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One of the first proposals for the use of quantum
computers was the simulation of quantum sys-
tems. Over the past three decades, great strides

have been made in the development of algorithms for
simulating closed quantum systems and the more com-
plex open quantum systems. In this tutorial, we in-
troduce the methods used in the simulation of single
qubit Markovian open quantum systems. It combines
various existing notations into a common framework
that can be extended to more complex open system
simulation problems. The only currently available al-
gorithm for the digital simulation of single qubit open
quantum systems is discussed in detail. A modification
to the implementation of the simpler channels is made
that removes the need for classical random sampling,
thus making the modified algorithm a strictly quan-
tum algorithm. The modified algorithm makes use of
quantum forking to implement the simpler channels
that approximate the total channel. This circumvents
the need for quantum circuits with a large number of
CNOT gates.
Quanta 2023; 12: 131–163.

1 Introduction

The simulation of complex quantum systems is central to
many important problems in drug discovery, chemistry,
material science and more. Although simulating these
systems remains a computationally challenging task for
classical computers, the natural resources of quantum
computers can be leveraged to more efficiently simulate
these systems.

Generally, simulating a quantum system involves ap-
proximating a mathematical object describing the total
evolution of a system by some combination of simpler
objects. When the simulation is performed on a quan-
tum computer, these simpler objects define the operations
that will be performed on the quantum computer. Over
the past three decades, great strides have been made in
the development of algorithms for simulating closed and
open quantum systems. These algorithms often strive to
achieve a low enough error in the approximation of the
mathematical object and find an efficient set of operations
to perform the evolution.
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The simulation of closed quantum systems, often called
Hamiltonian Simulation, has been extensively explored
[1–12]. For Hamiltonian Simulation, the mathematical
object that must be approximated is the total unitary evo-
lution generated by some Hamiltonian. The total uni-
tary evolution is approximated by some combination of
simpler unitaries, generated by the components of the
decomposed Hamiltonian. Once the simpler unitaries are
obtained, efficient quantum circuits for these simpler uni-
taries which minimise gate count and number of qubits
must be constructed. Algorithms for Hamiltonian simu-
lation are typically characterised by the recombination
methods used to combine the simpler unitaries. The most
commonly used recombination method is the Suzuki–Lie–
Trotter (SLT) Product Formulas [13, 14].

While closed quantum systems are relevant to many
problems in quantum mechanics, open quantum systems
describe a more complex, commonly encountered sys-
tem: a quantum system that can interact with its sur-
rounding environment, sharing information and energy
[15, 16]. These systems are crucial to our understand-
ing of nonequilibrium dynamics and thermalization in a
wide range of systems, from damped-driven spin-boson
models to complex many fermion-boson models [17, 18].
In this tutorial, we shall only consider the simulation of
only Markovian open quantum systems for which we can
neglect memory effects.

Several methods that allow us to simulate open quan-
tum systems have been developed [19–27]. For the simu-
lation of open quantum systems, the mathematical object
that must be approximated is a quantum channel: a com-
pletely positive and trace preserving (CPTP) map, also
called a dynamical map. Like the Hamiltonian which
generates the total unitary evolution for closed quantum
systems, a superoperator called the Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) generator [28,29] generates
the quantum channel. The quantum channel can then
be approximated by a combination of simpler channels
generated by the components of the decomposed GKSL
generator. These simpler channels are then executed on
the quantum computer.

While the spectral decomposition was the natural
choice for decomposing the Hamiltonians in Hamiltonian
simulation, the method used to decompose the GKSL
generator for open system simulation was developed by
Bacon et al. [20]. This method involves decomposing
the GKSL generator into simpler components via linear
combination of semi-groups and unitary conjugation. It
was also shown by Bacon et al. that all quantum channels
on finite dimensional systems can be simulated by unitary
evolutions and quantum channels from a universal semi-
group. The decomposition method developed was used
by Sweke et al. to develop an algorithm for simulating

open quantum systems [19, 21]. This algorithm makes
use of SLT product formulas for the recombination of the
simpler quantum channels. Sweke et al. also derived the
bounds on the error in the approximation as well as the
bounds on the gate counts.

Despite the advancements made in the simulation of
open systems, a standard or widely accepted notation is
lacking. This has hindered progress in the field. This
tutorial will introduce the methods used in the simulation
of single qubit open quantum systems. It combines var-
ious existing notations into a common framework that
can be extended to more complex open system simula-
tion problems. The only currently available algorithm for
the digital simulation of single qubit open quantum sys-
tems [19] will be discussed in detail. A modification that
makes use of quantum forking [30] in the implementation
of the simpler channels is made that removes the need
for classical random sampling. This makes the modified
algorithm a strictly quantum algorithm. This modifica-
tion also circumvents the need for quantum circuits with
a large number of CNOT gates.

This tutorial is structured as follows: Section 2 for-
mally states the problem of quantum simulation and fixes
the notation used throughout the text. Sections 3 and 4
present the decomposition and recombination methods
used by the algorithm, respectively. Section 5 presents the
quantum circuits that can implement any channel from the
universal semigroup of quantum channels. Lastly in Sec-
tion 6, concluding remarks are made and open problems
in open quantum system simulation are discussed.

2 Problem and Setting

The state space of a single qubit is a two dimensional
complex Hilbert space Hs � C2. A quantum state of a
single qubit is described by a density matrix ρ ∈ M2(C) �
B(Hs), where B(Hs) is the set of all bounded linear oper-
ators acting on the Hilbert spaceHs andM2(C) is the set
of 2 × 2 complex matrices, such that:

ρ ≥ 0, tr(ρ) = 1, ρ = ρ†. (1)

Quantum channels provide a general framework for de-
scribing the evolution of quantum states. These are com-
pletely positive and trace preserving (CPTP) maps [15],

T : B(Hs)→ B(Hs). (2)

It is a well known fact that T has a Kraus representation
[31],

T (ρ) =
r∑

j=1

K jρK†j , (3)
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where K j are called the Kraus operators that satisfy the
completeness relation

∑r
j=1 K†j K j = 1s, with 1s being

the identity operator acting on the space Hs, and r =
rank(τ) ≤ 4. Here τ is the Choi matrix defined through
the Choi–Jamiołkowski isomorphism [32, 33] as,

τ = (T ⊗ 1s)|Ω⟩⟨Ω|, (4)

where |Ω⟩ = 1√
2
(|00⟩ + |11⟩) is a maximally entan-

gled state. The Choi matrix is a representation of the
quantum channel T and it is defined through the Choi–
Jamiołkowski isomorphism. It is a matrix description of
the quantum channel T and it contains all the properties
of T . For a quantum channel T , we can define the dual or
adjoint as T̃ and it can be calculated through the relation
tr(AT̃ (B)) = tr(T (A)B) for any A, B ∈ B(Hs). Using this
relation we can also find the Kraus representation of the
dual of the channel,

T̃ (ρ) =
r∑

j=1

K†j ρK j. (5)

So far we have only considered the state of a single
qubit ρ that is time independent, but for most practical
cases we must consider a time dependent state ρ(t) for
some t ≥ 0.

The channels above describe discrete time evolution
as the channel T does not depend on some continuous
parameter and are specified by time independent Kraus
operators. However we are interested in Markovian con-
tinuous time evolution. Which is described by a contin-
uous single parameter semigroup of quantum channels
{Tt}, which satisfy:

TtTs = Tt+s, T0 = 1 t, s ∈ R+. (6)

Also if we introduce time dependence to the state of our
single qubit, then we write the density matrix, ρ(t) which
describes the quantum state at some time t ≥ 0 then we
have that,

ρ(t) = Tt(ρ(0)). (7)

Every semigroup {Tt} has a unique generator
L : B(Hs)→ B(Hs) such that,

Tt = etL =

∞∑
j=0

t j

j!
L j, (8)

where L satisfies the master equation,

d
dt
ρ(t) = L(ρ(t)). (9)

The generator L is the generator of a continuous one
parameter Markovian semigroup {Tt} if and only if it

can be written in the celebrated Gorrini–Kossakowski–
Sudarshan–Lindblad (GKSL) form [28, 29],

L(ρ) = −i[H, ρ] +
3∑

i, j=1

Ai j
(
[Fi, ρF†j ] + [Fiρ, F

†

j ]
)
, (10)

where H = H† ∈ M2(C) is the Hamiltonian and A ∈
M3(C) is a positive semi-definite matrix called the GKS
matrix. The matrices {Fi} are a basis for the space of
traceless matrices inM2(C) and without loss of gener-
ality we chose the basis {Fi} to be the normalized Pauli
matrices, i.e. {Fi} =

1√
2
{σi}

3
i=1 =

1√
2
{σ1, σ2, σ3}.

One of the main aspects of digital quantum simulation
of an open quantum system is finding an approximation
to the quantum channels that describe the evolution of
the system. To quantify the error in approximations of
quantum channels we make use of the 1→ 1 superopera-
tor norm defined in terms of the general p→ q Schatten
norm. One should note quantum channels are also called
superoperators since they are operators which act on other
operators. The general p → q Schatten norm for some
superoperator T is defined as:

||T ||p→q = sup
||A||p=1

||T (A)||q (11)

where ||A||p := (tr(|A|p))
1
p and |A| =

√
A†A. Using the

above equation we see that the 1→ 1 superoperator norm
is:

||T ||1→1 = sup
||A||1=1

||T (A)||1, (12)

where ||A||1 = tr(
√

A†A). The 1→ 1 superoperator norm
also satisfies the following standard properties. For any
superoperators T and V we have that,

||T + V ||1→1 ≤ ||T ||1→1 + ||V ||1→1,

||TV ||1→1 ≤ ||T ||1→1||V ||1→1. (13)

Now that we have outlined some notation and defined
some basic objects we can state the problem:

Problem Statement

Given a continuous one parameter semigroup
{Tt}, generated by L, specified by a GKS
matrix A ≥ 0 ∈ M3(C) and a Hamiltonian
H = H† ∈ M2(C). Find a quantum circuit, using
a polynomial number of gates, that approximates
Tt = exp(tL) such that the maximum error in the
final state, as quantified by the 1→ 1 superoperator
norm is at most ϵ.
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The strategy to solve this problem consists of three steps. First, we make use of linear combination of semigroups
to decompose the channel Tt into constituent channels. Then we use unitary conjugation to further decompose the
constituent channels into unitary transformations and a channel from some universal semigroup [20]. The second
step makes use of SLT product formulas [13,19] to approximate the channel Tt using combinations of the constituent
channels. Lastly, we convexly decompose the channels from the universal semigroup into extreme channels [34] and
use quantum forking [30] to implement the quantum circuits for the constituent channels.

3 Decomposition of the arbitrary generator

The first step is to decompose L into a combination of generators of simpler semigroups. We do this using linear
combination of semigroups and unitary conjugation [20]. Given the GKSL generator for an arbitrary single qubit
channel,

L(ρ) = −i[H, ρ] +
1
2

3∑
i, j=1

Ai j
(
[σi, ρσ j] + [σiρ, σ j]

)
, (14)

where A ≥ 0 ∈ M3(C) and H = H† ∈ M2(C). We first need to decompose this generator using linear combination of
semigroups. Since A ≥ 0 we can use the spectral decomposition to write

A =
3∑

k=1

λkAk. (15)

By substituting equation (15) into equation (14) and by letting L0(ρ) = −i[H, ρ] we have,

L(ρ) = L0(ρ) +
1
2

3∑
i, j=1

( 3∑
k=1

λkAk

)
i j

(
[σi, ρσ j] + [σiρ, σ j]

)
,

= L0(ρ) +
3∑

k=1

λk
1
2

( 3∑
i, j=1

(Ak)i j
(
[σi, ρσ j] + [σiρ, σ j]

))
. (16)

Defining,

Lk(ρ) =
1
2

3∑
i, j=1

(Ak)i j
(
[σi, ρσ j] + [σiρ, σ j]

)
, (17)

we get,

L(ρ) = L0(ρ) +
3∑

k=1

λkLk(ρ). (18)

Letting λ0 = 1 we can then write equation (18) more compactly as

L(ρ) =
3∑

k=0

λkLk(ρ). (19)

This allows us to write Tt as,

Tt = etL = exp
(
t

3∑
k=0

λkLk

)
. (20)

At this point it is useful for one to split the exponential in equation (20) into simpler parts which we use in the
recombination section to approximate the total channel. This can be achieved via the Lie–Trotter product formula
which states that, for any sum of operators

∑
k Vk acting on some vector space,

exp

∑
k

Vk

 = lim
n→∞

(∏
k

exp(Vk/n)
)n
. (21)
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If we define T (k)
t := exp(tLk) and via a straightforward application of the Lie–Trotter product formula [13] we have

that,

Tt = lim
n→∞

[ 3∏
k=0

e
(

t
nλkLk

)]n

= lim
n→∞

[ 3∏
k=0

T (k)( tλk
n

)]n

. (22)

In the language of [20] we say that {Tt} can be constructed via a linear combination of semigroups {T (k)
t }. The phrase

linear combination of semigroups comes from the fact that we write L as a linear combination of Lk which generate
the semigroups {T (k)

t }. Equation (22), tells us that one can simulate Tt if one can efficiently simulate T (k)
t (i.e. the

constituent channels) and use T (k)
t in some recombination strategy to approximate Tt.

Armed with this realisation that one has to be able to efficiently simulate T (k)
t to simulate the channel Tt. We ask

ourselves, can we decompose the channel T (k)
t into simpler operations that are easier to efficiently implement on a

quantum computer? The answer is yes, Bacon et al. proposed the use of an operation called unitary conjugation to
decompose the channel T (k)

t into unitary transformations and a channel from some universal semigroup [20]. We
now define the operation of unitary conjugation and then prove some results that describe the action of unitary
conjugation on a quantum channel.

We define unitary conjugation (UC) of a channel Tt as the procedure of transforming Tt according toU†TtU, i.e.

UC : Tt 7→ U
†TtU (23)

where U(X) = UXU† for some unitary operator U and any operator X. UC preserves all Markovian semigroup
properties and it is can be shown that UC effectively applies Tt in an alternative basis, however this is not necessary
for this tutorial. We recall that L0 (k = 0), generates Hamiltonian evolution which can be simulated using a single
qubit unitary operation. We are interested in the generators of dissipative evolution Lk for k ∈ {1, 2, 3} and want to
use unitary conjugation to further decompose the channels T (k)

t for k ∈ {1, 2, 3}. To use UC to decompose T (k)
t , we

need to understand how UC of Tt affects the corresponding GKS matrix defining the generator of Tt. This is made
clear by the following theorem from [20].

Theorem 1. For a single qubit channel, unitary conjugation of Tt by U ∈ SU(2) results in conjugation of the GKS
matrix A by a corresponding element in SO(3) which is the adjoint representation of SU(2).

To prove Theorem 1 we need the following two lemmas below, which outline some properties of the mapU(ρ).

Lemma 1. GivenU(ρ) = UρU† (withU†(ρ) = U†ρU) for some unitary operator U. U(ρ) satisfies,

U(U†(ρ)) = 1(ρ) = U†(U(ρ)). (24)

Proof. We can prove this directly from the definition ofU(ρ). Recalling that UU† = U†U = 1 we get,

U(U†(ρ)) = U(U†ρU) = UU†ρUU† = ρ = 1(ρ). (25)

This implies that,UU† = 1. Similarly forU†U we can show that,

U†(U(ρ)) = U†(UρU†) = U†UρU†U = ρ = 1(ρ), (26)

which implies thatU†U = 1. □

Lemma 2. GivenU(ρ) = UρU† for some unitary operator U, and p ≥ 0 for k ∈ Z. We have that,

(U†LU)p = U†LpU. (27)

Proof. We prove the formula above using induction. For the base case, i.e. p = 0, we have,

(U†LU)0 = 1, (28)
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and
U†L0U = U†1U = U†U = 1, (29)

where we make use of lemma 1 in the last equality in equation (29). From equations (28) and (29) we see that the
formula holds for the base case. Now we assume that the formula is true for p = m, that is,

(U†LU)m = U†LmU, (30)

and we proceed to show that the formula holds for p = m + 1. We start by writing,

(U†LU)m+1 = (U†LU)m(U†LU),

= U†LmU(U†LU), (By eq. (30))

= U†LmUU†LU,

= U†LmLU, (By Lemma 1)

= U†Lm+1U. (31)

Hence, by induction the formula holds. □

We now have the necessary results to prove Theorem 1.

Proof of Theorem 1. Suppose {Tt} has a generator L and a GKS matrix A then Tt = exp(tL). Now for some
U ∈ SU(2) we want to see what unitary conjugation does to the channel Tt,

U†TtU = U
†exp(tL)U,

= U†
∞∑

p=0

tp

p!
LpU,

=

∞∑
k=0

tp

p!
U†LpU,

=

∞∑
k=0

tp

p!
(U†LU)p, (By Lemma 2)

= exp(tU†LU). (32)

So unitary conjugation of Tt effectively applies unitary conjugation to the generator L, i.e. L 7→ U†LU. For
the remainder of this proof we make use of the index summation convention where repeated indicies are summed
over and the summation range shall always be from 1 to 3 unless otherwise specified. Given the generator in the
GKSL form we can always write L(ρ) = LH(ρ) + LD(ρ), where LH(ρ) = −i[H, ρ] is the Hamiltonian part and
LD(ρ) = 1

2 Ai j([σi, ρσ j] + [σiρ, σ j]) the dissipative part. We are only interested in how unitary conjugation effects
the dissipative part LD since it contains the GKS matrix A. Applying the unitary conjugation map to LD yields,

(U†LDU)(ρ) = U†
(1
2

Ai j
(
[σi,UρU†σ j] + [σiUρU†, σ j]

))
U,

=
1
2

Ai j
(
U†[σi,UρU†σ j]U + U†[σiUρU†, σ j]U

)
. (33)

We can simplify the first term in equation (33) as follows,

U†[σi,UρU†σ j]U = U†(σiUρU†σ j − UρU†σ jσi)U,

= U†σiUρU†σ jU − ρU†σ jσiU,

= U†σiUρU†σ jU − ρU†σ jUU†σiU,

= [U†σiU, ρU†σ jU]. (34)

In a similar method to the one used in (34) we show that,

U†[σiUρU†, σ j]U = [U†σiUρ,U†σ jU]. (35)
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By substituting (34) and (35) into (33) we get,

(U†LDU)(ρ) =
1
2

Ai j
(
[U†σiU, ρU†σ jU] + [U†σiUρ,U†σ jU]

)
. (36)

So unitary conjugation induces a change of basis 1√
2
σi 7→ U† 1√

2
σiU, this basis is still Hermitian, orthonormal and

traceless. We can expand this basis in terms of the old one as follows,

U†
1
√

2
σαU = cαγ

1
√

2
σγ. (37)

By multiplication of two operators from this basis we can gain more insight into the nature of the matrix cαγ. First
taking the product of two elements in the new basis yields,

1
2

U†σαUU†σβU =
1
2

cαγc∗βνσγσν. (38)

Taking the trace of equation (38) and using the fact that tr(σασβ) = 2δαβ we have,

tr(
1
2

U†σαUU†σβU) =
1
2

cαγc∗βνtr(σγσν) =
1
2

cαγc∗βν2δγν = cαγc∗βγ. (39)

But we also know that the transformed basis U† 1√
2
σαU is still orthonormal, i.e. tr( 1

2 U†σαUU†σβU) = δαβ, leading
to the observation that,

cαγc∗βγ = δαβ. (40)

In other words cαγ is a unitary matrix. Equipped with this information about the matrix cαβ we can substitute equation
(38) into (37),

(U†LDU)(ρ) =
1
2

Aαβ
(
[cαγσγ, ρc∗βνσν] + [cαγσγρ, c∗βνσν]

)
,

=
1
2

cαγAαβc∗βν
(
[σγ, ρσν] + [σγρ, σν]

)
,

= A′γν
(
[σγ, ρσν] + [σγρ, σν]

)
. (41)

Here A′ is the transformed GKS matrix and A′γ,ν = cαγAαβc∗βν. Defining the matrix C = cγα then we have,

A′ = CT AC∗. (42)

So the effect of unitary conjugation is to conjugate the GKS matrix by a matrix CT . We note that CT is arbitrary but
determined by U ∈ SU(2) in the following way. Suppose we choose { 12σα}

3
α=1 to be the generators of SU(2) then the

set { 12σα}
3
α=1 forms a basis for the Lie algebra su(2) of the Lie group SU(2). The elements from the basis of su(2)

also satisfy,
1
4

[σα, σβ] = iϵαβγ
1
2
σγ, (43)

where ϵαβγ is the Levi-Cevita symbol and are the structure constants for su(2). By setting U = exp(irγσγ/2) we
can expand U in a Taylor series, about zero, to 1st order in an infinitesimal rγ and substitute this into the new basis
U† 1√

2
σαU,

U†
1
√

2
σαU =

(
1 − i

rγ
2
σγ

) 1
√

2
σα

(
1 + i

rγ
2
σγ

)
,

=
1
√

2
σα +

1

2
√

2
irγσασγ −

1

2
√

2
irγσγσα + O

(
r2
γ

)
,

=
1
√

2
σα −

1

2
√

2
irγ[σγ, σα],

=
1
√

2
σα − irγ

(
iϵγαβ

1
√

2
σβ

)
. (44)
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But from equation (37) U† 1√
2
σαU = cαβ 1√

2
σβ allowing us to write,

cαβ
1
√

2
σβ =

1
√

2
σα − irγ(iϵγαβ

1
√

2
σβ). (45)

Multiplying both sides of equation (45) from the left by 1√
2
σβ′ we have,

1
2

cαβσβ′σβ =
1
2
σβ′σα −

1
2

irγ(iϵγαβσβ′σβ). (46)

Finally taking the trace of equation (46) and using the fact that tr(σβσα) = 2δαβ we obtain,

cαβδβ′β = δβ′α − irγ(iϵγαβδβ′β) =⇒ cαβ′ = δαβ′ − irγ(iϵγαβ′) = (C)αβ′ . (47)

It is clear from (47) that CT is, (
CT

)
αβ
= (C)βα = δβα − irγ(iϵγβα), (48)

but the Levi-Cevita symbol is totally anti-symmetric allowing one to write,(
CT

)
αβ
= δαβ + irγ(iϵγαβ). (49)

We observe that CT is in a Lie group generated by (Gγ)αβ = iϵγαβ which implies that
CT = exp(irγGγ). Since we know how each Gγ is defined by picking γ, α, β ∈ {1, 2, 3} we can explicitly calculate the
matrix elements for each Gγ as,

G1 = i

0 0 0
0 0 1
0 −1 0

 , G2 = i

0 0 −1
0 0 0
1 0 0

 , G3 = i

 0 1 0
−1 0 0
0 0 0

 . (50)

We recognize the above matrices as the generators of SO(3), hence CT ∈ SO(3) which is the adjoint representation of
SU(2). As a brief mathematical aside: it is elementary fact of group theory that the adjoint representation of the Lie
algebra of SU(N) is generated by the structure constants of the Lie algebra of SU(N) (For more information on the
adjoint representation one could refer to the following books [35–37]). Therefore, unitary conjugation of the channel
Tt by U ∈ SU(2) leads to conjugation of the GKS matrix A by CT ∈ SO(3), i.e. U†TtU leads to a new GKS matrix
A′ = CT AC. □

So far we have seen how linear combination of semigroups allows us to write channels from the semigroup {Tt} as a
limit of a product of constituent channels from the semigroup {T (k)

t }. It was also shown how unitary conjugation affects
the channel Tt. Theorem 2 below will show how using linear combination of semigroups and unitary conjugation
one can simulate a channel Tt, it is a modification of Theorem 3 in [20]. This modification was made so that we
can account for the differing notation in the quantum information community as well as the open quantum systems
community. As we know researchers working in the field of open quantum systems define the ground state of a single
qubit as the column vector (0, 1)T , while the quantum information community defines the excited state with this
column vector. The range of the parameter θ in Theorem 2 below accounts for this differing definitions for ground
and excited states.

Theorem 2. To simulate, using linear combination and unitary conjugation, an arbitrary Markovian semigroup
generated by L ∈ B(B(Hs)) with Hs � C2, it is necessary and sufficient to be able to simulate all Markovian
semigroups whose generators are specified by the GKS matrix A(θ) = a⃗(θ)a⃗(θ)† where a⃗(θ) = (cos(θ),−i sin(θ), 0)T

and θ ∈ [−π4 ,
π
4 ].

Proof. (Sufficiency) First, without any loss of generality we assume H = 0. Let A ≥ 0 ∈ M3(C), be the GKS matrix
specifying the generator of the Markovian semigroup we wish to simulate. We fix the basis {Fi} =

1√
2
{σi}

3
i=1 without

any loss of generality. Since A ≥ 0 we use the spectral decomposition to express A as in equation (15). Since we can
always write each projector Ak as an outer product, i.e. Ak = a⃗ka⃗†k , we have,

A =
3∑

k=1

λka⃗ka⃗†k , (51)
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where λk ≥ 0 and a⃗†k · a⃗k = 1 for k = 1, 2, 3. By linear combination of semigroups it is sufficient to simulate all GKS
matrices a⃗ka⃗†k with |⃗ak| = 1, for simplicity from this point onwards we drop the subscript k and just write a⃗a⃗† and
|⃗a| = 1. Any vector a⃗ can be split into real and imaginary parts, a⃗R and a⃗I respectively,

a⃗ = a⃗R + i⃗aI . (52)

Since a⃗ only appears in outer products multiplying a⃗ by an overall phase eiψ leaves a⃗a⃗† invariant, i.e. if a⃗′ = eiψa⃗
then,

a⃗′a⃗′† = eiψa⃗e−iψa⃗† = a⃗a⃗†. (53)

Multiplying by an overall phase changes a⃗ as follows,

a⃗′ = eiψa⃗ = eiψa⃗R + ieiψa⃗I = a⃗′R + i⃗a′I , (54)

where a⃗′R = a⃗R cos(ψ) − a⃗I sin(ψ) and a⃗′I = a⃗R sin(ψ) + a⃗I cos(ψ). So if we wish to simulate a⃗a⃗† we could simulate
a⃗′a⃗′† for any value of ψ. Defining the following two parameters,

k1 = |⃗aR|2 − |⃗aI |2 and k2 = 2a⃗R · a⃗I , (55)

and multiplying a⃗ by an overall phase changes k1 and k2 as follows,

k′1 = |⃗a
′R|2 − |⃗a′I |2 = |⃗aR cos(ψ) − a⃗I sin(ψ)|2 − |⃗aR sin(ψ) + a⃗I cos(ψ)|2

= |⃗aR|2 cos(2ψ) − |⃗aI | cos(2ψ) − sin(2ψ)(2a⃗R · a⃗I)

= cos(2ψ)k1 − sin(2ψ)k2, (56)

and

k′2 = 2a⃗′R · a⃗′I = 2(a⃗R cos(ψ) − a⃗I sin(ψ)) · (a⃗R sin(ψ) + a⃗I cos(ψ))

= sin(2ψ)(|⃗aR|2 − |⃗aI |2) + cos(2ψ)(2a⃗R · a⃗I)

= sin(2ψ)k1 + cos(2ψ)k2. (57)

We can express the transformation of k1 and k2 as a matrix equation,(
k′1
k′2

)
=

(
cos(2ψ) − sin(2ψ)
sin(2ψ) cos(2ψ)

) (
k1
k2

)
. (58)

Since we can choose ψ arbitrarily we can make the choice,

tan(2ψ) = −
k2

k1
, (59)

such that k′2 = 0, in which case a⃗′R · a⃗′I = 0. In addition we can choose, k′1 = k1/ cos(2ψ) ≥ 0, such that |⃗a′R| ≥ |⃗a′I |.
Hence due to the phase freedom in a⃗ we can assume, without loss of generality, that a⃗R · a⃗I = 0 and |⃗aR| ≥ |⃗aI |. Since
a⃗R and a⃗I are orthogonal and |⃗a| = 1 we can parameterize a⃗ as,

a⃗ = a⃗R + i⃗aI = cos(θ)âR + i sin(θ)âI , (60)

where |âR| = |âI | = 1 are unit vectors and θ ∈ [−π4 ,
π
4 ]. Now performing a unitary transformation on a⃗a⃗† by G ∈ SO(3)

we get,

a⃗a⃗†
G
−→ Ga⃗a⃗†GT = (Ga⃗)(Ga⃗)†. (61)

Since G ∈ SO(3) is real it does not mix the real and imaginary parts of a⃗, so G simultaneously rotates the vectors a⃗R

and a⃗I . Hence G can be chosen to align the unit vectors âR and âI to the +x and −y axis respectively, that is,

GâR = x̂ and GâI = −ŷ. (62)

So we can write,
a⃗(θ) = Ga⃗ = (cos(θ),−i sin(θ), 0)T , (63)
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where θ ∈ [−π4 ,
π
4 ] and,

A(θ) = a⃗(θ)a⃗(θ)† =


cos2(θ) i cos(θ) sin(θ) 0

−i cos(θ) sin(θ) sin2(θ) 0
0 0 0

 . (64)

Hence we see that using the methods of linear combination of semigroups and unitary conjugation to simulate
a Markovian semigroup, whose generator is specified by the GKS matrix A, it suffices to be able to simulate all
Markovian semigroups whose generator is specified by the GKS matrix A(θ).

(Necessity) We now show that using linear combination and unitary conjugation it is not possible to simulate
the Markovian semigroup whose generator is specified by the GKS matrix A(θ), through simulation of some other
combination and/or transformation of Markovian semigroups whose generators are specified by GKS matrices of the
form of A(θ′).

Firstly we note that A(θ) = a⃗(θ)a⃗(θ)† is a rank 1 matrix and a projector onto the eigenspace of a single eigenvector
of A. Since rank 1 matrices are extreme in the cone of positive semidefinite matrices [38], A(θ) cannot be written as a
convex combination of positive semidefinite matrices. Hence no such A(θ) can be simulated using linear combination
of semigroups that are specified by other such matrices A(θ′).

We now note that multiplying the vector a⃗ by an overall phase eiψ and the rotation G ∈ SO(3) commute. This tells
us that to show that we cannot use unitary conjugation to simulate the Markovian semigroup whose generator is
specified by A(θ), it suffices to show that, for an ψ ∈ [0, 2π] and G ∈ SO(3) if

eiψGa⃗(θ) = a⃗(θ′), (65)

where θ, θ′ ∈ [−π4 ,
π
4 ], then θ = θ′. To see this let k′2 = k2 = 0 and k′1, k1 ≥ 0 in equation (58), this leads to the

following two equations,
k′1 = cos(2ψ)k1 and sin(2ψ)k1 = 0. (66)

Since by assumption k′1, k1 ≥ 0 we see that these equations are only satisfied when ψ = 0, hence the phase
transformation eiψ is trivial and leaves θ unchanged. Now we know that a⃗(θ) = cos(θ)x̂ − i sin(θ)ŷ so,

Ga⃗(θ) = cos(θ)Gx̂ + i sin(θ)G(−ŷ) = cos(θ)x̂ − i sin(θ)ŷ. (67)

From the above equation we see that G does not change θ, also since G was chosen to align the unit vectors âR and âI

to the unit vectors +x̂ and −ŷ respectively. We see that Ga⃗(θ) = a⃗(θ). Hence we see that,

eiψGa⃗(θ) = a(θ), (68)

and hence θ = θ′. Therefore it is not possible to use linear combination of semigroups and unitary conjugation to
simulate the Markovian semigroup, whose generator is specified A(θ), with Markovian semigroups whose generators
are specified by matrices of the same form A(θ′). □

Now by making use of Theorem 2 we can decompose the constituent channels T (k)
t . We start with the GKS matrix

Ak = a⃗ka⃗†k then by choosing some Ck ∈ SO(3), and by performing a unitary transformation on a⃗ka⃗†k with CK we get:

CkAkCT
k = Cka⃗ka⃗†kCT

k = (Cka⃗k)(Cka⃗k)† = a⃗(θk)a⃗(θk)† = A(θk). (69)

The above equation implies that,
Ak = CT

k A(θk)Ck. (70)

Now we define the channel T (θk)
t := exp

(
tLθk

)
, where,

Lθk (ρ) =
1
2

3∑
i, j=1

(A(θk))i j
(
[σi, ρσ j] + [σiρ, σ j]

)
, (71)

and the GKS matrix A(θk) is given in equation (64). Using the definitions above we see that unitary conjugation of
the channel T (θk)

t by Uk ∈ SU(2) conjugates the GKS matrix A(θk) by some Ck ∈ SO(3), i.e. equation (70). Hence
unitary conjugation of the channel T (θk)

t yields the channel T (k)
t , i.e.

T (k)
t (ρ) = (U†k T (θk)

t Uk)(ρ) = U†k [T (θk)
t (UkρU†k )]Uk. (72)
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This tells us that if we wish to simulate the channels from the semigroup {T (k)
t } we need to be able to efficiently

simulate channels from the universal semigroup {T (θk)
t } and apply a unitary transformation Uk ∈ SU(2). In the next

section we shall discuss a recombination strategy to use the constituent channels T (k)
t in second order SLT product

formulas to approximate the channel Tt.

4 Recombination Strategy for Approximating Tt

In this section, using methods developed for simulating Hamiltonian dynamics [7, 11], we wish to show that we can
use the second order Suzuki–Lie–Trotter (SLT) product formulas [13,14] to simulate the channel Tt up to an arbitrary
accuracy ϵ. In particular we wish to use a finite product of elements from the semigroup {T (k)

t } with T (k)
t := etLk , to

approximate the channel Tt and we also want to place a bound on the number of implementations of T (k)
t required in

this product.

Given the generator of the channel Tt in the form as in equation (19) we can absorb the scalars λk into
the superoperators Lk by defining, L̂k := λkLk and writing the generator as,

L =

3∑
k=0

L̂k. (73)

Using the 1→ 1 superoperator norm we define the quantity Λ := maxk∈{0,1,2,3}
∣∣∣∣∣∣L̂k

∣∣∣∣∣∣
1→1, this allows us to bound the

1→ 1 norm of the generator ||L||1→1 in the following way,

||L||1→1 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 3∑

k=0

L̂k


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1→1

≤

3∑
k=0

∣∣∣∣∣∣L̂k
∣∣∣∣∣∣

1→1 ≤ 4Λ. (74)

We consider the total evolution Tt = etL and by defining the parameter τ := t/N we can write one Nth of the total
evolution as,

Tτ = eτL = exp
(
τ

3∑
k=0

L̂k

)
. (75)

Now we define the second order SLT product formula S 2(α) for some α ≥ 0 [13, 14] as,

S 2(α) = S 2(L̂0, L̂1, L̂2, L̂3, α) =
3∏

k=0

e
α
2 L̂k

0∏
k′=3

e
α
2 L̂k′ . (76)

Now to calculate the bound on the error in the approximation of the total channel Tt we need to find the bound on the
difference ||Tτ − S 2(τ)||1→1 and then consider N applications of the SLT integrator S 2(τ). The following theorem
shall encapsulate the bound on the error in our approximation as well as the number of implementations N required
to approximate the total channel.

Theorem 3. Given a quantum channel Tt = etL with a generator L =
∑3

k=0 L̂k, and for 0 ≤ ϵ ≤ 1 then there exists
some N such that, ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣exp

 3∑
k=0

L̂k

 − S 2(τ)N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1→1

≤ ϵ, (77)

with ϵ ≥ (4tΛ)3

3N2 and τ = t
N .

To prove Theorem 3 we require some results which are stated in the following lemmas below.

Lemma 3. For τ = t
N > 0 we have that,∣∣∣∣∣∣∣

∣∣∣∣∣∣∣exp

 3∑
k=0

L̂k

 − S 2(τ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1→1

≤
(4tΛ)3

3N3 . (78)
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Proof. We know that S 2(τ) will approximate Tτ up to order τ2, i.e. ||Tτ − S 2(τ)||1→1 ∈ O(τ3), so we have that in the
difference Tτ − S 2(τ) the only remaining terms in the Taylor expansion are of order τ3 so we have

exp

τ 3∑
k=0

L̂k

 − S 2(τ) =
∞∑

l=3

Rl(τ) −Wl(τ), (79)

where Rl(τ) are the remaining terms in the Taylor expansion of exp
(
τ
∑3

k=0 L̂k
)

and Wl(τ) are the remaining terms in
the Taylor expansion of S 2(τ). We can then write Rl(τ) as,

Rl(τ) =
τl

l!
Ll =

τl

l!

( 3∑
k=0

L̂k

)l
. (80)

We can then bound this quantity by using the fact that ||L||1→1 ≤ 4Λ, so that we are able to write,

||Rl(τ)||1→1 =

∣∣∣∣∣∣
∣∣∣∣∣∣τl

l!
Ll

∣∣∣∣∣∣
∣∣∣∣∣∣
1→1
=
τl

l!

∣∣∣∣∣∣Ll
∣∣∣∣∣∣

1→1 ≤
τl

l!
||L||l1→1 ≤

τl

l!
(4Λ)l. (81)

To write the form of the term Wl(τ) we need to consider the Taylor expansion of S 2(τ), which is given in terms of the
product of Taylor expansions of each exponential in equation (76),

S 2(τ) =
∞∑

j1,..., j8=0

(τ/2) j1+...+ j8

j1! j2!... j8!
L̂

j1
0 L̂

j2
1 L̂

j3
2 L̂

j4
3 L̂

j5
3 L̂

j6
2 L̂

j7
1 L̂

j8
0 , (82)

=

∞∑
l=0

l∑
j1,..., j8=0∑

m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!
L̂

j1
0 L̂

j2
1 L̂

j3
2 L̂

j4
3 L̂

j5
3 L̂

j6
2 L̂

j7
1 L̂

j8
0 , (83)

where we have converted the eight infinite sums in (83) to eight finite sums by restricting j1, ..., j8 such that they sum
to l and one infinite sum. This allows us to write the term Wl(τ) as,

Wl(τ) =
l∑

j1,..., j8=0∑
m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!
L̂

j1
0 L̂

j2
1 L̂

j3
2 L̂

j4
3 L̂

j5
3 L̂

j6
2 L̂

j7
1 L̂

j8
0 . (84)

To bound the term Wl(τ) we use the fact that ||·||1→1 is sub-multiplicative and sub-additive, so that we can write,

||Wl(τ)||1→1 =

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

l∑
j1,..., j8=0∑

m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!
L̂

j1
0 L̂

j2
1 L̂

j3
2 L̂

j4
3 L̂

j5
3 L̂

j6
2 L̂

j7
1 L̂

j8
0

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
1→1

,

≤

l∑
j1,..., j8=0∑

m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!

∣∣∣∣∣∣∣∣L̂ j1
0 L̂

j2
1 L̂

j3
2 L̂

j4
3 L̂

j5
3 L̂

j6
2 L̂

j7
1 L̂

j8
0

∣∣∣∣∣∣∣∣
1→1

,

≤

l∑
j1,..., j8=0∑

m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!

∣∣∣∣∣∣∣∣L̂ j1
0

∣∣∣∣∣∣∣∣
1→1

∣∣∣∣∣∣∣∣L̂ j2
1

∣∣∣∣∣∣∣∣
1→1

...
∣∣∣∣∣∣∣∣L̂ j8

0

∣∣∣∣∣∣∣∣
1→1

,

≤

l∑
j1,..., j8=0∑

m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!

∣∣∣∣∣∣L̂0
∣∣∣∣∣∣ j1

1→1

∣∣∣∣∣∣L̂1
∣∣∣∣∣∣ j2

1→1 ...
∣∣∣∣∣∣L̂0

∣∣∣∣∣∣ j8
1→1 ,

≤

l∑
j1,..., j8=0∑

m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!
Λ j1+ j2+...+ j8 . (85)
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To calculate the sum in equation (85) we must consider the Taylor expansion of the following expression,

exp
( x
2

)8
= exp

( x
2

)
exp

( x
2

)
... exp

( x
2

)
,

=

( ∞∑
j1=0

(x/2) j1

j1!

)( ∞∑
j2=0

(x/2) j2

j2!

)
...
( ∞∑

j8=0

(x/2) j8

j8!

)
,

=

∞∑
j1, j2,..., j8=0

1
j1! j2!... j8!

( x
2

) j1+ j2+...+ j8
,

=

∞∑
p=0

p∑
j1, j2,..., j8=0∑

m jm=p

1
j1! j2!... j8!

( x
2

) j1+ j2+...+ j8
. (86)

But we know that,

exp
( x
2

)8
= exp(4x) =

∞∑
p=0

4pxp

p!
. (87)

Now by equating equations (86) and (87) we see that,

p∑
j1, j2,..., j8=0∑

m jm=p

1
j1! j2!... j8!

( x
2

) j1+ j2+...+ j8
=

4pxp

p!
. (88)

By using x = τΛ in equation (88)we can write the sum in equation (85) as,

l∑
j1,..., j8=0∑

m jm=l

(τ/2) j1+...+ j8

j1! j2!... j8!
Λ j1+ j2+...+ j8 =

4lτlΛl

l!
, (89)

this implies that the bound on ||Wl(τ)||1→1 is,

||Wl(τ)||1→1 ≤
4lτlΛl

l!
. (90)

Now, using sub-additive property of the 1→1 superoperator norm, we can write∣∣∣∣∣∣∣
∣∣∣∣∣∣∣exp

τ 3∑
k=0

L̂k

 − S 2(τ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1→1

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞∑

l=3

Rl(τ) −Wl(τ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1→1

,

≤

∞∑
l=3

||Rl(τ)||1→1 + ||Wl(τ)||1→1 ,

≤ 2
∑
l=3

(4τΛ)l

l!
. (91)

Now by using the Lemma F.2 from the supplementary information of [4] we have that for y > 0,

∞∑
n=k

yn

n!
≤
yk

k!
exp(y). (92)

Using this upper bound on the remainder terms in the Taylor expansion of the exponential function we can write,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣exp

τ 3∑
k=0

L̂k

 − S 2(τ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1→1

≤ 2
(4τΛ)3

3!
exp(4τΛ) =

(4tΛ)3

3N3 exp
(
4tΛ
N

)
. (93)
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For large enough N we can approximate exp
(

4tΛ
N

)
≈ 1 which gives the desired result,∣∣∣∣∣∣∣

∣∣∣∣∣∣∣exp

τ 3∑
k=0

L̂k

 − S 2(τ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1→1

≤
(4tΛ)3

3N3 , (94)

completing the proof. □

Lemma 4. For quantum channels T and V and for some N ≥ 0 ∈ Z,∣∣∣∣∣∣T N − VN
∣∣∣∣∣∣

1→1 ≤ N ||T − V ||1→1 . (95)

Proof. We prove this by induction. For N = 0, 1 the equality in equation (95) holds and to show this would be trivial,
so for the base case in our inductive proof we choose N = 2,∣∣∣∣∣∣T 2 − V2

∣∣∣∣∣∣
1→1 =

∣∣∣∣∣∣T 2 − TV + TV − V2
∣∣∣∣∣∣

1→1 ,

= ||T (T − V) + (T − V)V ||1→1 ,

≤ ||T (T − V)||1→1 + ||(T − V)V ||1→1 ,

=≤ ||T ||1→1 ||T − V ||1→1 + ||T − V ||1→1 ||V ||1→1 . (96)

By recalling that for any quantum channel T by definition ||T ||1→1 = 1, this allows us to write,∣∣∣∣∣∣T 2 − V2
∣∣∣∣∣∣

1→1 ≤ ||T − V ||1→1 + ||T − V ||1→1 = 2 ||T − V ||1→1 . (97)

Hence we have verified that the inequality in equation (95) holds for N = 2, we now assume that it holds for N = m
and show that it is true for N = m + 1.∣∣∣∣∣∣T m+1 − Vm+1

∣∣∣∣∣∣
1→1 =

∣∣∣∣∣∣T m+1 − TVm + TVm − Vm+1
∣∣∣∣∣∣

1→1 ,

=
∣∣∣∣∣∣T (T m − Vm) + (T − V)Vm

∣∣∣∣∣∣
1→1 ,

≤ ||T ||1→1

∣∣∣∣∣∣T m − Vm
∣∣∣∣∣∣

1→1 + ||T − V ||1→1

∣∣∣∣∣∣Vm
∣∣∣∣∣∣

1→1 ,

≤ m ||T − V ||1→1 + ||T − V ||1→1 ||V ||
m
1→1 ,

≤ (m + 1) ||T − V ||1→1 . (98)

Therefore by induction the inequality in (95) holds true for all integers N ≥ 0. □

We are now able to write the proof for Theorem 3 using the above two lemmas.

Proof of Theorem 3. Given that τ = t/N we can write exp(tL) = exp(τL)N which allows us to write,∣∣∣∣∣∣exp(tL) − (S 2(τ))N
∣∣∣∣∣∣

1→1 =
∣∣∣∣∣∣exp(τL)N − (S 2(τ))N

∣∣∣∣∣∣
1→1 ,

≤ N
∣∣∣∣∣∣exp(τL) − S 2(τ)

∣∣∣∣∣∣
1→1 ,

≤ N
(4tΛ)3

3N3 =
(4tΛ)3

3N2 , (99)

where in the second line of (99) we used Lemma 4 and in the third line we use Lemma 3. By choosing ϵ ≥ (4tΛ)3

3N2 we
get that

∣∣∣∣∣∣exp(tL) − (S 2(τ))N
∣∣∣∣∣∣

1→1 ≤ ϵ, which completes the proof. □

Finally, using the fact that ϵ ≥ (4tΛ)3

3N2 we can obtain a bound on the number of implementations of T (k)
t required to

simulate Tt up to a precision ϵ. We first see that,

N ≥
(4tΛ)3/2

(3ϵ)1/2 , (100)

Quanta | DOI: 10.12743/quanta.v12i1.226 September 2023 | Volume 12 | Issue 1 | Page 144

http://dx.doi.org/10.12743/quanta.v12i1.226


this tells us that we have at least (4tΛ)3/2

(3ϵ)1/2 implementations of S 2(τ), and in each S 2(τ) we have seven constituent

channels T (k)
t which implies that the number of channels T (k)

t needed to simulate the channel Tt, which will be
denoted by Nexp is,

Nexp ≥ 7N =
7(4tΛ)3/2

(3ϵ)1/2 . (101)

This places a bound on the number of implementations of T (k)
t needed to simulate Tt and this bound will be used in

the next sections to place a bound on the number of single qubit and CNOT gates needed to simulate the channel Tt.

5 Simulation of the Constituent Channels

We have seen from equation (72), that to simulate the channels T (k)
t we need to be able to simulate channels from the

semigroup {T (θk)
t } as well as apply some unitary transformation. We note that since the unitary transformation comes

from SU(2) it can be easily implemented with a single qubit unitary gate. So we are interested in finding a quantum
circuit that can simulate channels from the semigroup {T (θk)

t }.
We do this using the techniques from [34] to decompose the channel T (θk)

t into a convex sum of quasi-extreme
channels, which are channels that are generalised extreme points of the space of quantum channels and have only 2
Kraus operators. We can then use the Stinespring representation [39] to find quantum circuits that correspond to these
quasi-extreme channels. Lastly we use the method of quantum forking [30] to implement the convex mixture of these
quasi-extreme channels. This will give us a quantum circuit that simulates the channel T (θk)

t for some θk ∈ [−π4 ,
π
4 ].

5.1 Calculation of the Choi matrix of the channel T (θk)
t

We now consider the channel T (θk)
t = exp

(
tLθk

)
, whose generator is given in equation (71). We now make use of the

matrix representation of the generator to find the matrix representation of the channel. We shall denote the matrix
representation of a channel or its generator by bold face. The generator Lθk has the following matrix representation,

(Lθk )a,b = tr[G†aLθk (Gb)], (102)

where the operators {Ga} is a basis for the spaceM2(C), and is given as

{G1 =
1
√

2
1,G2 =

1
√

2
σ1,G3 =

1
√

2
σ2,G4 =

1
√

2
σ3}. (103)

Now we note that the choice of this basis leads to a matrix representation of the channel that is called the affine map
representation. Now we can use equation (71) and (102) to find the matrix representation of the generator Lθk as,

Lθk =


0 0 0 0
0 −2 sin2(θk) 0 0
0 0 −2 cos2(θk) 0

−4 cos(θk) sin(θk) 0 0 −2

 . (104)

Now to find the matrix representation of the channel T (θk)
t we make use of the following,

T(θk)
t = exp

(
tLθk

)
. (105)

This leads to the following matrix representation of T (θk)
t ,

T(θk)
t =


1 0 0 0
0 λ1 0 0
0 0 λ2 0

m3 0 0 λ3

 , (106)
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where

λ1 = exp
(
−2t sin2(θk)

)
,

λ2 = exp
(
−2t cos2(θk)

)
,

λ3 = exp(−2t),

m3 = sin(2θk)(λ3 − 1). (107)

Now to obtain the desired convex decomposition of the channel T (θk)
t , we need to find the Choi matrix [33] of this

channel, i.e. τ(θk) = (T (θk)
t ⊗ 1)|Ω⟩⟨Ω|, where |Ω⟩ = 1√

2
(|00⟩ + |11⟩). We do this using the following relation [40],

τ(θk) =
1
4

3∑
i, j=0

(T(θk)
t )i+1, j+1(σi ⊗ σ

T
j ), (108)

where σ0 = 1. Using equation (108) we find the Choi matrix to be,

τ(θk) =
1
4


a2 0 0 λ1 + λ2
0 b2 λ1 − λ2 0
0 λ1 − λ2 c2 0

λ1 + λ2 0 0 d2

 , (109)

with

a = (1 + λ3 + m3)
1
2 ,

b = (1 − λ3 + m3)
1
2 ,

c = (1 − λ3 − m3)
1
2 ,

d = (1 + λ3 − m3)
1
2 . (110)

5.2 Convex decomposition of T (θk)
t into quasi-extreme channels

At this point it is useful to adopt the notation used in [34] and define the Choi matrix in terms of the matrix in terms
of the matrix β(T (θk)

t ) = 2τ(θk), this implies that τ(θk) =
1
2β(T (θk)

t ).
The β(·) matrix defined in terms of the Choi matrix plays a significant role as this definition implies that β defines

an affine isomorphism between space of all CPTP maps on the space of states of a single qubit, denoted by Q, and
the image β(Q) ⊂ M4(C). In particular, there is a one-to-one correspondence between extreme points of Q and those
of the image β(Q). This will correspondence will allow us to determine the extreme points of Q, which will aid in
decomposing T (θk)

t into quasi-extreme channels.
From this we can also find the Choi matrix of the dual channel T̃ (θk)

t using the following relation,

β(T̃ (θk)
t ) = (U†23β(T (θk)

t )U23)∗, (111)

where U23 is the permutation matrix that swaps the second and third rows of a 4 × 4 matrix and is defined as,

U23 = U†23 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (112)

Using equation (111) we find the matrix β(T̃ (θk)
t ),

β(T̃ (θk)
t ) =

1
2


a2 0 0 λ1 + λ2
0 c2 λ1 − λ2 0
0 λ1 − λ2 b2 0

λ1 + λ2 0 0 d2

 . (113)
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Now the Choi matrix corresponding to the dual channel, T̃ (θk)
t , is τ̃(θk) =

1
2β(T̃ (θk)

t ). We shall now make use of the
following two lemmas and theorem from [34], to obtain the convex decomposition of τ(θk), we state them below in a
modified form to suit our notation.

Lemma 5. Any contraction inM2(C) can be written as the convex combination of two unitary matrices.

Proof. Let R ∈ M2(C) be a contraction then ||R|| ≤ 1, and its singular value decomposition can be written in the form

R = V
(
cos(θ1) 0

0 cos(θ2)

)
W†, (114)

where V,W† ∈ U(2). Now by using the fact that cos(θ) = 1
2 (eiθ + e−iθ), we have that,

R = V
1
2

(
eiθ1 + e−iθ1 0

0 eiθ2 + e−iθ2

)
W†,

=
1
2

V
(
eiθ1 0
0 eiθ2

)
W† +

1
2

V
(
e−iθ1 0

0 e−iθ2

)
W†. (115)

From the above it is clear that a contraction R can be written as a convex combination of two unitary matrices. □

Lemma 6. Given a matrix

J =
(

A C
C† B

)
, (116)

(1) J is positive semidefinite if and only if A ≥ 0, B ≥ 0 and C =
√

AR
√

B for some contraction R.
(2) Moreover the set of positive semidefinite matrices with fixed A and B is a convex set whose extreme points satisfy
C =

√
AU
√

B, for some unitary matrix U.

Proof. The proof of (1) follows from [41], suppose that A, B ≥ 0 then by theorem (7.7.7) in [42] the block matrix J
is positive semidefinite if and only if

1 ≥ ϱ(C†A−1CB−1) = ϱ(C†A−1CB−
1
2 B−

1
2 ), (117)

= ϱ(B−
1
2 C†A−1CB−

1
2 ), since ϱ(AB) = ϱ(BA) ∀A, B ∈ Mn(C)

= ϱ(B−
1
2 C†A−

1
2 A−

1
2 CB−

1
2 ), (118)

= ϱ((A−
1
2 CB−

1
2 )†(A−

1
2 CB−

1
2 )),

= ς(A−
1
2 CB−

1
2 )2, since ϱ(A†A) = ς(A)2, (119)

where ϱ(·) is the spectral radius and ς(·) the spectral norm. Setting R = A−
1
2 CB−

1
2 (since ς(R) ≤ 1 =⇒ R is a

contraction) we have C =
√

AR
√

B as desired.
The proof of (2) follows from a well know result that the extreme points of the set of contractions inM2(C) are
unitary (see [41, 43]). Now if we define the affine mapping f : R 7→

√
AR
√

B for a fixed A, B ≥ 0, where dom( f ) is
the set of positive semidefinite matrices inM2(C) and Im( f ) ⊂ M2(C). Now the set of contractions inM2(C) is a
compact and convex set, and extreme points of the Im( f ) are images of extreme points [34]. If R ∈ Dom( f ) is an
extreme point then it is unitary, and setting U = R we have that C = f (R) = f (U) =

√
AU
√

B [34, 41]. □

The following theorem, from [34], is stated without proof as the proof is lengthy and can be found in [34].

Theorem 4. A quantum channel Tt is a generalised extreme point of the set of all quantum channels of the same
dimension if and only if β(T̃t) is of the form,

β(T̃t) =
(

A
√

AU
√

B
√

BU†
√

A B

)
, (120)

for some unitary matrix U.
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We can now find the convex decomposition of τ(θk) . We start by writing the matrix β(T̃ (θk)
t ) in block form as follows:

β(T̃ (θk)
t ) =

(
A C

C† B

)
, (121)

where

A =
1
2

(
a2 0
0 c2

)
, B =

1
2

(
b2 0
0 d2

)
, C =

1
2

(
0 λ1 + λ2

λ1 − λ2 0

)
. (122)

Now since β(T̃ (θk)
t ) ≥ 0, we can make use of Lemma 4 so that we can write C =

√
AR
√

B, for some contraction
R ∈ M2(C), which leads to,

β(T̃ (θk)
t ) =

(
A

√
AR
√

B
√

BR†
√

A B

)
. (123)

Now we can compute the contraction R from the fact that C =
√

AR
√

B,

R = A−
1
2 CB−

1
2 ,

=
√

2
( 1

a 0
0 1

c

)
1
2

(
0 λ1 + λ2

λ1 − λ2 0

)
√

2
(1

b 0
0 1

d

)
,

=

(
0 λ1+λ2

ad
λ1−λ2

bc 0

)
. (124)

Now by making use of Lemma 3 we know that any contraction inM2(C) can be written as a convex sum of two
unitary matrices, so if we let V = 1 and W† = σ1 in equation (114) we have:

R =
(

0 cos(ϕ1)
cos(ϕ2) 0

)
=

(
0 λ1+λ2

ad
λ1−λ2

bc 0

)
, (125)

this gives the angles ϕ1 and ϕ2 as,

ϕ1 = arccos
(
λ1 + λ2

ad

)
, ϕ2 = arccos

(
λ1 − λ2

bc

)
. (126)

By making use of equation (115) we can write R as,

R =
1
2

U1 +
1
2

U2, (127)

where

U1 =

(
0 eiϕ1

eiϕ2 0

)
, U2 =

(
0 e−iϕ1

e−iϕ2 0

)
. (128)

We can now write,

β(T̂ (θk)
t ) =

(
A

√
A( 1

2 U1 +
1
2 U2)

√
B

√
B( 1

2 U†1 +
1
2 U†2)

√
A B

)
,

=
1
2

(
A

√
AU1
√

B
√

BU†1
√

A B

)
+

1
2

(
A

√
AU2
√

B
√

BU†2
√

A B

)
. (129)

If we define,

β(T̃ (θk)
(t, j)) =

 A
√

AU j
√

B
√

BU†j
√

A B

 , (130)

for j = 1, 2, then we can write:

β(T̃ (θk)
t ) =

1
2
β(T̃ (θk)

(t,1)) +
1
2
β(T̃ (θk)

(t,2)). (131)
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Now by Theorem 4 the matrix β(T̃ (θk)
(t, j)) is a generalised extreme point so the channel T (θk)

(t, j) is a generalised extreme
point in the space of channels [34], also known as a quasi extreme channel. We can now begin to find the convex
decomposition of the Choi matrix τ(θk) in terms of the Choi matrices of these quasi extreme channels, as follows. By
making use of equation (111) as well as the fact that τ(θk) =

1
2β(T (θk)

t ) we can find the desired convex decomposition
of the Choi matrix τ(θk) in the following way. From equation (111) and (131) we have that,

β(T (θk)
t ) = U23β(T̃ (θk)

t )∗U†23,

= U23(
1
2
β(T̃ (θk)

(t,1))
∗ +

1
2
β(T̃ (θk)

(t,2))
∗)U†23,

=
1
2

U23β(T̃ (θk)
(t,1))

∗U†23 +
1
2

U23β(T̃ (θk)
(t,2))

∗U†23,

=
1
2
β(T (θk)

(t,1)) +
1
2
β(T (θk)

(t,2)), (132)

where β(T (θk)
(t, j)) = U23β(T̃ (θk)

(t, j))
∗U†23, for j = 1, 2. Now by defining, τ(θk , j) =

1
2β(T (θk)

(t, j)), we can write the convex
decomposition of τ(θk) as,

τ(θk) =
1
2
τ(θk ,1) +

1
2
τ(θk ,2). (133)

Using equations (111), (122), (128) and (130) we can find the Choi matrices τ(θk , j) for j = 1, 2 to be,

τ(θk ,1) =
1
4


a2 0 0 ade−iϕ1

0 b2 bceiϕ2 0
0 bce−iϕ2 c2 0

adeiϕ1 0 0 d2

 ,

τ(θk ,2) =
1
4


a2 0 0 adeiϕ1

0 b2 bce−iϕ2 0
0 bceiϕ2 c2 0

ade−iϕ1 0 0 d2

 . (134)

Now by the Choi–Jamiołkowski isomorphism [32] and equation (133), we have the desired convex decomposition of
the channel T (θk)

t as a convex sum of two quasi extreme channels, i.e.

T (θk)
t (ρ) =

1
2

T (θk)
(t,1)(ρ) +

1
2

T (θk)
(t,2)(ρ). (135)

Using the Choi matrices in equation (134), we can find the Kraus maps corresponding to the channels T (θk)
(t,1) and T (θk)

(t,2),
we do this as follows. We make use of the following formula from [40], for any Choi matrix τ = (T ⊗ 1)|Ω⟩⟨Ω| we
have τ ≥ 0 which implies,

τ =
∑

j

|ψ j⟩⟨ψ j| =
∑

j

(K j ⊗ 1)|Ω⟩⟨Ω|(K j ⊗ 1)†, (136)

where each
∣∣∣ψ j

〉
is the product of j-th eigenvector of τ with its corresponding eigenvalue. Using the formula above

and equation (134) we can obtain the Kraus maps for the channels T (θk)
(t,1) and T (θk)

(t,2). For the channel T (θk)
(t,1) we have,

T (θk)
(t,1)(ρ) =

2∑
j=1

K(1)
j ρK(1)†

j , (137)

where

K(1)
1 =

1
√

2

(
ae−iϕ1 0

0 d

)
, K(1)

2 =
1
√

2

(
0 beiϕ2

c 0

)
. (138)
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Figure 1: The quantum circuit to implement the channel T (k)
t . Where |ψ⟩ is the system qubit, the qubit in state |+⟩ is called the

ancilla lablled a, the qubit in |0⟩ is the environment E and the states |ϕ1⟩ and |ϕ2⟩ are arbitrary states needed for the quantum
forking algorithm that implements the convex mixture of the extreme channels.

For the channel T (θk)
(t,2) we have,

T (θk)
(t,2)(ρ) =

2∑
j=1

K(2)
j ρK(2)†

j , (139)

where

K(2)
1 =

1
√

2

(
aeiϕ1 0

0 d

)
, K(2)

2 =
1
√

2

(
0 be−iϕ2

c 0

)
. (140)

5.3 Construction of circuits for the simulation of T (k)
t

Now that we have obtained a decomposition of T (θk)
t as a convex sum of quasi extreme channels we now begin to find

a quantum circuit that can implement this convex sum of two quasi extreme channels so that we can simulate the
channel T (θk)

t on a quantum computer. To do this we first need to find unitary operators that correspond to the quasi
extreme channels, for this we make use of the Stinespring Representation of the channel [39]. For more information
on the Stinespring representation for quantum channels refer to Appendix B. From the Stinespring representation and
equations (137) and (139) we have,

T (θk)
(t,1)(ρ) = trE[U(1)(|0⟩⟨0| ⊗ ρ)U(1)†], (141)

T (θk)
(t,2)(ρ) = trE[U(2)(|0⟩⟨0| ⊗ ρ)U(2)†], (142)

where,

U(1) =
1
√

2


ae−iϕ1 0 0 −c

0 d −be−iϕ2 0
0 beiϕ2 d 0
c 0 0 aeiϕ1

 , (143)

and

U(2) =
1
√

2


aeiϕ1 0 0 −c

0 d −beiϕ2 0
0 be−iϕ2 d 0
c 0 0 ae−iϕ1

 . (144)
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Now from equation (135), we implement a convex sum of the channels in equations (141) and (142), which leads to,

T (θk)
t (ρ) =

1
2

T (θk)
(t,1)(ρ) +

1
2

T (θk)
(t,2)(ρ),

=
1
2

trE[U(1)(|0⟩⟨0| ⊗ ρ)U(1)†] +
1
2

trE[U(2)(|0⟩⟨0| ⊗ ρ)U(2)†]. (145)

Now to simulate the constituent channel T (k)
t we need to unitary conjugate the channel T (θk)

t bu Uk, so from equation
(145) we have that,

T (k)
t (ρ) = U†k T (θk)

t (UkρU†k )Uk,

= U†k (
1
2

T (θk)
(t,1)(ρ) +

1
2

T (θk)
(t,2)(ρ))Uk,

= U†k (
1
2

trE[U(1)(|0⟩⟨0| ⊗ UkρU†k )U(1)†] +
1
2

trE[U(2)(|0⟩⟨0| ⊗ UkρU†k )U(2)†])Uk,

=
1
2

U†k trE[U(1)(|0⟩⟨0| ⊗ UkρU†k )U(1)†]Uk +
1
2

U†k trE[U(2)(|0⟩⟨0| ⊗ UkρU†k )U(2)†])Uk. (146)

Equation (146) tells us that we need a quantum circuit that can implement a convex sum of the two unitaries U(1) and
U(2) and the unitary conjugation by Uk, for this we make use of quantum forking [30]. The theorem below shall
outline how quantum forking is used to implement the convex sum of quasi-extreme channels.

Theorem 5. Given a convex sum of two quantum channels as in equation (135) and their Stinespring representations,
i.e. equations (141) and (142). The circuit shown in Figure 1 implements the convex sum of quasi extreme channels
as well as unitary conjugation in equation (146).

Proof. We can show this directly by calculating the output state of the circuit in Figure 1 and tracing out everything
else except the system qubit. We note that the input states of the qubits are as follows: |+⟩ = 1√

2
(|0⟩ + |1⟩) is called

the ancilla qubit, |ψ⟩ is the state of the system, |0⟩ is the state of the environment and |ϕ1⟩, |ϕ2⟩ are arbitrary states
that are needed to perform the quantum forking algorithm. The initial state of all the qubits is:

|Φ0⟩ = |+⟩ |0⟩ |ψ⟩ |ϕ1⟩ |ϕ2⟩ =
1
√

2
(|0⟩ |0⟩ |ψ⟩ |ϕ1⟩ |ϕ2⟩ + |1⟩ |0⟩ |ψ⟩ |ϕ1⟩ |ϕ2⟩). (147)

We now calculate |Φ1⟩, we do this by applying the operator Uk to the system qubit |ψ⟩. Now by denoting |ψ′⟩ = Uk |ψ⟩

we have,

|Φ1⟩ =
1
√

2
(|0⟩ |0⟩

∣∣∣ψ′〉 |ϕ1⟩ |ϕ2⟩ + |1⟩ |0⟩
∣∣∣ψ′〉 |ϕ1⟩ |ϕ2⟩). (148)

Now a control swap gates swap the states |ψ′⟩ and |ϕ1⟩ when the ancilla is in the state |1⟩ and similarly the states |0⟩
and |ϕ2⟩ are swapped when the ancilla is in the state |1⟩, this leads to the state,

|Φ2⟩ =
1
√

2
(|0⟩ |0⟩

∣∣∣ψ′〉 |ϕ1⟩ |ϕ2⟩ + |1⟩ |ϕ1⟩ |ϕ2⟩ |0⟩
∣∣∣ψ′〉). (149)

We now apply the unitary operations U(1) and U(2) on the respective qubits, this yields,

|Φ3⟩ =
1
√

2
(|0⟩U(1)(|0⟩

∣∣∣ψ′〉)U(2)(|ϕ1⟩ |ϕ2⟩) + |1⟩U(1)(|ϕ1⟩ |ϕ2⟩)U(2)(|0⟩
∣∣∣ψ′〉)). (150)

Now we apply the controlled swaps to swap the second and third qubits with the fourth and fifth qubits when the
ancilla qubit is in the state |1⟩, so we have:

|Φ4⟩ =
1
√

2
(|0⟩U(1)(|0⟩

∣∣∣ψ′〉)U(2)(|ϕ1⟩ |ϕ2⟩) + |1⟩U(2)(|0⟩
∣∣∣ψ′〉)U(1)(|ϕ1⟩ |ϕ2⟩)). (151)

Lastly we apply the operation U†k to the system qubit which yields,

|Φ5⟩ =
1
√

2
(|0⟩ (1 ⊗ U†k )U(1)(|0⟩

∣∣∣ψ′〉)U(2)(|ϕ1⟩ |ϕ2⟩) + |1⟩ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)U(1)(|ϕ1⟩ |ϕ2⟩)). (152)
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We now construct the density matrix that corresponds to the state of all the qubits after performing the circuit, denoted
by ρtot = |Φ5⟩⟨Φ5|, so we have,

ρtot =
1
2
(
|0⟩⟨0| ⊗ (1 ⊗ U†k )U(1)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk) ⊗ U(2)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(2)†

+ |0⟩⟨1| ⊗ (1 ⊗ U†k )U(1)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk) ⊗ U(2)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(1)†

+ |1⟩⟨0| ⊗ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk) ⊗ U(1)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(2)†

+ |1⟩⟨1| ⊗ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk) ⊗ U(1)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(1)†). (153)

From the density matrix of the total system of qubits we can now trace out the environment E, the ancilla a and the
qubits in an arbitrary state, used for the forking, ϕ1 and ϕ2. Doing this partial trace leaves us with the state of the
system qubit after performing the circuit. We can do this in a few steps: We can start by tracing out the ancilla, we do
this by taking the trace over the first tensor factor from the left in ρtot while using the fact that tr[|a⟩⟨b|] = ⟨a|b⟩ this
leads to,

tra[ρtot] =
1
2
(
⟨0|0⟩ ⊗ (1 ⊗ U†k )U(1)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk) ⊗ U(2)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(2)†

+ ⟨0|1⟩ ⊗ (1 ⊗ U†k )U(1)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk) ⊗ U(2)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(1)†

+ ⟨1|0⟩ ⊗ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk) ⊗ U(1)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(2)†

+ ⟨1|1⟩ ⊗ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk) ⊗ U(1)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(1)†). (154)

By using the orthonormality of the states {|0⟩ , |1⟩}, we can simplify equation (154),

tra[ρtot] =
1
2
(
(1 ⊗ U†k )U(1)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk) ⊗ U(2)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(2)†

+ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk) ⊗ U(1)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(1)†). (155)

Now let us trace out the arbitrary qubits ϕ1 and ϕ2,

trϕ1+ϕ2+a[ρtot] = trϕ1+ϕ2[tra[ρtot]],

=
1
2
(
(1 ⊗ U†k )U(1)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk) ⊗ tr[U(2)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(2)†]

+ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk) ⊗ tr[U(1)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(1)†]

)
. (156)

Using the fact that,

tr[U(2)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(2)†] = 1 = tr[U(1)(|ϕ1⟩ |ϕ2⟩)(⟨ϕ1| ⟨ϕ2|)U(1)†], (157)

we can simplify equation (156),

trϕ1+ϕ2+a[ρtot] =
1
2
(
(1 ⊗ U†k )U(1)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk)

+ (1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk)

)
. (158)

We can now define the density matrix ρS E = trϕ1+ϕ2+a[ρtot], which denotes the state of the system qubit and
environment. We can now obtain the state of the system ρS , after performing the circuit, by tracing out the
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environment. From equation (158) we have,

ρS = trE[ρS E],

=
1
2
(
trE[(1 ⊗ U†k )U(1)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk)]

+ trE[(1 ⊗ U†k )U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk)

)
. (159)

Now by using the states {|0⟩ , |1⟩} as an orthonormal basis for the environment we can write equation (159) as,

ρS =
1
2

( 1∑
j=0

(⟨ j| ⊗ 1)(1 ⊗ U†k )U(1)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(1 ⊗ Uk)(| j⟩ ⊗ 1)

+

1∑
j′=0

(
〈

j′
∣∣∣ ⊗ 1)(1 ⊗ U†k )U(2)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(1 ⊗ Uk)(
∣∣∣ j′〉 ⊗ 1)

)
. (160)

By using the fact that (⟨ j| ⊗ 1)(1⊗U†k ) = (1⊗U†k )(⟨ j| ⊗ 1) and (1⊗Uk)(| j⟩ ⊗ 1) = (| j⟩ ⊗ 1)(1⊗Uk), we can write ρS

as,

ρS =
1
2

( 1∑
j=0

(1 ⊗ U†k )(⟨ j| ⊗ 1)U(1)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†(| j⟩ ⊗ 1)(Uk ⊗ 1)

+

1∑
j′=0

(1 ⊗ U†k )(
〈

j′
∣∣∣ ⊗ 1)U(2)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†(
∣∣∣ j′〉 ⊗ 1)(Uk ⊗ 1)

)
,

=
1
2
(
U†k trE[U(1)(|0⟩

∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(1)†]Uk + U†k trE[U(2)(|0⟩
∣∣∣ψ′〉)(⟨0| 〈ψ′∣∣∣)U(2)†]Uk

)
. (161)

By observing that (|0⟩ |ψ′⟩)(⟨0| ⟨ψ′|) = |0⟩⟨0| ⊗ |ψ′⟩⟨ψ′|, and from the definition of |ψ′⟩ we have that |0⟩⟨0| ⊗ |ψ′⟩⟨ψ′| =
|0⟩⟨0| ⊗ Uk |ψ⟩⟨ψ|U

†

k . If we define ρ = |ψ⟩⟨ψ|, we can write (|0⟩ |ψ′⟩)(⟨0| ⟨ψ′|) = |0⟩⟨0| ⊗ UkρU†k , this allows us to write
equation (161) as,

ρS =
1
2
(
U†k trE[U(1)(|0⟩⟨0| ⊗ UkρU†k )U(1)†]Uk + U†k trE[U(2)(|0⟩⟨0| ⊗ UkρU†k )U(2)†]Uk

)
,

=
1
2
(
U†k T (θk)

(t,1)(UkρU†k )Uk + U†k T (θk)
(t,2)(UkρU†k )Uk

)
,

= U†k
(1
2

T (θk)
(t,1)(UkρU†k ) +

1
2

T (θk)
(t,2)(UkρU†k )

)
Uk,

= U†k T (θk)
t (UkρU†k )Uk,

= T (k)
t (ρ). (162)

We get the second equality in equation (162) from the Stinespring representation of channels T (θk)
(t,1) and T (θk)

(t,2) and the
last equality follows from equation (146). Hence we have shown that the circuit in Figure 1 implements the convex
sum of quasi extreme channels and unitary conjugation in equation (146), which completes the proof. □

Now that we have a circuit that can implement the constituent channel T (k)
t , i.e. Figure 1. We need to decompose the

unitary operations U(1) and U(2) into single qubit gates and controlled not (CNOT) gates. Before we can do this we
observe that, 1

2 (a2 + c2) = 1 and 1
2 (b2 + d2) = 1 so we can define,

cos(α) =
1
√

2
a, sin(α) =

1
√

2
c,

cos(β) =
1
√

2
b, sin(β) =

1
√

2
d. (163)

This allows us to rewrite the unitary operations U(1) and U(2) as,

U(1) =


e−iϕ1 cos(α) 0 0 − sin(α)

0 sin(β) −e−iϕ2 cos(β) 0
0 eiϕ2 cos(β) sin(β) 0

sin(α) 0 0 eiϕ1 cos(α)

 , (164)

Quanta | DOI: 10.12743/quanta.v12i1.226 September 2023 | Volume 12 | Issue 1 | Page 153

http://dx.doi.org/10.12743/quanta.v12i1.226


and

U(2) =


eiϕ1 cos(α) 0 0 − sin(α)

0 sin(β) −eiϕ2 cos(β) 0
0 e−iϕ2 cos(β) sin(β) 0

sin(α) 0 0 e−iϕ1 cos(α)

 . (165)

Now let us start by decomposing the unitary matrix U(1), we observe that,

U(1) = U(1)
A U(1)

B , (166)

where

U(1)
A =


e−iϕ1 cos(α) 0 0 − sin(α)

0 1 0 0
0 0 1 0

sin(α) 0 0 eiϕ1 cos(α)

 , (167)

and

U(1)
B =


1 0 0 0
0 sin(β) −e−iϕ2 cos(β) 0
0 eiϕ2 cos(β) sin(β) 0
0 0 0 1

 . (168)

Now using the methods outlined in Appendix A we can find quantum circuits for the operations U(1)
A and U(2)

B . First
we define the following 2 × 2 matrices, which will assist us in the decomposition,

Ũ(1)
A =

(
e−iϕ1 cos(α) − sin(α)

sin(α) eiϕ1 cos(α)

)
, Ũ(1)

B =

(
sin(β) −e−iϕ2 cos(β)

eiϕ2 cos(β) sin(β)

)
. (169)

Now for the unitary matrix U(1)
A we can write,

U(1)
A =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 e−iϕ1 cos(α) 0 − sin(α)
0 0 1 0
0 sin(α) 0 eiϕ1 cos(α)



0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


= (|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1)(1 ⊗ |0⟩⟨0| + Ũ(1)

A ⊗ |1⟩⟨1|)(|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1). (170)

From equation (170) we can find the circuit that corresponds to U(1)
A , and it is shown in Figure 2(a). Now using the

same method above we can find a circuit that implements the operation U(1)
B ,

U(1)
B =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




sin(β) 0 −e−iϕ2 cos(β) 0
0 1 0 0

eiϕ2 cos(β) 0 sin(β) 0
0 0 0 1



0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,

= (|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1)(Ũ(1)
B ⊗ |0⟩⟨0| + 1 ⊗ |1⟩⟨1|)(|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1). (171)

The circuit that implements U(1)
B can be seen in Figure 2(b). Now we can put these circuits together to get the circuit

that implements the unitary operation U(1), this can be seen in Figure 3. Since (|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1)2 = 1, we drop
the two open CNOT gates in between the circuits for U(1)

B and U(1)
A , and get the simplified circuit for U(1) in Figure 3.

We now want to decompose the controlled Ũ(1)
A operation into single qubit gates and CNOT gates. We use the results
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Figure 2: Circuit that implements the operators U(1)
A and U(2)

A .

Figure 3: Circuit that implements the opertation U(1).

from Appendix A to decompose this operation as follows. Since det(Ũ(1)
A ) = 1, this implies that Ũ(1)

A ∈ SU(2), then
by Lemma 7 we have,

Ũ(1)
A =

e −iϕ1
2 0

0 e
iϕ1
2

 (cos(α) − sin(α)
sin(α) cos(α)

) e −iϕ1
2 0

0 e
iϕ1
2

 ,
= Rz(ϕ1)Ry(2α)Rz(ϕ1). (172)

Now from Lemma 9 we can decompose the controlled Ũ(1)
A operation into single qubit and CNOT gates as seen

in Figure 4. We can now decompose the open controlled Ũ(1)
B operation into single qubit gates and CNOT gates.

This is done in the same way as for the controlled Ũ(1)
A . Since det(Ũ(1)

B ) = 1, this implies that Ũ(1)
B ∈ SU(2), then by

Lemma 7 we have,

Ũ(1)
B =

e −iϕ2
2 0

0 e
iϕ2
2

 (sin(β) − cos(β)
cos(β) sin(β)

) e iϕ2
2 0

0 e
−iϕ2

2

 ,

=

e −iϕ2
2 0

0 e
iϕ2
2

 cos
(
π
2 − β

)
− sin

(
π
2 − β

)
sin

(
π
2 − β

)
cos

(
π
2 − β

)  e iϕ2
2 0

0 e
−iϕ2

2

 ,
= Rz(ϕ2)Ry(2(

π

2
− β))Rz(−ϕ2). (173)

Now from Lemma 9 we have the circuit for the open controlled Ũ(1)
B operation in Figure 5. Let us now decompose

the unitary operation U(2). From equation (165) we observe that,

Figure 4: Circuit that implements the controlled Ũ(1)
A operation.
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Figure 5: Circuit that implements the open controlled Ũ(1)
B operation.

Figure 6: Circuit that implements the U(2)
A and U(2)

B unitary operations.

U(2) = U(2)
A U(2)

B , (174)

where

U(2)
A =


eiϕ1 cos(α) 0 0 − sin(α)

0 1 0 0
0 0 1 0

sin(α) 0 0 e−iϕ1 cos(α)

 , (175)

and

U(2)
B =


1 0 0 0
0 sin(β) −eiϕ2 cos(β) 0
0 e−iϕ2 cos(β) sin(β) 0
0 0 0 1

 . (176)

We can now define the following matrices,

Ũ(2)
A =

(
eiϕ1 cos(α) − sin(α)

sin(α) e−iϕ1 cos(α)

)
, Ũ(2)

B =

(
sin(β) −eiϕ2 cos(β)

e−iϕ2 cos(β) sin(β)

)
. (177)

From the matrices in equation (177), we can now decompose U(2)
A as follows,

U(2)
A = (|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1)(1 ⊗ |0⟩⟨0| + Ũ(2)

A ⊗ |1⟩⟨1|)(|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1). (178)

Figure 6(a) shows the circuit that implements U(2)
A . Now let us decompose the unitary operation UB(2) ,

U(2)
B = (|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1)(1 ⊗ |1⟩⟨1| + Ũ(2)

B ⊗ |0⟩⟨0|)(|0⟩⟨0| ⊗ X + |1⟩⟨1| ⊗ 1). (179)

Figure 6(b) shows the circuit that implements U(2)
B . We can put this together and make the same simplification to

the circuit as we did for the unitary operation U(1), where the two open controlled CNOT gates are replaced by the
identity operation. Now Figure 7 shows the circuit that implements the unitary operation U(2).

We can now decompose the controlled Ũ(2)
A operation and the open controlled Ũ(2)

B operation using the methods
from Appendix A in a similar way to the decomposition used above for U(1). We obtain the circuit for the controlled
Ũ(2)

A operation, which is shown in Figure 8 and the circuit that implements the open control Ũ(2)
B operation is shown

in Figure 9. This completes the decomposition of the operations U(1) and U(2) into single qubit and CNOT gates.
We can now use these circuits in the circuit shown in Figure 1 to simulate the constituent channel T (k)

t .
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Figure 7: Circuit that implements U(2).

Figure 8: Circuit that implements controled Ũ(2)
A .

6 Summary

We now combine the results in the previous sections and state the full algorithm for the simulation of a single qubit

open quantum system, which requires O
(

(Λt)3/2

ϵ1/2

)
gates as a solution to the problem defined in Section 2:

(1) Given the generator L as defined in Section 3, the spectral decomposition of the GKS matrix A yields the
decomposition of L,

L =

3∑
k=0

λkLk, (180)

with Ck ∈ SO(3) and θK ∈ [−π4 ,
π
4 ] specifying the decomposition so that,

Ak = CT
k A(θk)Ck. (181)

for all k=1,2,3.
(2) Next we choose a precision ϵ ≥ 0 so that we can calculate the number of implementations N of S 2(τ), with

N ≥
(4tΛ)3/2

(3ϵ)1/2 . (182)

(3) Implement S 2(τ) N times using,

T (k)
t′ (ρ) = (U†k T (θk)

t′ Uk)(ρ) = U†k [T (θk)
t′ (UkρU†k )]Uk. (183)

where λk, Λ and τ have been incorporated into t′. Uk is obtained from Ck as per Section 3, and T (θk)
t′ is implemented

via quantum forking as per Section 5. One should note that to implement products of T (k)
t′ we use the same circuit

as in Figure 1 but for each implementation of T (k)
t′ we use a new qubit for the environment and arbitrary states |ϕ1⟩

and |ϕ2⟩.
Now that we have summarised the full algorithm, one should be aware of the implication this has for simulating

Markovian open quantum systems. This algorithm provides a framework for digitally simulating any single qubit
Markovian open quantum system, up to a high enough precision allowing us to study the dynamics of systems for
which their master equation cannot be analytically integrated.

This tutorial set out to pedagogically introduce the tools and techniques needed to construct algorithms for the
simulation of Markovian open quantum systems by looking at an algorithm for the simplest case of the simulation of
a single qubit open quantum system. Of course, the reader is urged to use the ideas and techniques taught here to
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Figure 9: Circuit that implements open control Ũ(2)
B .

study the more general cases of simulating Markovian open quantum systems of arbitrary and finite dimension [21]
as well as the case of simulating non Markovian open quantum systems [44].

In light of the results presented in this tutorial one should also mention the possible avenues of extension. The first
major issue that was recognised in developing algorithms to simulate open quantum systems and an issue that plagues
this algorithm as well, is the fact that we can only approximate our channel Tt up to second order with SLT product
formulas so as not to violate complete positivity. This constraint arises from the fact that you cannot use higher order
SLT product formulas for coefficients that are all positive, as proven by Suzuki in [13]. Given this information one
could look into methods for approximating the channel Tt to higher orders that do not violate complete positivity.
Another area of extension would be with regards to the simulation of Markovian open quantum systems with arbitrary
dimension [21], where on could possibly tackle the open problem of convexly decomposing the universal semigroup
of arbitrary dimensional channels into extreme channels [45].

7 Appendix A: Quantum Circuit Decomposition

We need some useful results from [46], for the decomposition of the unitary matrices corresponding to the quasi-
extreme channels. We also make use of the quantum computing notation to denote the Pauli matrices as:

σ1 = X, σ2 = Y, σ3 = Z. (184)

Definition 1. We define the following unitary matrices,

Ry(θ) ≡ exp
(
−i
θ

2
Y
)
= cos

(
θ

2

)
1 − i sin

(
θ

2

)
Y =


cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)
 , (185)

Rz(θ) ≡ exp
(
−i
θ

2
Z
)
= cos

(
θ

2

)
1 − i sin

(
θ

2

)
Z =

e−i θ2 0
0 ei θ2

 , (186)

P(δ) ≡
(
eiδ 0
0 eiδ

)
. (187)

We shall make use of the following lemmas to decompose any 2 × 2 unitary matrix.

Lemma 7. Suppose U is a 2 × 2 unitary matrix. Then there exists α, β, δ, θ ∈ R such that,

U = P(δ)Rz(α)Ry(θ)Rz(β). (188)

Proof. Since U is unitary its rows and columns are orthonormal, from which it follows that there exists α, β, δ, θ ∈ R
such that,

U =

ei(δ− α2−
β
2 ) cos

(
θ
2

)
−ei(δ− α2+

β
2 ) sin

(
θ
2

)
ei(δ+ α2−

β
2 ) sin

(
θ
2

)
ei(δ+ α2+

β
2 ) cos

(
θ
2

)  . (189)

Now equation (188) follows directly from the definitions of Ry,Rz, P and matrix multiplication. □
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Figure 10: Quantum circuit implementing the controlled unitary gate c1(U).

Lemma 8. Suppose U is a 2 × 2 unitary matrix. Then there exists 2 × 2 matrices A, B,C such that ABC = 1 and
U = P(δ)AXBXC.

Proof. First we observe that, XYX = −Y which implies that,

XRy(θ)X = X(cos
(
θ

2

)
1 − i sin

(
θ

2

)
Y)X = cos

(
θ

2

)
1 − i sin

(
θ

2

)
XYX = cos

(
θ

2

)
1 + i sin

(
θ

2

)
Y = Ry(−θ). (190)

Now if we set A ≡ Rz(α)Ry( θ2 ), B ≡ Ry(− θ2 )Rz(
−(β+α)

2 ) and C ≡ Rz(
(β−α)

2 ), we have,

ABC = Rz(α)Ry
(
θ

2

)
Ry

(
−
θ

2

)
Rz

(
−
β + α

2

)
Rz

(
β − α

2

)
= Rz(α)Ry

(
θ

2
−
θ

2

)
Rz

(
−β − α

2
+
β − α

2

)
= Rz(α)Ry(0)Rz(−α) = Rz(α)Rz(−α) = 1 (191)

Since X2 = 1 and from equation (190) we see that,

XBX = XRy
(
−
θ

2

)
Rz

(
−

(β + α)
2

)
X = XRy

(
−
θ

2

)
XXRz

(
−

(β + α)
2

)
X = Ry

(
θ

2

)
Rz

(
(β + α)

2

)
. (192)

Thus,

AXBXC = Rz(α)Ry
(
θ

2

)
XRy

(
−
θ

2

)
Rz

(
−

(β + α)
2

)
XRz

(
β − α

2

)
= Rz(α)Ry

(
θ

2

)
Ry

(
θ

2

)
Rz

(
(β + α)

2

)
Rz

(
(β − α)

2

)
= Rz(α)Ry(θ)Rz(β). (193)

Now by Lemma 7 we have that,
U = P(δ)AXBXC, (194)

as required. □

Now we require a way to decompose a controlled unitary operation. We have the following lemma which tells us
how to do this.

Lemma 9. For any 2 × 2 unitary matrix U, a controlled unitary gate c1(U) can be simulated with the quantum circuit
in Figure 10 with A, B,C ∈ SU(2), if and only if U ∈ SU(2).

Proof. For the “if” part let A, B and C be defined as in Lemma 8. If the value of the control qubit is 0 then ABC = 1
is applied to the target qubit. If the value of the control qubit is 1 then AXBXC = U is applied to the target qubit.

For the “only if” part note that ABC = 1 must hold if the output of the circuit is correct when the control qubit is
0. Also if the circuit simulates a c1(U) gate then AXBXC = U. Therefore since det(AXBXC) = 1, U must also be
special unitary and hence U ∈ SU(2). □
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8 Appendix B: Stinespring Representation of the Quantum Channel

When we constructed the unitary operators that implement the quasi extreme channels we make use of the Stinespring
representation of the quantum channel Tt [39, 40, 47], this appendix shall provide a brief outline of the Stinespring
representation as well as an example of its use.

Theorem 6. Let T : B(H s) → B(H s) be a CPTP map where Hs is the Hilbert space of the system. Then there
exists a Hilbert spaceHE called the environment whose and a unitary operator U acting on the joint spaceHs ⊗HE

and a quantum state |0⟩⟨0| ∈ B(HE) such that

T (ρ) = trE[U(|0⟩⟨0| ⊗ ρ)U†], ∀ρ ∈ B(H s) (195)

where dim(HE) ≥ dim(Hs)2 and the representation is unique up to a unitary equivalence.

Given the Kraus representation of the channel T as in equation (3) one can embed the Kraus in the first block-column
of U that acts on the system as well as auxilary qubits that emulate an environment and we populate the rest of block
columns so that U is unitary. Now we have,

U =


K1 . . . . . .

K2 . . . . . .
...

. . .
...

Kr . . . . . .

 (196)

where r ≤ dim(Hs)2. This is done so that when we apply the unitary U to an initial state |0⟩ ⊗ |ψ⟩ we get,

U(|0⟩ ⊗ |ψ⟩) =
r∑

j=1

| j⟩ ⊗ K j |ψ⟩ , (197)

where {| j⟩}rj=1 is an orthonormal basis for the environment. Now by taking the outer product of this state and tracing
out the environment we get the action of the channel T on the initial state |ψ⟩⟨ψ|, i.e. T (|ψ⟩⟨ψ|), we can demonstrate
this as follows,

trE


r∑

j, j′=1

∣∣∣ j〉〈 j′
∣∣∣ ⊗ K j |ψ⟩⟨ψ|K

†

j′

 =
r∑

j, j′=1

trE
{∣∣∣ j〉〈 j′

∣∣∣} K j |ψ⟩⟨ψ|K
†

j′ =

r∑
j, j′=1

〈
j
∣∣∣ j′〉 K j |ψ⟩⟨ψ|K

†

j′

=

r∑
j, j′=1

δ j j′K j |ψ⟩⟨ψ|K
†

j′ =

r∑
j=1

K j |ψ⟩⟨ψ|K
†

j = T (|ψ⟩⟨ψ|). (198)

Now that we have seen how to use the Stinespring representation of the channel to construct a unitary that acts
on the total system plus environment, given the Kraus representation of the channel. Let us see an example of the
Stinespring representation for the simple amplitude damping channel.

Figure 11: The quantum circuit that implements the amplitude damping channel TAD, where the first qubit is the environment in
the state |0⟩ and the second qubit is the system. We observe that the arrow on the environment refers to the partial trace taken
over the environment.
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Example 1. (Amplitude Damping for a single qubit) Let
us consider the amplitude damping channel TAD, with
Kraus operators,

K0 = |0⟩⟨0| +
√

1 − p |1⟩⟨1| , K1 =
√

p |0⟩⟨1| (199)

where in this case |0⟩ = (1, 0)T and |1⟩ = (0, 1)T . Using
the Stinespring representation we get the unitary,

UAD =


1 0 0 0
0

√
1 − p −

√
p 0

0
√

p
√

1 − p 0
0 0 0 1

 , (200)

for which a circuit can be constructed using the methods
in Appendix A, yielding the circuit in Figure 11, with
θ = 2 arcsin

(√
p
)

and Ry(θ) = exp
(
−i θ2 Y

)
.
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