ρ) = H (B,α)1

x (ρ)
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Therefore, (K T H(A,α)) = H (B,α)1 which is a marginal of
a Holevo bi-instrument. We conclude that the sequential
product of an arbitrary instrument then a Holevo instru-
ment is Holevo and a Holevo instrument conditioned by
an arbitrary instrument is Holevo. In particular, if K is
Kraus with operators Kx, thenK ◦H (A,α) = H (B,α) where
Bxy = K∗x AyKx.

In the other order, let H (A,α) ∈ In(H,H1) and K ∈
In(H1,H2) be arbitrary. Then H (A,α) ◦ K ∈ In(H,H2) is
the bi-instrument given by

(H (A,α) ◦ K)xy(ρ) = Ky
[
H

(A,α)
x (ρ)

]
= Ky

[
tr(ρAx)αx

]
= tr(ρAx)Ky(αx)

If Ky(αx) , 0, let βxy ∈ S(H2) be defined by βxy =

Ky(αx)/tr
[
Ky(αy)

]
and define the bi-observable Bxy =

tr
[
Ky(αx)

]
Ax. We then obtain

(H (A,α) ◦ K)xy(ρ) = tr
[
Ky(αx)

]
tr(ρAx)βxy

= tr(ρBxy)βxy = H
(B,β)
xy (ρ)

which is a Holevo bi-instrument. Hence,

(H (A,α) ◦ K)∧xy = Bxy = tr
[
Ky(αx)

]
Ax

We also have

(K | H (A,α))y(ρ) = Ky(H (A,α)(ρ))

= Ky

∑
x

H
(A,α)
x (ρ)


=

∑
x

Ky
[
tr(ρAx)αx

]
=

∑
x

tr(ρAx)Ky(αx)

=
∑

x

tr(ρAx)tr
[
Ky(αx)

]
βxy

=
∑

x

tr(ρBxy)βxy

=
∑

x

H
(B,β)
xy (ρ) = H (B,β)2

y (ρ)

Therefore, (K | H (A,α)) = H (B,β)2 which is a marginal of
a Holevo bi-instrument. Moreover,

(H (A,α) TK)x(ρ) = K
[
H

(A,α)
x (ρ)

]
=

∑
y

Ky
[
tr(ρAx)αx

]
= tr(ρAx)

∑
y

Ky(αx)

= tr(ρAx)
∑
y

tr
[
Ky(αx)

]
βxy

=
∑
y

tr
{
ρtr

[
Ky(αx)

]
Ax

}
βxy

=
∑
y

tr(ρBxy)βxy

=
∑
y

H
(B,β)
xy (ρ) = H (B,β)1

x (ρ)

Hence, (H (A,α) TK) = H (B,β)1 which is a marginal of a
Holevo bi-instrument.

We now give an example of a convex tensor product of
two instruments. Let I ∈ In(H,H1), J ∈ In(H,H2), αx ∈

S(H1), βy ∈ S(H2), λy, µx ∈ [0, 1] with
∑
y λy+

∑
x µx = 1

and define λ =
∑
y
λy, µ =

∑
x
µx. Define the bi-instrument

K ∈ In(H,H1 ⊗ H2) by

Kxy(ρ) = λyIx(ρ) ⊗ βy + µxαx ⊗ Jy(ρ)

Notice that K is indeed an instrument because

tr

∑
x,y

Kxy(ρ)

 =∑
x,y

tr
[
Kxy(ρ)

]
=

∑
x,y

{
λytr

[
Ix(ρ)

]
+ µxtr

[
Jy(ρ)

]}
=

∑
y

λytr
[
I(ρ)

]
+

∑
x

µxtr
[
J(ρ)

]
=

∑
y

λy +
∑

x

µx = 1

The marginalsK1 ∈ In(H,H1⊗H2),K2 ∈ In(H,H1⊗H2)
are given by

(K1
x (ρ) =

∑
y

Kxy(ρ) = Ix(ρ) ⊗
∑
y

λyβy + µxαx ⊗ J(ρ)

K2
y (ρ) =

∑
x

Kxy(ρ) = I(ρ) ⊗ λyβy +
∑

x

µxαx ⊗ Jy(ρ)

The reduced instruments K1 ∈ In(H,H1), K2 ∈ In(H,H2)
become

K1xy(ρ) = trH2

[
Kxy(ρ)

]
= λyIx(ρ) + µxtr

[
Jy(ρ)

]
αx

K2xy(ρ) = trH1

[
Kxy(ρ)

]
= λytr

[
Jx(ρ)

]
βy + µxJy(ρ)

The reduced marginals K1
1 ∈ In(H,H1), K2

2 ∈ In(H,H2)
K2

1 ∈ In(H,H1), K1
2 ∈ In(H,H2) are given by

K1
1x(ρ) =

∑
y

K1xy(ρ) = λIx(ρ) + µxαx

K2
2y(ρ) =

∑
x

K2xy(ρ) = λyβy + µJy(ρ)

K2
1y(ρ) =

∑
x

K1xy(ρ) = λyI(ρ) + tr
[
Jy(ρ)

]∑
x

µxαx

K1
2x(ρ) =

∑
y

K2xy(ρ) = tr
[
Ix(ρ)

]∑
y

λyβy + µxJ(ρ)
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We have that K1
1 coK2

2 and K2
1 coK1

2 . The measured
observables are gotten as follows:

tr(ρK̂xy) = tr
[
Kxy(ρ)

]
= λytr

[
Ix(ρ)

]
+ µxtr

[
Jy(ρ)

]
= λytr(ρÎx) + µxtr(ρĴy)

Hence, K̂xy = λyÎx +µxĴy. Therefore, K̂1
x = λÎx +µxIH

and K̂2
y = λyIH + µĴy coexist with joint observable K̂xy.

We also have

tr(ρK̂1
1x) = tr

[
K1

1x(ρ)
]

= λtr
[
Ix(ρ)

]
+ µx

= λtr(ρÎx) + µxtr(ρ)

= tr
[
ρ(λÎx + µxIH)

]
Hence, K̂1

1x = λÎx + µxIH = K̂
1
x and similarly K̂2

2y =

λyIH + µĴy = K̂
2
y . Moreover,

tr(ρK̂2
1y) = tr

[
K2

1y(ρ)
]
= λy + µtr

[
Jy(ρ)

]
= tr

[
ρ(µĴy + λyIH)

]
Therefore,

K̂2
1y = µĴy + λuIH = K̂

2
2y = K̂

2
y

and similarly K̂1
2x = K̂

1
1x = K̂

1
x .

Let us consider the special case in which I = H (A,γ)

and J = H (B,δ). We then obtain

Kxy(ρ) = λyH
(A,γ)
x (ρ) ⊗ βy + µxαx ⊗H

(B,δ)
y (ρ)

= λytr(ρAx)γx ⊗ βy + µxαx ⊗ tr(ρBy)γy

In this case, we have

K1xy(ρ) = λytr(ρAx)γx + µxtr(ρBy)αx

K2xy(ρ) = λytr(ρAx)βy + µxtr(ρBy)δy

We also obtain K̂xy = λyAx + µxBy, K̂1
x = λAx + µxIH ,

K̂2
y = λyIH + µBy.

4 Results

Our first result shows that a convex combination of
Holevo instruments with the same base Hilbert space,
outcome space and states is Holevo. Moreover, a weak-
ened form of the converse holds.

Theorem 4. (i) Let H (Ai,α), i = 1, 2, . . . , n, be Holevo
instruments in In(H,H1) with the same outcome space Ω

and states α = {αx : x ∈ Ω}. Then a convex combination
n∑

i=1
λiH

(Ai,α) is Holevo and

n∑
i=1

λiH
(Ai,α) = H (

∑
λiAi,α)

(ii) IfH (Ai,αi) ∈ In(H,H1) with the same outcomes space
Ω and if

n∑
i=1

λiH
(Ai,αi) = H (B,β)

then B =
∑
λiAi and

βx =
1∑

i
λitr(Aix)

∑
i

λitr(Aix)αix (1)

for all x ∈ Ω.

Proof. (i) For all x ∈ Ω, we obtain∑
i

λiH
(Ai,α)
x (ρ) =

∑
i

λitr(ρAix)αx

= tr

ρ
∑

i

λiAi


x

αx

= H
(
∑
λiAi,α)

x (ρ)

and the result follows.
(ii) For all ρ ∈ S(H) and x ∈ Ω we have

tr(ρBx)βx = H
(B,β)
x (ρ) =

∑
i

λiH
(Ai,αi)
x (ρ)

=
∑

i

λitr(ρAix)αix (2)

Taking the trace of (2) gives

tr(ρBx) =
∑

i

λitr(ρAix) = tr

ρ∑
i

λiAix


Hence, Bx =

∑
i
λiAix for all x ∈ Ω and we conclude that

B =
∑
i
λiAi. Substituting B into (2) gives

∑
i

λitr(ρAix)βx =
∑

i

λitr(ρAix)αix

so that

βx =
1∑

i
λitr(ρAix)

∑
i

λitr(ρAix)αix

for all x ∈ Ω, ρ ∈ S(H). Letting ρ = I/n where n =
dim H, we conclude that (1) holds. □
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We have seen that a convex combination of Holevo in-
strumentsH (Ai,α) is Holevo. We now show that a general
convex combination of Holevo instrumentsH (Ai,αi) need
not be Holevo.

Example 2. Let H (A,α), H (B,β) ∈ In(C2) be Holevo in-
struments with the same outcome space Ω = {x, y} and
let Ax = By = |ϕ⟩⟨ϕ| where ϕ ∈ C2 with ||ϕ|| = 1. Also,
assume that αx , βx and

1
2H

(A,α) + 1
2H

(B,β) = H (C,γ)

It follows from Theorem 4(ii) that C = 1
2 A + 1

2 B so

Cx =
1
2 Ax +

1
2 Bx =

1
2 I = Cy

Also from Theorem 4(ii) we obtain γx =
1
2 (αx+βx). Since

1
2 tr(ρAx)αx +

1
2 tr(ρBx)βx = tr(ρCx)γx

for all ρ ∈ S(C2), letting ρ = Ax we have αx = γx =
1
2 (αx + βx). But then αx = βx which is a contradiction.
Hence, 1

2H
(A,α) + 1

2H
(B,β) is not Holevo. This also shows

that the converse of Theorem 4(ii) does not hold. □

Example 3. This example shows that a convex combina-
tion of Kraus instruments need not be Kraus. Let {ϕ1, ϕ2}

be an orthonormal basis for C2, let Kx,Ky be the pro-
jection Kx = |ϕ1⟩⟨ϕ1|, Ky = |ϕ2⟩⟨ϕ2| and let Jx = Ky,
Jy = Kx. Define the Kraus instruments K ,J ∈ In(C2)
with operators

{
Kx,Ky

}
,
{
Jx, Jy

}
, respectively. Suppose

L ∈ In(C2) is a Kraus instrument with outcome space
Ω = {x, y}, operators

{
Lx, Ly

}
so that L∗xLx + L∗yLy = I and

L = 1
2K +

1
2J . We then obtain

LxρL∗x = Lx(ρ) = 1
2Kx(ρ)+ 1

2Jx(ρ) = 1
2 KxρKx +

1
2 JxρJx

for all ρ ∈ S(C2). Letting ρ = I/2 we have

LxL∗x =
1
2 Kx +

1
2 Jx =

1
2 I

and it follows that
√

2Lx is a unitary operator U. Hence,
for all ρ ∈ S(C2) we have

UρU∗ = KxρKx + JxρJx

Therefore,

KxUρU∗ = KxρKx = UρU∗Kx

We conclude that Kx commutes with every ρ ∈ S(H).
Hence, Kx = λxI, λx ∈ [0, 1] which is a contradiction. □

Lemma 5. If J ∈ In(H,H1) is a post-processing of a
Holevo instrument I ∈ In(H,H1), then J is Holevo.

Proof. Suppose I = H (A,α) and J is a post-processing
of I. Then there exist λxy ∈ [0, 1] with

∑
y
λxy = 1 for all

x ∈ ΩI such that

Jy(ρ) =
∑

x

λxyIx(ρ) =
∑

x

λxyH
(A,α)
x (ρ)

=
∑

x

λxytr(ρAx)αx = tr

ρ∑
x

λxyAx

αx

= H

(∑
x
λxyAx,α

)
y (ρ)

Hence, J = H (B,α) is Holevo with By =
∑
x
λxyAx a post-

processing of A. □

We conjecture that Lemma 5 does not hold for Kraus
instruments but have not found a counterexample.

Lemma 6. If I ∈ In(H,H1), J ∈ In(H1,H2), K ∈
(H0,H) and I coJ , then (I | K) co(J | K). If L is
a joint instrument for I andJ , thenM = K ◦L is a joint
instrument for (I | K) and (J | K).

Proof. Let L ∈ In(H,H1 ⊗ H2) be a joint bi-instrument
for I, J . Define M ∈ In(H0,H1 ⊗ H2) by Mxy(ρ) =
Lxy(K(ρ)). We then have

M1
1x(ρ) = L1

1x(K(ρ)) =
∑
y∈ΩJ

trH2

[
Lxy(K(ρ))

]
= Ix(K(ρ)) = (I | K)x(ρ)

M2
2y(ρ) = L

2
2y(K(ρ)) =

∑
x∈ΩI

trH1

[
Lxy(K(ρ))

]
= Jx(K(ρ)) = (J | K)y(ρ)

Hence,M is a joint bi-instrument for (I | K) and (J | K)
so (I | K) co(J | K). Moreover,M = K ◦ L. □

If I ∈ In(H,H1), then Îx = I
∗
x(IH1) ∈ Ob(H) and if

A ∈ Ob(H1) we define (A | I)x = I
∗(Ax) ∈ Ob(H). Also,

if J ∈ In(H1,H2) then

(I ◦ J)xy(ρ) = Jy(Ix(ρ)) ∈ In(H1,H2)

and since (J | I)y(ρ) = Jy(I(ρ)) we have that (J | I) ∈
In(H1,H2). Now Ĵ ∈ Ob(H1) so

( Ĵ | I)y = I ∗( Ĵy) ∈ Ob(H)

Also, (J | I)∧ ∈ Ob(H) and the next result shows that
these two observables coincide.

Lemma 7. If I ∈ In(H,H1) and J ∈ In(H1,H2), then
(J | I)∧ = ( Ĵ | I).
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Proof. For all y ∈ ΩJ and ρ ∈ S(H) we obtain

tr
[
ρ(J | I)∧y

]
= tr

[
(J | I)y(ρ)

]
= tr

[
Jy(I(ρ))

]
= tr

[
I(ρ)Ĵy

]
= tr

[
ρI ∗( Ĵy)

]
= tr

[
ρ( Ĵ | I)y

]
Hence, (J | I)∧ = ( Ĵ | I). □

Corollary 8. If I ∈ In(H,H1), J ∈ In(H,H2), K ∈
In(H0,H) and I coJ , then ( Î | K) co( Ĵ | K).

Proof. By Lemma 6, (I | K) co(J | K) so (I |
K)∧ co(J | K)∧. By Lemma 7, ( Î | K) = (I | K)∧

and ( Ĵ | K) = (J | K)∧ so ( Î | K) co( Ĵ | K). □

Lemma 9. Let A, B ∈ Ob(H) and I ∈ In(H1,H). If
A co B, then (A | I) co(B | I). If C is a joint bi-observable
for A and B, then Dxy = I

∗(Cxy) is a joint bi-observable
for (A | I) and (B | I).

Proof. We have that D, (A | I), (B | I) ∈ Ob(H1) and we
obtain

D1
x =

∑
y

Dxy =
∑
y

I ∗(Cxy)

= I ∗

∑
y

Cxy

 = I ∗(Ax) = (A | I)x

and similarly, D2
y = (B | I)y. Hence, D is a joint

bi-observable for (A | I) and (B | I) implying that
(A | I) co(B | I). □

Example 4. The converse of Lemma 9 does not hold.
To show this, suppose A, B ∈ Ob(H) do not coexist. Let
H (C,α) ∈ In(H1,H) be Holevo with C ∈ Ob(H1), {α} =
α ∈ S(H). Then

(A | H (C,α))x = H
(C,α)∗(Ax) =

∑
z

tr(αAx)Cz = tr(αAx)IH1

(B | H (C,α))y = H (C,α)∗(By) =
∑

z

tr(αBy)Cz = tr(αBy)IH1

Letting Dxy = tr(αAx)tr(αBy)IH1 ∈ Ob(H1), we have that
D is a joint bi-observable for (A | H (C,α)) and (B | H (C,α)).
Hence, (A | H (C,α)) co(B | H (C,α)) but A, B do not coexist.
□

We say that an observable A is sharp if Ax is a projec-
tion for all x ∈ ΩA and an instrument I is sharp if Î is
sharp [6, 11, 12].

Theorem 10. Let I ∈ In(H,H1) and A ∈ Ob(H1).
(i) (A | I) co Î. (ii) If I is sharp, then (A | I) com-
mutes with Î.

Proof. (i) Let Bxy be the bi-observable on H given by
Bxy = I

∗
x(Ay). Notice that Bxy is indeed an observable

because ∑
x,y

Bxy =
∑
x,y

I∗x(Ay) =
∑

x

I∗x

∑
y

Ay


=

∑
x

I∗x(IH1) =
∑

x

Îx = IH

We have that

B1
x =

∑
y

Bxy = I
∗
x(IH1) = Îx

B2
y =

∑
x

Bxy =
∑

x

I∗x(Ay) = I ∗(Ay) = (A | I)y

so (A | I) co Î.
(ii) If I is sharp, then Î is sharp and by (i) we have that
Î co(A | I). It follows that Îx and (A | I)y are coexisting
effects [11, 16]. Since Îx is a projection we conclude that
Îx and (A | I)y commute for all x, y [11, 16]. □

Theorem 11. (i) If I ∈ In(H,H1), J ∈ In(H1,H2), then
(Ix ◦ Jy)∧ = I∗x( Ĵy) for all x, y. (ii) If I,J ∈ In(H),
then I◦J = J ◦I implies I∗x( Ĵy) = J∗y ( Îx) for all x, y
which implies (I◦J)∧ = (J ◦I)∧. (iii) If I,J ∈ In(H)
with I ◦ J = J ◦ I, then ( Î | J) = Î and ( Ĵ | I) = Ĵ .

Proof. (i) For all ρ ∈ S(H), we have

tr
[
ρ(Ix ◦ Jy)∧

]
= tr

[
Ix ◦ Jy(ρ)

]
= tr

[
Jy(Ix(ρ))

]
= tr

[
Ix(ρ)Ĵy

]
= tr

[
ρI∗x( Ĵy)

]
It follows that (Ix ◦ Jy)∧ = I∗x(Jy) for x, y.
(ii) If I ◦ J = J ◦ I, then by (i) we obtain

I∗x( Ĵy) = (Ix ◦ Jy)∧ = (Jy ◦ Ix)∧ = J∗y ( Îx)

for all x, y. Moreover, if I∗x( Ĵy) = J∗y ( Îx) then by (i)
we have (Ix ◦ Jy)∧ = (Jy ◦ Ix)∧.
(iii) If I ◦ J = J ◦ I, then by (ii) we obtain

Îx = I
∗
x(IH) =

∑
y

I∗x( Ĵy) =
∑
y

J∗y ( Îx) = ( Î | J)x

Hence, Î = ( Î | J) and similarly, Ĵ = ( Ĵ | I). □

Example 5. Let H (A,α),H (B,β) ∈ In(H) be Holevo. We
have seen in the second paragraph of Section 3 that

H
(A,α)
x ◦ H

(B,β)
y (ρ) = tr(ρAx)tr(αxBy)βy

and similarly,

H
(B,β)
y ◦ H

(A,α)
x (ρ) = tr(ρBy)tr(βyAx)αx
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Hence,H (A,α)
x ◦ H

(B,β)
y = H

(B,β)
y ◦ H

(A,α)
x if and only if

tr(ρAx)tr(αxBy)βy = tr(ρBy)tr(βyAx)αx (3)

for all ρ ∈ S(H). Taking the trace of (3) gives

tr(ρAx)tr(αxBy) = tr(ρBy)tr(βyAx) (4)

for all ρ ∈ S(H). Applying (4) we have

tr
[
ρtr(αxBy)Ax

]
= tr

[
ρtr(βyAx)By

]
(5)

so we have

tr(αxBy)Ax = tr(βyAx)By (6)

Applying (3) and (4) we obtain βy = αx = γ ∈ S(H) for
all x, y and (6) becomes

tr(γBy)Ax = tr(γAx)By

for all x, y. Summing over y gives Ax = tr(γAx)IH . We
conclude that if

H (A,α) ◦ H (B,β) = H (B,β) ◦ H (A,α) (7)

then AB = BA. The converse does not hold because we
can have AB = BA but (3) does not hold (for example, let
Ax , tr(γAx)IH) so (7) does not hold. □

5 Measurement Models

We begin a study of measurement models [7,11,17]. This
section only gives an introduction to the theory and we
leave more details to later work. If A ∈ Ob(H), we define
the Lüders instrument LA ∈ In(H) corresponding to A by

LA
x (ρ) = A

1
2
x ρA

1
2
x for all x ∈ ΩA, ρ ∈ S(H) [18]. Notice

that LA is a special type of Kraus instrument with Kraus

operators A
1
2
x . Since

tr
[
LA

x (ρ)
]
= tr(A

1
2
x ρA

1
2
x ) = tr(ρAx)

we have that (LA)∧ = A and every observable is measured
by its corresponding Lüders instrument. If A is sharp, then
LA has the form LA

x (ρ) = AxρAx.
A measurement model M is an apparatus that can be

employed to gain information about a quantum system S .
If S is described by a Hilbert space H, we call H the base
space. We interact H with an auxiliary Hilbert space K
using an instrument I ∈ In(H,H ⊗ K). We then mea-
sure a probe observable P ∈ Ob(K). The result of this
measurement gives information about the state of S or
observables on S . We now make this description mathe-
matically precise. A measurement model is a four-tuple
M = (H,K,I, P) where H is the base space Hilbert space,

K is the auxiliary Hilbert space, I ∈ In(H,H ⊗ K) is
the interaction instrument and P ∈ Ob(K) is the probe
observable. This definition is a generalization of the mea-
surement models that have already been studied [11, 16].
The measurement instrumentM ∈ In(H,H ⊗ K) for the
model M is given by the bi-instrument

Mxy = Iy ◦ L
IH⊗Px

which results from first applying the interaction and then
measuring the probe observable. Thus, for all ρ ∈ S(H)
we have

Mxy(ρ) = LIH⊗Px
[
Iy(ρ)

]
= (IH ⊗ Px)

1
2Iy(ρ)(IH ⊗ Px)

1
2

The measurement instrument contains the information ob-
tained from M. In particular, the marginal measurement
instrument is the instrumentM1 ∈ In(H,H ⊗ K) given by

M1
x(ρ) =

∑
y

Mxy(ρ) = LIH⊗Px
[
I(ρ)

]
= I ◦ LIH⊗Px(ρ)

We call the reduced marginal instrumentM1
1 ∈ In(H) the

instrument measured by M and we obtain

M1
1x(ρ) = trK

[
M1

x(ρ)
]
= trK

[
I ◦ LIH⊗Px(ρ)

]
for all ρ ∈ S(H). We call the observable M̂ ∈ Ob(H), the
observable measured by M. Since M̂ 1

1 satisfies

tr(ρM̂ 1
1x) = tr

[
M1

1x(ρ)
]
= tr

[
LIH⊗Px(I(ρ))

]
= tr

[
(IH ⊗ Px)

1
2I (ρ)(IH ⊗ Px)

1
2

]
= tr

[
I(ρ)(IH ⊗ Px)

]
= tr

[
ρI ∗(IH ⊗ Px)

]
we conclude that M̂ 1

1x = I
∗(IH ⊗ Px).

Suppose I is a Holevo instrument I = H (A,α), where
A ∈ Ob(H) and α = {αx : x ∈ ΩA} ⊆ S(H ⊗ K). Then

Mxy(ρ) = LIH⊗Px(Iy(ρ)) = LIH⊗Px
[
tr(ρAy)αy

]
= tr(ρAy)LIH⊗Px(αy)

= tr(ρAx)(IH ⊗ Px)
1
2αy(IH ⊗ Px)

1
2

and we obtain the instrument measured by M:

M1
1x(ρ) =

∑
y

tr(ρAy)trK

[
(IH ⊗ Px)

1
2αy(IH ⊗ Px)

1
2

]
Since I∗y(a) = tr(αya)Ay for all a ∈ E(H ⊗ K) we have
I ∗(a) =

∑
y tr(αya)Ay. Then the observable measured by

M becomes

M̂
1

1x = I
∗(IH ⊗ Px) =

∑
y

tr
[
αy(IH ⊗ Px)

]
Ay
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which is a post-processing of A because∑
x tr

[
αy(IH ⊗ Px)

]
= 1 for all y. In the particular

case where P is sharp and αy = βy ⊗ γy, βy ∈ S(H),
γy ∈ S(K) we obtain

Mxy(ρ) = tr(ρAy)(IH ⊗ Px)βy ⊗ γy(IH ⊗ Px)

= tr(ρAy)βy ⊗ PxγyPx

It follows that

M1
1x(ρ) =

∑
y

tr(ρAy)trK(βy ⊗ PxγyPx)

=
∑
y

tr(ρAy)tr(Pxγy)βy

=
∑
y

tr
[
PxH

(A,γ)
y (ρ)

]
βy

and

M̂ 1
1x =

∑
y

tr
[
βy ⊗ γy(IH ⊗ Px)

]
Ay

=
∑
y

tr(βy ⊗ γyPx)Ax =
∑
y

tr(γyPx)Ay

Finally, we introduce the sequential product of mea-
surement models. Let M = (H,K,I, P) and M1 =

(H ⊗ K,K1,I1, P1) be measurement models where I ∈
In(H,H ⊗ K), P ∈ Ob(K), I1 ∈ In(H ⊗ K,H ⊗ K ⊗ K1),
P1 ∈ Ob(K1). The sequential product of M then M1 is
the measurement model

M2 = M ◦ M1 = (H,K ⊗ K1,I2, P2)

where I2 ∈ In(H,H ⊗ K ⊗ K1) is given by I2 = I ◦ I1
and P2 ∈ Ob(K ⊗ K1) is given by P2xy = Px ⊗ P1y. The
corresponding measurement instrument for M2 because
the 4-instrumentM ∈ In(H,H ⊗ K ⊗ K1) defined as

Mxyx′y′ = I2x′y′ ◦ L
IH⊗P2xy

Hence,

Mxyx′y′(ρ) = LIH⊗P2xy
[
I2x′y′(ρ)

]
= (IH ⊗ P2xy)

1
2I2x′y′(ρ)(IH ⊗ P2xy)

1
2

= (IH ⊗ Px ⊗ P1y)
1
2I1x′(Iy′(ρ))(IH ⊗ Px ⊗ P1y)

1
2

The marginal measurement M1
xy ∈ In(H,H ⊗ K ⊗ K1)

becomes

M1
xy(ρ) =

∑
x′,y′
Mxyx′y′

= (IH ⊗ Px ⊗ P1y)
1
2I1(I(ρ))(IH ⊗ Px ⊗ P1y)

1
2

We then obtain the instrumentM1
1xy ∈ In(H) measured

by M2 as
M1

1xy(ρ) = trK⊗K1

[
M1

xy(ρ)
]

and the observable M̂ 1
1xy measured by M2 becomes

M̂ 1
1xy = I

∗
[
I
∗

1 (IH ⊗ Px ⊗ P1y)
]
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