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ntil recently, a quantum instrument was de-

fined to be a completely positive operation-

valued measure from the set of states on a
Hilbert space to itself. In the last few years, this defi-
nition has been generalized to such measures between
sets of states from different Hilbert spaces called the
input and output Hilbert spaces. This article presents
a theory of such instruments. Ways that instruments
can be combined such as convex combinations, post-
processing, sequential products, tensor products and
conditioning are studied. We also consider marginal,
reduced instruments and how these are used to define
coexistence (compatibility) of instruments. Finally, we
present a brief introduction to quantum measurement
models where the generalization of instruments is es-
sential. Many of the concepts of the theory are illus-
trated by examples. In particular, we discuss Holevo
and Kraus instruments.
Quanta 2023; 12: 27-40.

1 Introduction

In classical physics a measurement of a physical sys-
tem does not alter the state of the system. Because of
this, a measurement does not interfere with later measure-
ments. An important characteristic of quantum mechanics
is that the state of a system can change into an updated
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state when a measurement is performed. An even more
surprising and radical possibility has been recently intro-
duced [[1H4]. These works have pointed out that when
the initial state p of a quantum system is represented by
a density operator on an input Hilbert space H, then the
updated state after a measurement is performed may be
represented by a density operator p; in a different output
Hilbert space H;. Not only can the state of the system
change as the result of a measurement, but the entire
system can be altered so it is described by a different
Hilbert space. This is truly an amazing new possibility!
In this work we represent measurements by instruments
acting on states of a Hilbert space. We present a theory of
quantum instruments that emphasizes this new possibility.

Ways that instruments can be combined such as convex
combinations, post-processing, tensor products, sequen-
tial products and conditioning are studied [5H9]]. We also
consider marginal and reduced instruments. These con-
cepts are employed to define coexistence (compatibility)
of instruments and observables. Although compatibility
has been well presented in the literature [[TH4}[10], we
point out some of its features here. Even when two instru-
ments have different output spaces, if their input space H
is the same, then the observables they measure are on H.
Because of this, we can compare these measured observ-
ables. Finally, we consider measurement models that can
be used to measure instruments [11,[12]. These models
strongly rely on the fact that instruments can have differ-
ent input and output spaces. Many of the concepts of the
theory are illustrated by examples. In particular, a theory
of Holevo and Kraus instruments are considered [13H15]].

Section [2] presents the basic concepts and defini-
tions of the theory. In particular, we discuss the con-
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cepts of effects, observables, operations and instruments
[5,11,]12,16,|17]. Section 3| gives examples of various
instruments that illustrate the theory. An important role
is played by Holevo and Kraus instruments [13+15]]. In
Section [ we discuss theorems and results concerning
instruments and observables. For example, we show that
an observable conditioned on an instrument coexists with
the observable measured by the instrument. Section [3]
introduces the concept of a quantum measurement model.
The instrument that such a model measures employs a
Liiders instrument [18]]. We also give a new definition of
the sequential product of measurement models [5].

In this work, all of our Hilbert spaces are assumed to
be finite dimensional. Although this is a strong restric-
tion, it is general enough to include theories of quantum
computation and information [[11[12]. We retain this re-
striction for mathematical simplicity even though many
of our results can be extended to the infinite dimensional
case. The set of (bounded) linear operators on a Hilbert
space H is denoted by £(H) and the zero and identity
operators are 0 and /I, respectively. When it is neces-
sary to distinguish the Hilbert space, we write Iy instead
of I. An operation from H to H| is a completely posi-
tive, trace non-increasing, linear map J : L(H) — L(H,)
[11,124]17]. We denote the set of operations from H to H;
by O(H, H}). For simplicity, we write O(H) = O(H, H)
when H = H;. If jl S O(H,Hl), jz € O(H],Hz),
their sequential product I, o J» € O(H, H;) is given
by Ji o J2(4) = J2(J1(A). If I € OH, Hy) is
trace preserving we call J a channel. Every operation
J € O(H,H)) has the form J(A) = 3 J,AJ where
Ji: H — Hj is a linear operator Withl aldjoint J: and

Z JiJi < Iy [114[12]. The operators J;, i = 1,2,.

called Kraus operators for J [15]. We have that J is a
channel if and only if 37", JJ; = Iy. If € O(H, H})
we define the unique dual map J*: L(H,) — L(H) by
tr[BY*(A)] = tr[J(B)A] for all B € L(H), A € L(H;)

n
[9]. If J has Kraus decomposition J(A) = > JAJ!

i=1
then J*(B) = X, JiBJ;. If J is a channel, then
J*(In,) = Iy because

,nare

tr (BT (Ig,)] = tr [T (B)Ig,| = tr [T (B)] = 1 = tr(Bly)
for all B € L(H). A positive operator p € L(H) with
trace tr(p) = 1 is called a state on H. A state describes
the condition of a quantum system and the set of states

on H is denoted by S(H). We see that if p € S(H) and
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J € O(H, Hy) is a channel, then J(p) € S(H}). Also, it
is easy to check that (7 o J2)" = j; o jf.

A (finite) instrument is a finite set 7 = {7,: x € Qy}
where 7, € O(H, Hy) such that T = > I, is a chan-

XEQ]
nel [11,/12,/17]. An instrument is sometimes called an

operation-valued measure. We call Q7 the outcome space
for I and designate the set of instruments from H to H;
by In(H, H;). We think of 1 € In(H, H;) as an apparatus
or experiment that has outcomes x € Q7. The probabil-
ity that outcome x occurs when 7 is measured and the
system is in state p € S(H) is given by the Born rule
tr[Z(o)] [11412]. Since I, is positive and Tisa channel,
we have that 0 < tr[Z,(p)] < 1 and ) tr[Z,(p)] =1

XGQ[
so x > tr[Z,(p)] is a probability measure on Q7. If

tr[Z(0)] # 0 and p € S(H) is the initial state of the sys-
tem, then 7 ,(p)/tr [ 1 (p)] € S(H)) is the updated state
after the outcome x occurs. As pointed out in Section
this updated state can be in a different Hilbert space H;
than the input space H. If 7 € In(H, H;) we call the
probability measure @g (x) = tr[Z1(p)] the p-distribution
of 7. As we shall see, two different instruments can
have the same p-distribution for all p € S(H). A bi-
instrument I € In(H, Hy) is an instrument whose out-
come space has the product form Q7 = Q; X Q, and we
write 7 ,,(p), x € Q1, y € ;. In this case, we define the

1-marginal and 2-marginal of T by I''(p) = ¥ T w(P)
yed

and J 5 = 3 1Iy(p), respectively. This gives us the three

XEQI
instruments 7, 7', 72 € In(H, H,). Notice that these in-
struments give the same channels because

T(p)= )\ To(p)
xy

zzzfxy(p)
x oy
=X np=1'p

and similarly, f(p) = fz(p) for all p € S(H).

If 7 € In(H,H)) and J € In(Hy, Hy), the sequen-
tial product of I then J is the bi-instrument 7 o J €
In(H, H;) given by

(L o P)xyp) = Ty L x(p))

forall p € S(H), x € Qr, y € Qg. Notice that Q7.5 =
Qr X Qq. We call the 2-marginal

(T 1 Dyp) = T 0 9),(p)
= > (T o D)uy(p)

= > Ty Tlp) = T, (T(p)
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the instrument J given (or conditioned by or in the con-
text of ) 1 and we call the 1-marginal

T TD(p) = (T o T)ip)
= > (T o Dylp)
Y

= > Ty Tp) =T T p))
y

the instrument 1 then J [6,9]. If K € In(H,H; ®
H,) we have the reduced instruments K, € In(H, Hy),
XK, € In(H, Hy) given by the partial traces Ki.(0) =
try, [Ki(o)], Kox(p) = try, [Ki(p)]. Notice that K, K>
have the same p-distributions for all p € S(H).

If 7; € In(H,Hy),i = 1,2,...,n, with the same out-
come space Q and 4; € [0,1] with i A; = 1, then

i=1

n n
I = > AT givenby Iy = Y, 4L, x € Q, is called
i=1 i=1

a convex combination of the I; [7]. We have that
n
o) = tr [Z A,-L-x<p>l
i=1

= Zn: Aitr[Lix(p)] = z": D7 (p)
i=1 i=1

for all p € S(H). Thus, the distribution of a convex
combination is the convex combination of the distribu-
tions. Convex combinations are an important way of
combining instruments. We now consider another im-
portant way. If 7 € In(H,H;) and A,, € [0, 1] with
> Ay, = 1 for all x € Qyp, then the instrument # €

Z
In(H, Hy) given by P (p) = > AL (p) is called a post-

processing of I [1,|11]. Two instruments 7 € In(H, H;)
and J € In(H, Hy) coexist (are compatible) [10]], de-
noted by 7 coJ, if there exists a joint bi-instrument
K € In(H,H, ® Hy) with Qg = Qr X Qg such that
forall x € Q7,y € Qq, p € S(H) we have

Kio) = ) tra, [Ky(o)] = To(p)

yEQj

2
7(2y(p) = Z try, [(](Xy(p)] =Jyp)
)CGQ]
Thus, two coexisting instruments can be constructed from
the same bi-instrument so they are simultaneously mea-

surable. A complete discussion of this concept is found
in [1-4].

Lemma 1. If 7 co 9 and P is a post-processing of 7,
then P co 9J.

Proof. Suppose I € In(H, Hy) and J € In(H, H,) and
let K € In(H, H; ® H») be a joint bi-instrument for 1, 7.

Quanta | DOI:|10.12743/quanta.v12i1.233

If P, = X A1 is a post-processing of 7, define the
X
bi-instrument £, = }; 1K ,. We then obtain
X

L1.(p) = Z tr, [Lzy(p)] = Z Ay tr, [‘ny(p)]
XY

Y
= > 4KL(P) = Y AT () = Pep)

and
L3,0) = )t [ Layo)] = D Atr, [ Koy )]
= > tn [Ku(0)] = K5,0) = T, )

Hence, £ is a joint bi-instrument for  and 9 so P co J .
O

If A, B € L(H) satisfy (¢, Ap) < (¢, Bp) forall ¢ € H
we write A < Band if 0 < a < I we call a an effect.
An effect corresponds to a true-false (yes-no) experiment
and 0O, ] are the effects that are always false or always
true, respectively. We denote the set of effects on H by
E(H). If p € S(H), a € E(H), the p-probability of a is
tr(pa). Thus, tr(pa) is the probability that a is true (has
result yes) when the system is in state p. If a is true,
then its complement ' = I — a € &E(H) is false. An
observable is a finite set of effects A = {A,: x € Qu},
Ay € &E(H), that satisfies >, Ay = I. We call Q4 the

xeQy
outcome space for A and denote the set of observables

on H by Ob(H). An observable is also called a positive
operator-valued measure (POVM) [[11,]12,/17]. If p €
S(H) the p-probability distribution of A € Ob(H) is given
by @) (x) = tr(pA,), x € Q4. The observable measured
by I € In(H, H;) is the unique T e Ob(H) satisfying
tr(pZ ;) = tr[L(p)] for all p € S(H). Since tr[1,(p)] =
trpZ (Ip,) we see that 7, = I(Iy,) forall x € Qf = Qf.
We also have the distribution

OL(x) = tr(pT) = tr[Z.(p)] = D (x)

for all x € Q7 = Q. Although an instrument measures
a unique observable, as we shall see, an observable is
measured by many instruments.

Let A,B € Ob(H) and suppose I € In(H, Hy) with
7 = A. We define the T -sequential product of A then B
to be the observable A [7] B € Ob(H) given by

(ALL1B), = ) T3(B,)

As with instruments a bi-observable is an observable of
the form
A=Ay (x.y) € Q) x Q)
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If B € Ob(H), I € In(H, H,), we define B given 1

to be the bi-observable (B | I),, = I,(B,). We then

have (A[1]B), = X (B | I)x,. Two observables A, B €

Ob(H) coexist, denoted A co B, if there exists a joint bi-

observable C € Ob(H) with marginals C! = ¥, C,, = A,
y

and C; = 3, Cyy = B, [[154,[10,11]

Lemma 2. (i) If 7 € In(H, Hy), J € In(H;, Hy), then
(o) =g ol (i) U I €In(H, H1),J € In(H, Hy)
and J co J, then Icoj (iii) Let 7 € In(H Hy) be a
convex combination J = ) A;7;. Then I = Z AiZ; and

A
(Z /1,~I,~) =2 /l,Ii.
Proof. (1) Forall p € S(H), T € L(H,) we have

tr[pT* o I*(T)] = tr [pI* (T°(]))]

= r[T(0) T (T)] = [T T (p) T]

= tr[(T o N(P)T] = tr[pT o 9)"(T)]
and the result follows.

(ii) Since 7 coJ, there exists a bi-instrument K €
In(H, H; ® H;) such that ‘Kllx =71, 7(22y = 9Jy. De-

fine the bi-observable C,, € Ob(H) by C,;, = 7?)@. Then
for all p € S(H) we obtain

oo Y o] -uls zq?] - Sl
= Z e[, (K 0)]

)

= tr[K[,(0)] = tr [Z.(p)] = tr(pT )

Hence, Z Cy= ] and similarly Z Cy = j\'y s0 7 co i .

(iii) We have that
T=)1I.= ZZ/IJ,-X = Z/L-ZI,-X = Z/ﬁi
Moreover, for all p € S(H) we obtain
tr|p (Z M]A 2 /L-L-(p)l = D A [Tio)]
= Z X(oT:) = tr {p Z A,fi]

=1r

A
SO (Z /lifi) = Z/l,‘fi. m}
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For a bi-instrument K € In(H, H; ® H,) we defined the
marginals K 11 and ‘](22. We also have the mixed marginals
K? K, ! given by

1x°

7(12y(p) = Z try, [(](xy(p)]

)CEQ]

7(21)((.0) = Z try, [(}(xy(p)]

yeQyg

Example 1. The simplest example of an instrument is a
trivial instrument J € In(H, H,) given by J,(p) = 3, for
all p € S(H), where g, € E(H) with 8 = 3 B, € S(H>).
Then 7 cod for all 7 € In(H, H;). Indeed, let K €
In(H, Hy ® H>) be the bi-instrument K, (p) = 7 .(0) ® B,
x € Q7. Then for all p € S(H) we have

Kip) = Y tr, [ Koy ()]

- zy: tr, [2p) ® ] = T.(p)
K3, (p) = zy: trt, [ Koy (0)]

= itrm [Zx0) @ By] = B, = Ty )

Hence, K is a joint instrument for 7 and J so J co 7.
Notice that the mixed marginals of K become:

KL, 0) = > tru, [Kyp)| = D tra, [Tulp) @1,

=y, | 1(p) ® | = u (61 (p)
K o) = > trw, [Kyp)| = D tra, [Tulp) @1,
Y Y

=tr[1:p)] ). By = r[T.(p)] B
Y

We also have ?(p)

(o) = tr [T ()| = (By) = tr [ptr(B.) ]

= S for all p € S(H) and since

we obtain iy = tr(B,) . We call iy an identity observ-
able [7]).
Let J € In(H, Hy) be a trivial instrument with 7, (p) =

By, Bx € E(H)). If T € In(Hy, Hy) is arbitrary, we have

the sequential product J o I € In(H{, H;) given by
WA Z)xy(p) = Iy (Tx(p) = —Z-y(ﬁx)
We then have J o 7(p) = Z(B) for all p € S(H). Since

tr[p(T o D}y | = tr[(T 0 Dy )]
=1tr [Iy(ﬂx)]
= tr|ptr (7,(8.)) In|
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we obtain (J o I)Qy =tr [Iy(/i’x)] Iy which is an identity and ‘K € O(H; ® H», Hz ® H,) satisfies
bi-observable. The conditional instrument (I | ) €

In(H,, H) becomes K(C®D)= ) K;®J,CoDK & J;
— ij
T 1 Dye) = 1,(TP) = 1,6) = S KCKD B (D)
for all p € S(H). If T € In(Hy, H) is arbitrary, we have -
the sequential product 7 o J € In(Hy, H;) given by = Z KiCK; ® Z JiDJ; = I(C)® J (D)
i J

(£ o j)xy(p) = jy x(p) =1tr [Ix(p)] ﬁy
forall C € L(H,), D € L(H>).

We then have J o J(p) = 8 for all p € S(Hp). Since If 7 € In(H,, H3), J € In(H», H) define the tensor
. product K = T ® J to be the bi-instrument K € In(H; ®
tr|p(Z 0 )}y | = tr[(Z 0 (o) H,, H3 ® Hy) defined by Ky, (0) = I, ® T, (p) for all p €
- tr [Ix(p)tr(,B,,)] S(Hi1®H>). We have seen that K, € O(H®H>, H3®H})
3 7 ' and K is a channel because K = 7 ® 7 and I,7 are
= tr(p X)tr(éy) channels. The next result shows that 7 ® J is a type of
=tr [ptr(ﬂy)f x] joint instrument for 7, 9.
we obtain (I o J)y, = tr(ﬂy)fx. The conditional instru- Theorem 3. Let I € In(H\, H3), J = FI(HZ’HU and
ment (J | T) € In(Hy, H;) becomes let K =7T®7. () Ky = I,®7,. (i) Forall p €
_ S(H, ® Hy) we have K| (p) = I, [try,(p)], ‘Kzzy(p) =
T 1 Dyp) = Ty (1(0)) = By = T (p) I, [tta, (). (i) If ny = dimHy, my = dim Hy, py €
S(H)), p» = S(H,) we have
so(J11)=J9. |
1 gl _
If A € Ob(H,), B € Ob(H>), define the tensor product m Kix(or @ I,) = (o)
bi-observable A® B € Ob(H®H,) by (A®B),, = A,®B, n—ll‘KZZy(IHl ®p2) = Jy(p2)

[7]. We then have (A®B). = A, ®1p,, (A®B); = I, ®B,

and the identity observables (A ® B)) = tr(A)Iy,, (A® Proof. (i) Forall p = p, ® p € L(H; ® Hy) we have

B)i/ = tr(B,)In,. Now A ® B is a joint bi-observable for -

A, B in the sense that n—lz(A®B)}x = A, and %(A ®B)%,/ = Ky =tr [ny(p)] =u [I" ®Jy(p1 ®p2)]

B, whete ny = dim Hy, ny = dim H. ‘ = tr[T(p1) ® Ty(p2)| = tr [T (o)) tr [Ty (02)]
If 7 € O(H|,H3), 9 € O(H», Hy), define the tensor — —~ — —~

product K = I ® J to be the operation K € (H; ® - tr(plfx)tr/(,?zjyl: tr(plfi®p 2;%)

H,, H3 ® H,) that satisfies =tr(p1 ® 2L, ® Jy) = tr(pl  ® J})

K(C®D)=I1(C)®J(D) Since any A € L(H; ® H;) has the form A = }' B; ® C},
i.j

for all C € L(H)), D € L(H,). To show that X Bi € 1:(/{11), C; e {(Hz), the result holds fdrp = A

=

exists, suppose 7 and J have Kraus decompositions Hence, K, = 1, ® 7.
I(C) = X KCK;, g(D) = X JjDJ;T where 3 K7K; < (ii) Forallp = p1 ® p, € L(H) ® H>) we have
i j i

Iu,, ZJ;‘J, < Iy,. Then for E € L(H, ® H,) we define I

J %! (o) = trp, Z?(xy(p)‘
¢ % L Y
K(E)= ) Ki®JEK; ®J; :

H =t | Y 12 ® Ty(o1 ®p2)
Then -y
DK @ INK ® ) = ) (K Ki® J3])) = trp, | Y Top1) ® jy(pz)}
i,j i,j L Y
ZZK;K,'@)ZJ;J]' =ZtrH4 [Ix(p1)®jy(p2)]
i J y
< Iy, ® Iy, = try, [fx(.Dl) ®?@2)] = 1.(p1) = I [tru,(p)]
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As in (i) the result follows for all p € S(H; ® H»). The conditioned instrument (H®H) | HA-O e In(H, H,)

(iii)) Applying (i) we obtain becomes
(B,B) A (B o) @
Kl (o1 ® I,) = Iy [try, (01 ® I, (HEZTHED), (p) = [ﬂ(A )p]
= I [te(In,)p1] — (BB Z HAD ()
= mI(p1) B
— (BB) [qy(A,)

Hence, ;=% (01 ® In,) = I(p1). Similarly, %«gy(ml ® B Zx: Hy [ﬂx (p)]
p2) = Jyp2). m

= > HG o) = 1)

We conclude that (HB#) | HAD) ig the marginal instru-

. . . ment H P2, We also have
Two important instruments are the Holevo and Kraus in-

struments. These instruments are useful for illustrating (HAD THEP) (p) = HBP [?{)(CA’“) (p)]
the definitions and concepts presented in Section [2] If _ Z HEP [ A (p)]
A € Ob(H) and a = {a,: x € Q4} € S(H,), the corre- y .
sponding Holevo instrument H*® e In(H, H;) has the
form 7-(?4’0)(/)) = tr(pA, ), for all p € SCH) [6l13l[14]. Z Hy P (0) = HP (p)
Notice that H“? is indeed an instrument because

Hence, (H4® THBA) is the marginal instrument
Z tr(pAy) = tr [p ZAx] HEP! Notice that CL = A, so C! = A and
X X

2 _
() =1 Cy = ) tr(aB)A,

for every p € S(H) so Y, tr(pA,)a, is a convex combina- Since Z tr(@,B,) = 1 for every y € Qp, C? is a post-

tion of states which is a state. Since
processmg of A.

tr [pq_{)(CA,a)* (a)] —tr [7_{)(CA,Q) (p)a] Let Ay, € Ob(H) be a bi-observable, a =
{a/xy: (x,y) € QA} C S(H; ® H,) and define the Holevo
= tr[tr(pA)aya] bi-instrument in In(H, H; ® H;) by
= tr [ptr(a,a)Ay]

Hiy () = tr(pA )y
we have that H"""(a) = tr(@@)A, for all a € EH1). The marginals become

We conclude thhat Al (Aa) _
Hy (P)=Z7{ ¢ Ztr(PAxy)a’xu

(W(A (l))/\ _ (A a)*(IHl) — J
—A) Hiy " (0) = Z Hyy® = Z tr(pA )y
so HAON = A, We also have H~ (p) = I tr(pA )y X
X
which, as we showed previously is a state. We then have the reduced and mixed marginals

If HAY ¢ In(H, H,) and H®P e In(H,, H>), then

(Al
their sequential product becomes Hi ) = Z (A )H, (@) € In(H, Hy)

[HAD o HED| (o) = H,P [H ()] Hy (o) = Z (r(pA )t () € In(H, H)
= HPP [t(pA
7t ﬁ;»ax] Hyy (o) = Z tr(pA )ty (ar,) € In(H, H))
= tI'(pr)Wy (ax) X
= tr(pAtr(@.B,)B, HP ' (0) = Y tr(pAy)try, (ax,) € In(H, Hy)
= tr [ptr(,B,)A| B, !
C,B) We say that HA? is a product instrument if a, = Bx®y,,
= (I_{xyy (o)

Bx € S(H,), v, € S(H>) and in this case we have

(A@) (BB — q{(CPh)
We con'clude tbat H Y o 7{ = H'") where C € (Hl(ziml(p) - Z tr(pA )By
Ob(H) is the bi-observable given by C,, = tr(a,By)A,.
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Aa)2
Hy P p) = > tr(pAy Yy,
X
Notice that H 1(‘:’”)1 = HBP) where B, = 3 Ay =Aland
y
W;A’Q)Z = ‘H,;C’” where C, = Y Ay, = A;.
X

Suppose HAD ¢ In(H, Hy), HBB e In(H, H,) and
HAD 50 HBP If their joint instrument is HEY) €
In(H, H, ® H;) then for all p € S(H) we have

rpA ), = H (o) = H, 7
= Z tr(pcxy)ter (yxy)
y
B, Cy)2
twr(pBy)By = HyP (p) = H,,
= Z tI’(pry)tI'HI (')’xy)
X

If C is a product instrument with y,, = &, ® 6, we obtain

tr(pA)ay = Z tr(pcxy)gx
Y

= tr[pz ny]ax
y
= tl‘(pc)]c)gx
tr(pB,)B, = Y tr(pC.y))d,

=tr [p Z ny] Oy

= tr(pC;)3,

It follows that &, = @y, A, = Cy and B, = 6,, B, = C,.

Moreover, y,, = a, ® B,.

A Kraus instrument K € In(H,H;) has the form
Ki(p) = K,pK; where K,: L(H) — L(H;) are linear
operators satisfying >, K;Ky = Iy [15]. We call K, the

X

Kraus operators for K. Notice that 0 < K;K, < Iy so
KK, € EH) for all x € Qg. Since

tr [Ki(p)a] = tr(K pKa) = tr(pK;aK,)

for every a € L(H;) we have K (a) = K;aK,. It follows
that the measured observable K € Ob(H) is

K. = K:(In,) = KKy

for all x € Q. Let K € In(H, Hy), J € In(H,, H)

be Kraus instruments with operators K, J,, respectively.

Then K o J € In(H, H;) is the bi-instrument given by

(Ko j)xy(p) = jy [Wx(p)] = Jy(prK;)J;

= Jnyp(]ny)* = -Exy(p)
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where L, is the Kraus bi-instrument with Kraus opera-
tors Ly, = J,K,. It follows that (J | K) € In(H, Hy) is
given by

T 1K)y0) = Ty (K(p) = T, (Z prK;i]

= Z [jy(prK;)] = Z(JnypK;J;)

= Z ny(P) = £§(P)

We also have

(KTTlp) = T [K(p)] = ZJ;(KXpK)

= ZJnyp x y
y

= Z ny(P) = -L)lc(p)
y

Let HA® ¢ In(H,, H,) be Holevo and K € In(H, H;)
be an arbitrary instrument. We then have the bi-
instrument K o H4® e In(H, H,) as follows

(K 0 HAD) () = H ' (Ki(p)) = tr|[K(p)Ay | a,
= tr[pK(Ay)| @y = H (o)

where B € Ob(H) is the bi-observable given by B,, =
K (A,). We conclude that

(K o HA)L = By = Ki(Ay)

We also have

(HAD | 5, p) = H, M (K(p)) = H, [Z mp)}

=tr [p D KAy |ay

= H® p)

= tr(pBZ)a/y

Hence, (HA® | %) = H®B® which is Holevo. More-
over,

= HOD [K(p)]
= Z tr[K(p)A, | ey
Y

= Z tr[pKi(Ay)|
- Selptale

— Z 7_{)(5 @) (P) _ ,7_{(3 L)l (p)

(K THA),(p)
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Therefore, (K T HA4®) = HBD! which is a marginal of
a Holevo bi-instrument. We conclude that the sequential
product of an arbitrary instrument then a Holevo instru-
ment is Holevo and a Holevo instrument conditioned by
an arbitrary instrument is Holevo. In particular, if K is
Kraus with operators K, then K o H4-® = H{(B®) where
B, = K;AK,.

In the other order, let HA® e In(H, H;) and K €
In(H,, H>) be arbitrary. Then HA® o K € In(H, H,) is
the bi-instrument given by

(HAD 0 Ky (p) = K, [H(0)]
= Wy [tr(pr)ax]
= tr(pr)(](y(ax)

If K,(ay) # 0, let 5, € S(H>) be defined by Sy, =
Ky(ay)/tr [Wy(ay)] and define the bi-observable B,, =

tr [Wy(ax)] A,. We then obtain
(HAD 0 Ky (p) = tr [ Ky (@) | tr(pA)Buy
= tr(pBy)Bry = My, (p)
which is a Holevo bi-instrument. Hence,
(HAD 0 Ky, = By = tr|Ky(e) | A
We also have

= K,(HA ()

= X, lz 7_{)(C,ax,oz)(p)l

X

= Z Wy [tl‘(pr)a/x]

(K | HA), (o)

= tr(pA K, (ax)

_ Zx: tr(pA )t [ 5, ()| By
= 2tr(p3xy)ﬁxy

= S HED (p) = HPP(p)

X

= Z tr {ptr [Wy(ax)] Ax}ﬁxy
y

= Z tr(oB xy)ﬁxy
y

= 3 HE ) =+ o

y

Hence, (HA® T K) = HBA! which is a marginal of a
Holevo bi-instrument.

We now give an example of a convex tensor product of
two instruments. Let 7 € In(H, H;), J € In(H, H»), a, €
S(HY). By € S(H)), Ayopty € [0, 1] with 5, Ay + 3 pty = 1
and define A = Z Ay, 1 = Z Uyx. Define the bi-instrument

K € In(H, H; ®H2) by

Ky(0)

Notice that K is indeed an instrument because

tr [Z m(p)} = 2.t [%utp)
’ - ZJ (A0 [20)] + patr [T, (0) |}
- Zy,lytr | Z(0)] + D e[ T )]
- Zz:ay + Zﬂx =1

The marginals K' e In(H, Hi®H>), K? € In(H, H ® H>)
are given by

(KLp) = Y Kiy(0) = Tup) ® D 4By + e ® T (p)
Y y

= 41 () ® By + pxax ® T (p)

K2p) = > Kyp) = T(p) ® By + Y 1100, ® T ()

The reduced instruments K; € In(H, Hy), K, € In(H, Hy)
become

Kiy(p) = tri, | Koy (0)] = AT () + pate | T (0)] e
Koy (p) = tra, | Koy (0)] = Aytr [T (o) By + 1T (p)

The reduced marginals K; ''e In(H, H)), ‘K2 € In(H, H,)

Therefore, (K | HA®) = HBA?2 which is a marginal of 7<2 e In(H, H,), (Kl e In( H H>) are given by

a Holevo bi-instrument. Moreover,
(HADTH)(p) = K [H ()]
= > %, lr(pA e
y

= tr(pAy) Z Wy(ax)
y

= ti(pAy) Y tr [, ()| By
y
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KL (o) = D King() = ALolp) + paats
Y
K, 0) = D Koey(p) = LBy + 1T ()
KL, 0) = > Kin() = 4,1(0) + tr[Ty(p)] D ey
K1 0) = Y Kau(p) = r[Tu(p)] D 4By + 1T (0)
Y y
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We have that K| co X3 and K7 coX). The measured

observables are gotten as follows:
tr(pq?xy) =1tr [%xy(p)]
= At [Z(p)] + patr [T, (0)|
= A,te(pT ) + pstr(pT,)
Hence, V?Xy = Ay,jx + ,uxj:y. Therefore, 7?; = /lfx +uly

and 7?; = Ayly + ,uiy coexist with joint observable ‘]?xy.
We also have

tr(p??llx) =tr [‘K]lx(p)]
= Atr [2,(0)] +
= Atr(pT) + pitr(p)

= tr[p(AZ s + pl)|

Hence, 7?11)6 = ﬂfx + udy = ‘]?; and similarly 7?22y =
Ayly + ,uj:y = ‘]?yz Moreover,

(X)) = tr[ KT (0)] = Ay + ptr [T, (0)]
= tr[p(uT, + Ay 1n))|
Therefore,
2 T T2 _ a2

7(1,/ = ,ujy + ﬂulH = (]<2y = 7<y

and similarly 7?21)6 = ‘]?llx = 7?)}
Let us consider the special case in which 7 = H®Y)

and J = HB9_ We then obtain

Key(p) = L, HV(0) ® By + prrare @ HV(p)
= Atr(pA)yx ® By + puxay ® tr(pBy)y,

In this case, we have

Ki xy(p) =
(]<2xy(p) =

Atr(pAy)yx + pxtr(oBy)ay
Atr(pA By + pxtr(oB,)o,

We also obtain 7?)@ = Ay Ay + uBy, ‘7?} = AAy + uly,
K2 = Ayly + B,

Our first result shows that a convex combination of
Holevo instruments with the same base Hilbert space,
outcome space and states is Holevo. Moreover, a weak-
ened form of the converse holds.

Theorem 4. (i) Let H4+® i = 1,2,...,n, be Holevo
instruments in In(H, H) with the same outcome space Q
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and states @ = {a,: x € Q}. Then a convex combination

n
> A;HA s Holevo and
i=1

n
Z /liq.{(Ahfl) = HE AL
i=1

(i) If HA%) e In(H, H;) with the same outcomes space
Q and if

n
Z /ll,q.{(AisQi) = H{BH
then B = > 4;A; and

Bx= Z Aitr(Aj )iy (1)

Z A tr(Azx)

for all x € Q.

Proof. (1) For all x € Q, we obtain

Z /I[W,EAi’a)(p) = Z /litr(pAix)a’x

=tr p(z A,A,-] a
i x

— 7_()(62 /liAi»a/)(p)

and the result follows.
(ii) For all p € S(H) and x € Q we have

tr(pr)Bx = H;Bﬁ)(p) = Z /ll.q-{)(cAi’a/i)(p)
= Z Aitr(pAi )iy 2)

Taking the trace of (2) gives

(pBy) = " ditr(pAix) = tr (p > AZ-AZ«X)

Hence, B, = )} 1;A;, for all x € Q and we conclude that
i
B = Y, A;A;. Substituting B into (2)) gives
i

Z /litr(pAix)ﬂx = Z /litr(pAix)aix
i i
so that

Bx = ) Z Aitr(Aj)ix

Z A tr(pAzx

for all x € Q, p € S(H). Letting p = I/n where n =
dim H, we conclude that (I]) holds. o
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We have seen that a convex combination of Holevo in-
struments H“»® is Holevo. We now show that a general
convex combination of Holevo instruments 4% need
not be Holevo.

Example 2. Let HA4® HBB) ¢ In(C?) be Holevo in-
struments with the same outcome space Q = {x, y} and
let Ay = B, = |¢p)(#| where ¢ € C? with ||g|| = 1. Also,
assume that @, # By and

lggAe) | 1q0(Bp) _ qq(Cy)
Lo 4 L (BB — gy

It follows from Theorem ii) that C = %A + %B SO

Also from Theorem ii) we obtain y, = %(a ++By). Since

%tr(pr)ax + %tr(pr),Bx = tr(pCr)yx

for all p € S(C?), letting p = A, we have @, = y, =
%(afx + B,). But then o, = B, which is a contradiction.
Hence, $H® + 1{(®H is not Holevo. This also shows
that the converse of Theorem [{ii) does not hold. O

Example 3. This example shows that a convex combina-
tion of Kraus instruments need not be Kraus. Let {¢, @2}
be an orthonormal basis for C2, let K,, K, be the pro-
jection K, = [p1X1], K, = |¢p2){¢2| and let J, = K,
Jy, = K,. Define the Kraus instruments K, J € In(C?)
with operators {K X Ky}, {J o J_,/}, respectively. Suppose
L € In(C?) is a Kraus instrument with outcome space
Q = {x, y}, operators {Lx, Ly} so that L7L, + L;Ly =l and
L= %7( + %j, We then obtain

LipL; = Li(p) = 3K:(0) + 3T:(0) = 3KopK + 3050
for all p € S(C?). Letting p = I/2 we have
L.L;=31K.+ 31, =11

and it follows that V2L, is a unitary operator U. Hence,
for all p € S(C?) we have

UpU" = K.pK, + JpJy
Therefore,
K, UpU* = K,pK, = UpU*K,

We conclude that K, commutes with every p € S(H).
Hence, K, = A, 1, A, € [0, 1] which is a contradiction. O

Lemma 5. If € In(H, H}) is a post-processing of a
Holevo instrument 7 € In(H, H;), then J is Holevo.
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Proof. Suppose I = H4® and 7 is a post-processing
of 7. Then there exist Ay, € [0, 1] with }] A,, = 1 for all
y

x € Q7 such that

Ty0) = Y A To) = D Ay M (p)

- Z Aytr(pA ey = tr (p Z /lxyAx) @,
T T
o
=H, ©)
Hence, J = HB® is Holevo with B, = ¥, 1,,A, a post-
processing of A. i |

We conjecture that Lemma [5|does not hold for Kraus
instruments but have not found a counterexample.

Lemma 6. If 7 € In(H,H;), 9 € In(Hy,H,), K €
(Ho,H) and 7co 9, then (I | K)co(J | K). If Lis
a joint instrument for 7 and ', then M = K o £ is a joint
instrument for (Z | K) and (J | K).

Proof. Let L € In(H, H; ® H») be a joint bi-instrument
for 7, J. Define M € In(Hy, H; ® Hy) by M,,(p) =
L,,(K(p)). We then have

Miyp) = L1 (Kp) = > tr, [ Lef(K(p))]

yeQq
= I(K(p)) = (I | K)x(p)
M3,(0) = L3, (K@) = ) tray [ L K (o))]

XEQ]

= J( K@) = (T | K),(p)

Hence, M is a joint bi-instrument for (I |_7<) and (7 | K)
so (I | K)co(T | K). Moreover, M = K o L. |

If I € In(H, Hy), then T, = I%(Iy,) € Ob(H) and if
A € Ob(H;) we define (A | ), = 1 *(Ay) € Ob(H). Also,
if J € In(H,, H») then

(£ o j)xy(p) = jy(jx(p)) € In(Hy, H>)

and since (J | 1),(p) = Jy(f(p)) we have that (7 | 1) €
In(H;, Hy). Now J € Ob(H,) so

(J | D), =1*(TF,) € Ob(H)

Also, (J | I)" € Ob(H) and the next result shows that
these two observables coincide.

Lemma 7. IfAI € In(H, Hy) and J € In(H;, H>), then
J 1D =(TJ D).
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Proof. For all y € Qg and p € S(H) we obtain

r|p(T 1 Dy | = (T 1 Dyp)] = e[ T,(T(p))]
=tr| 1(p)T,| = tr[pT *(F,)]
=tr[p(T | 1)y

Hence, (7 | D" = (T | ). O

Corollary 8. If 7 € In(H, Q]), g € EI(H, H), K €
In(Hy, H) and 1 co 7, then (7 | K)co( T | K).

Proof. By Lemma |6 (7 | K co(J | K) so (I |
KON co(J | K)". By Lemmg (I 1K) = | KON
and (J | K) = (T 1K) so (I | K)co( T | K). m]

Lemma 9. Let A,B € Ob(H) and 7 € In(H|,H). If
AcoB,then (A | I)co(B | Z). If C is a joint bi-observable
for A and B, then D, = 7 *(Cyy) 1s a joint bi-observable
for (A | 7)and (B | 7).

Proof. We have that D, (A | 1),(B| 1) € Ob(H;) and we
obtain
Dy =) Dy= > T"(Cy)
y y

2.Ca
y

and similarly, D = (B | I),. Hence, D is a joint
bi-observable for (A | 7) and (B | 1) implying that
(Al I)co(B|T1). |

=1 =T"A)=(A|D),

Example 4. The converse of Lemma [9] does not hold.
To show this, suppose A, B € Ob(H) do not coexist. Let
HED e In(H,, H) be Holevo with C € Ob(H)), {a} =
a € S(H). Then

(A HED), = HOD* (@A) = ) 11(@A)C; = (@A),
Z

(B| HC), = HCO*(B,) = Z tr(@B,)C, = tr(aB,)Iy,
Z

Letting Dy, = tr(aA)tr(aBy)Iy, € Ob(H,), we have that
D is a joint bi-observable for (A | HC) and (B | HEY).
Hence, (A | HC®) co(B | HE®) but A, B do not coexist.
|

We say that an observable A is sharp if A, is a projec-
tion for all x € Q4 and an instrument 7 is sharp if 1 is
sharp [[6,/11}/12].

Theorem 10.ALet I € In(H,H;) and A € Ob(H)).
1) (A | I)col. @ii) If 7 is sharp, then (A | 1) com-
mutes with 7.
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Proof. (i) Let B,, be the bi-observable on H given by
B,, = I(A,). Notice that B,, is indeed an observable
because

ZBxy = ZI;(Ay) = ZI;(ZAy]
XY XY X Y
=Y In) =) Tc=1Iy

We have that
By =" By =TIy) =1,
y

Bi - ZBxy = ZI;(Ay) =1"4)=@A|D),

so(A|1)co 7. _
(i) If 7 is sharp, then 7 is sharp and by (i) we have that
I co(A | I). It follows that 7, and (A | I), are coexisting

g\ffects [11,/16]. Since fx is a projection we conclude that
1, and (A | 7), commute for all x,y [[11,/16]. m]

Theorem 11. (i) If 7 € In(H, H,), J € In(H;, H), then
Iy 0 F)" = I(T,) for all x,y. (i) If 7,.J € In(H),
then 7 o J = J o1 implies I)*C(@) = j;(fx) for all x, y
which implies (Z 0 9)" = (F o D). (iii) If 7, € In(H)
withToJ =J oI, then(Z|J)=Zand(T|I)=7.

Proof. (i) For all p € S(H), we have
tr[p(Zc 0 T)"| = tr[ L0 Ty(p)] = tr [Ty (T1(0))]
= |70, ] = [T (T,

It follows that (7 o J,))" = T3(J,) for x, y.
(i) If 7 o J = g o 71, then by (i) we obtain

T(T) =TT =(Fyo L) = T5(1.)
for all x,y. Moreover, if 7 j;(f,,) =9 y*( fx) then by (i)
we have (7, o J,)" = (T, 0 T )".
(iii) If 7 o J = g o 71, then by (ii) we obtain

To=Tw) =), IuT) = ), T5(T) = (T19)x
y y

Hence, 7 = (7 | 9) and similarly, T = (. | 1). o

Example 5. Let H4® HBH) ¢ In(H) be Holevo. We
have seen in the second paragraph of Section 3| that

H o H,"P(p) = tr(pAtr(eB,)B,
and similarly,

HP o HO(p) = te(pB, r(ByA)ax
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Hence, H* o 7‘(;3’[3 ) = ?{;B’ﬁ ) o HA if and only if

tr(pAtr(axBy)By = tr(pBy)tr(ByA )y 3)
for all p € S(H). Taking the trace of (3)) gives
tr(pAtr(axBy) = tr(pBy)tr(B,Ax) 4)
for all p € S(H). Applying (@) we have
tr [ptr(aBy)A, | = tr[ptr(8,A,)B, | (5)
so we have
tr(axBy)A, = tr(B,A,)B, (6)

Applying (3) and (@) we obtain 8, = @, =y € S(H) for
all x, y and (6) becomes

tr(yB,)A, = tr(yAy)B,

for all x,y. Summing over y gives A,
conclude that if

= tr(yA)Iy. We

A o (B _ (BB o gy(Aa)

(7)
then AB = BA. The converse does not hold because we
can have AB = BA but (3) does not hold (for example, let
A, # tr(yA)Iy) so ([7) does not hold. |

We begin a study of measurement models [[7,/11,{17]. This
section only gives an introduction to the theory and we
leave more details to later work. If A € Ob(H), we define
the Liiders mstrument L4 € In(H) corresponding to A by

L) = A;pA2 for all x € Qq, p € S(H) [[18]]. Notice
that £4 is a special type of Kraus instrument with Kraus
1

operators A2. Since

tr[£4(0)] = tr(A2 25A2) = tr(pA,)

we have that (£4)" = A and every observable is measured
by its corresponding Liiders instrument. If A is sharp, then
L4 has the form £%(p) = A,pA..

A measurement model M is an apparatus that can be
employed to gain information about a quantum system S .
If S is described by a Hilbert space H, we call H the base
space. We interact H with an auxiliary Hilbert space K
using an instrument 7 € In(H, H ® K). We then mea-
sure a probe observable P € Ob(K). The result of this
measurement gives information about the state of S or
observables on S. We now make this description mathe-
matically precise. A measurement model is a four-tuple
M = (H,K, I, P)where H is the base space Hilbert space,
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K is the auxiliary Hilbert space, 7 € In(H,H ® K) is
the interaction instrument and P € Ob(K) is the probe
observable. This definition is a generalization of the mea-
surement models that have already been studied [11}/16].
The measurement instrument M € In(H, H ® K) for the
model M is given by the bi-instrument

Mxy = II/ o -[:IH@PX

which results from first applying the interaction and then
measuring the probe observable. Thus, for all p € S(H)
we have

Muy(p) = L1725 T,(p)| = (I ® P)A T (p)(UIp ® P2

The measurement instrument contains the information ob-
tained from M. In particular, the marginal measurement
instrument is the instrument M' € In(H, H ® K) given by

Mitp) = 3 Muylp) = L+ [ T()] = T o L7 (p)
y

We call the reduced marginal instrument M} € In(H) the
instrument measured by M and we obtain

M) = g [Myp)] = trg [ T 0 L1157 (p)]

for all p € S(H). We call the observable Me Ob(H), the
observable measured by M. Since /\/Il1 satisfies

(M) = tr[M} (0)] = e[ L75®P~(T(p))
= |l ® PO T (o)1 © Po)? |

= | T(p)In ® Po)| = tr[pT "I ® Py

we conclude that Mllx = f*(IH ® Py).
Suppose 7 is a Holevo instrument 7 = H4®, where
A € Ob(H) and a = {a,: x € Q4} € S(H ® K). Then

Muy(p) = LI®P(Z (p)) = L5 [tr(pA, e |
= tr(pAy)£IH®Px(ay)
= tr(pA)(Iy ® Py) (I ® P,)?

and we obtain the instrument measured by M:

Ml (p) = ) tr(pA,trx [(IH ® Py a,(ly ® Py)?
y

Since I (a) = tr(aya)A, for all a € E(H ® K) we have
T *(a) = X, tr(@ya)Ay. Then the observable measured by
M becomes

M, =T"Un @ Py =) tr[oy(ln @ Py A

y
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which is a post-processing of A because
etr [ay(IH®Px)] = 1 for all y. In the particular
case where P is sharp and o, = B, ® y,, B, € S(H),
Yy € S(K) we obtain

Mxy(p) = tr(pAy)(IH ® Px),By ® yy(IH ® Px)
= tr(pAy)By ® PryyPx
It follows that

Mix(p) = Z tr(pAy)trK(ﬁy ® Px7ny)
y
= ) tr(pA Py, By
y
= > [P ()| B,
y

and

M = [, @y, n @ Py A,

y
= Y (B, @y, PA, = ) tr(y,PYA,
y y

Finally, we introduce the sequential product of mea-
surement models. Let M = (H,K,I,P) and M; =
(H® K, Ky, I, Pp)be measurement models where 7 €
In(HLH®K),PcOb(K), 71 e In(H®K,H® K® Kj),
P € Ob(K}). The sequential product of M then M, is
the measurement model

My=MoM; =(HK®K,1,,P)

where 7, € In(H,H® K® K}) is given by 1, = 1 o 1,
and P, € Ob(K ® K)) is given by P;,, = P, ® Py,. The
corresponding measurement instrument for M, because
the 4-instrument M € In(H, H ® K ® K;) defined as

Mxyx’y’ =1y o LTa®P2y
Hence,
Mgy (0) = L2 [ L0 (0)]
= (In ® P2y)* Towy (p)Ip ® Poyy)?

=y ®P,®P1)* T1v(T,(0))Iy ® Py ® Py,)?

The marginal measurement M)]Cy € In(H,H® K ® Ky)
becomes

M)lcy(p) = Z Mxyx’ y

x/,y/
= Iy ® P, ® Py T1(T(p))Iy ® P, ® P1,)?

We then obtain the instrument M.

Ly € In(H) measured
by M; as

M, (p) = trgek, [ My, (p)]

and the observable M. fxy measured by M, becomes

M, =T"|1/UzePioPy)|
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