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Violation of Bell’s inequality has been the main-
spring for secure key generation in an entan-
glement assisted Quantum Key Distribution

(QKD) protocol. Various contributions have relied on
the violation of Bell inequalities to build an appropri-
ate QKD protocol. Residing between Bell nonlocality
and entanglement, there exists a hybrid trait of cor-
relations, namely correlations exhibited through the
violation of steering inequalities. However, such corre-
lations have not been put to use in QKD protocols as
much as their stronger counterpart, the Bell violations.
In the present work, we show that the violations of the
Cavalcanti–Jones–Wiseman–Reid (CJWR) steering
inequalities can act as key ingredients in an entangle-
ment assisted QKD protocol. We work with arbitrary
two-qubit entangled states, and characterize them by
their utility in such protocols. The characterization
is based on the quantum bit error rate and violation
of the CJWR inequality. Furthermore, we show that
subsequent applications of local filtering operations
on initially entangled states exhibiting no violation,
lead to violations necessary for the successful imple-
mentation of the protocol. An additional vindication
of our protocol is provided by the use of absolutely
Bell–Clauser–Horne–Shimony–Holt (Bell–CHSH) lo-
cal states, states which remain Bell–CHSH local even
under global unitary operations.
Quanta 2023; 12: 1–21.

1 Introduction

Quantum cryptography promises to bring a paradigmatic
change in the domain of secure information process-
ing [1]. The state-of-the-art techniques, recently con-
ceptualized, have led to profound implications in how we
deal with secure messages [2]. The archetypal manifes-
tation of quantum mechanics, namely quantum entangle-
ment lies at the root of quantum cryptography. Quantum
entanglement [3] makes it possible to realize protocols
unimaginable in classical information theory.

An inherent constitution of quantum cryptography is
key distribution, which in the simplest scenario can be
interpreted as the task of generating a private key be-
tween two honest users who can communicate with each
other over public channels. If one includes quantum
resources for secure key generation, it can outperform
protocols availing only classical resources. Such a differ-
ence stems from the fact that quantum protocols rely on
the inherent random nature of quantum particles contrary
to dependence on pseudo-randomness and computational
complexity by classical protocols [4].
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The seminal work by Bennett and Brassard [5] single-
handedly pioneered the study of quantum key distribution
protocols. In the protocol described in [5], commonly
known as the BB84 protocol, the authors designed a bi-
partite key distribution protocol based on the idea of con-
jugate bases [6], with the involvement of the protagonists
Alice (sender) and Bob (receiver). Measurement-induced
disturbance in quantum systems [7] plays a key role in
the protocol, which depends on preparation and measure-
ment scheme. Several key generation protocols [8–14]
based on this scheme have been designed since the BB84
protocol.

A departure from the preparation and measurement
scheme is provided by the entanglement assisted key
distribution protocols. The two parties now share an
entangled state [3] and the presence of the eavesdrop-
per is detected through the violation of a suitable Bell’s
inequality [15], like the Bell–Clauser–Horne–Shimony–
Holt (Bell–CHSH) [16]. Such a scheme was envisaged by
Ekert through his novel contribution [17]. Since its incep-
tion, strategies based on violation of Bell’s inequalities
have been used to design many QKD protocols [18–24].

In entanglement-assisted protocols, comparison of Al-
ice and Bob’s information content with that of an eaves-
dropper is the most obvious way to verify security [25].
However, violation of a suitable Bell’s inequality provides
a pragmatic alternative [26–29]. Although Bell violation
is necessary for security, it has been shown that it is not
sufficient [30, 31]. Consequent to a Bell violation, it be-
comes imperative to check the utility of the entangled
state in successful key generation. In [32], the authors
have characterized two-qubit states in this perspective,
where the relation between Bell–CHSH violation and
quantum bit error rate (QBER) [25] has been exploited.

Nonlocal correlations being the mainstay of QKD pro-
tocols necessitate exploitation of other manifestations
of it. Quantum steering provides one such significant
alternative, which remains sandwiched between entangle-
ment and Bell nonlocal correlations. Schrödinger, pio-
neered the concept of steering [33,34], whose operational
significance came much later through the contributions
in [35–37]. A series of works followed, detecting the
steerability of correlations [38–47].

In order to detect whether any bipartite state ρ is steer-
able, we need a steering criterion. In [39], the authors
derived a linear inequality, based on linear functions of
expectation values of observables, commonly referred
to as Cavalcanti–Jones–Wiseman–Reid (CJWR) inequal-
ity (for more details see Section 3.3). A closed form
(based on the correlation tensor of the density matrix) to
establish the violation of the said inequality, was derived
in [47]. We have considered three measurement settings
as in the two measurement scenarios it is equivalent to

Bell–CHSH inequality. States which violate the CJWR
inequality under three measurement settings are also com-
monly termed as F3 steerable. In the present work, we
address the following problem: Given that a quantum
state violates the CJWR inequality, can it be used in a
QKD protocol?

Our work, which considers an entanglement-assisted
key distribution protocol, makes two very significant as-
sumptions: (i) violation of CJWR inequality for three
settings is necessary for security, (ii) minimum secure
key rate [48] is dependent on quantum bit error rate only.
Precisely speaking, we characterize the two-qubit state
space based on the utility of a F3 steerable state in a QKD
protocol.

The above probe raises another imperative query,
namely can the useless states be made useful for QKD
with an enhancement in the protocol? We provide an
affirmative answer, through the application of local fil-
tering operations [49–51]. Analogous to the procedure
which was obtained in [32] concerning the Bell–CHSH
inequality, we modify our protocol to include local filter-
ing operations to enhance the suitability of the otherwise
useless states. Strikingly, it is also observed that some
F3 unsteerable two-qubit states can also be used for se-
cure key generation in this modified protocol.

Usually, in any entanglement-assisted QKD protocol,
the state shared between Alice and Bob is generated from
some unknown source that can be under the control of
an eavesdropper. If the source distributes an absolutely
Bell–CHSH local entangled state [52,53], then secure key
generation becomes impossible if Bell–CHSH violation
is considered. In conjunction with this, we propose a
scenario where such states can also be made useful as
steerability is a weaker form of nonlocality than Bell
nonlocality.

New Contributions of this work: In the study of
entanglement-assisted QKDs, the role of Bell nonlocality
has seen multiple probes. In this perspective, the role
of other nonclassical correlations beyond Bell–CHSH in-
equality warrants attention. In this context, it becomes
imperative to analyze the role of steering nonlocality in
entanglement assisted QKDs. We have characterized the
entire two-qubit state space in perspective of using the
violation of a steering inequality as a tool of security anal-
ysis in such QKD protocols. For our purpose, we have
used the three settings CJWR steering inequality [39]. We
have also explored the utility of applying suitable local
filters to turn some useless states (in the context of their
usefulness in the entanglement-assisted QKD protocol)
into useful ones. Apart from that, the usefulness (if any)
of absolutely Bell–CHSH local entangled states in such
QKD protocols (relying on violation of CJWR inequality)
has been analyzed.
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The rest of our work is organized as follows: The
motivation underlying the present study is provided in
Section 2, followed by discussions on some mathematical
prerequisites in Section 3. The entire characterization of
two-qubit states is made in Section 4. In Section 5, the
effect of local filtering operations in our QKD protocol
is discussed. In Section 6, we discuss the case where
absolute Bell–CHSH local states are used in the protocol.
We end our discussion with some concluding remarks in
Section 7.

2 Motivation

Over the years, violation of Bell–CHSH inequality has
been used in analyzing security in entanglement-assisted
QKD protocols. Recently, in [32], considering QBER
as a metric of security analysis, the authors have com-
pletely characterized arbitrary two-qubit states based on
their utility in such protocols. In this context, it may be
noted that violation of a suitable steering inequality may
be more helpful in exploiting the potential of two-qubit
states in the protocol. To be more precise, there may
exist entangled states which cannot be used in QKD pro-
tocols relying on Bell–CHSH violation but turn out to be
useful in QKD protocols involving the violation of steer-
ing inequality. Such an intuition stems from the existing
hierarchy of nonclassical correlations. From this perspec-
tive, it will be interesting to analyze the two-qubit state
space based on the violation of an appropriate steering in-
equality. This motivates the present work. Using QBER
as the metric of security analysis, we have provided a
complete characterization of an arbitrary two qubit state
based on its utility in an entanglement-assisted protocol
involving the violation of a steering inequality. We have
used the CJWR inequality [39] and the closed form for
its violation [47]. Based on our analysis, it can now be
checked whether a given two-qubit state is useful in such
a protocol or not. Also, our findings will help to point out
the existence of states useful in our protocol which are
however useless if QKD protocol involves the violation
of CHSH inequality.

At this point, it may be noted that before the present
work, the concept of steering has been studied in the light
of QKD protocols [54,55]. In [54], the authors established
a link between the security of bipartite entanglement-
assisted one-sided device-independent QKD scenario
(only one of the two parties has trusted measurement
devices) and the demonstration of quantum steering. The
establishment of a steering inequality from the upper
bound of the secret key rate is the main result of their
paper. In [55], the concept of temporal steering is used
for the same in preparation and measurement-based QKD

schemes. However, to the best of the authors’ knowledge,
violation of a steering inequality about a state’s efficacy
in QKD protocols has not been probed earlier.

In the present work, we exploit the violation of the
CJWR inequality to identify useful states in the QKD
protocol. Precisely, we use the closed form derived in
[47] to detect a such violation. Local filtering has been
used to turn some useless states (in the context of the
protocol) into useful ones. Besides, some entangled states
(absolutely Bell–CHSH local states [52, 53]) turn out to
be useful while considering the notion of F3 steerability
instead of Bell–CHSH violation.

3 Preliminaries and Notations

In this section, we put forward the notations to be used
in our analysis with a revisit of some preliminary notions
crucial to our analysis.

3.1 Bloch Matrix Representation

The density matrix ρ denotes an arbitrary two-qubit state
shared between two parties and is given by

ρ =
1
4

(I2 × I2 + a⃗.σ⃗ ⊗ I2 + I2 ⊗ b⃗.σ⃗ +
3∑

j1, j2=1

w j1 j2σ j1 ⊗ σ j2 )

(1)
with σ⃗ = (σ1, σ2, σ3), σ jk denoting Pauli operators along
three mutually perpendicular directions ( jk = 1, 2, 3).
a⃗ = (x1, x2, x3) and b⃗ = (y1, y2, y3) denote local Bloch
vectors (⃗a, b⃗ ∈ R3) corresponding to party A and B re-
spectively with |⃗a|, |⃗b| ≤ 1, and (wi, j)3×3 stands for the
correlation tensor matrixW (real matrix). Components
w j1 j2 ofW are given by w j1 j2 = Tr[ρσ j1 ⊗ σ j2].
W can be diagonalized by applying suitable local uni-

tary operations [56, 57],where the simplified expression
is then given by

ρ
′

=
1
4

(I2 × I2 + m⃗.σ⃗ ⊗ I2 + I2 ⊗ n⃗.σ⃗ +
3∑

j=1

t j jσ j ⊗ σ j). (2)

The correlation tensor in Eq. (2) is given by T =

diag(t11, t22, t33) where t11, t22, t33 are the eigenvalues of√
WTW, i.e., singular values ofW.

3.2 Entanglement Assisted Bipartite QKD
Protocol

Consider any entanglement-assisted quantum key distri-
bution (QKD) protocol [17, 32] involving two parties
Alice (A) and Bob (B), who try to establish a secure key
at the end of the protocol. Let a source Λ (unknown to
Alice and Bob) distribute copies of a bipartite entangled
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state ρ between the two parties. Now Alice and Bob both
perform local measurements on their respective subsys-
tems and record their outcomes. For local measurements,
each of them chooses randomly from a collection of N
number of d-dimensional basis. Let CA(B) = {B

(β)
A(B)}

N
β=1

denote the collection of N bases of Alice (Bob) where
∀ β, B

(β)
A(B) are given by

B
(β)
A = {|ψ

β
i ⟩}

d
i=1 andB(β)

B = {|ϕ
β
i ⟩}

d
i=1. (3)

IfO(β)
A(B) denote operators corresponding to the basisB(β)

A(B),
then those are given by

O
(β)
A(B) = {|ψ(ϕ)βi ⟩⟨ψ(ϕ)βi |}

d
i=1, ∀β = 1, ...,N. (4)

Now the bases of Alice and Bob CA and CB are correlated
in the following sense. Let for any fixed value of β (from
1, 2, ...,N), Alice and Bob perform measurement in B(β)

A
and B(β)

B respectively. In case ρ (shared between them) is
a pure entangled state, then perfect correlations (between
Alice and Bob’s outputs) will imply that if Alice gets
outcome |ψβj⟩ then Bob’s outcome must be |ϕβj⟩ (∀ j).

After performing measurements on N copies of ρ, a
fraction of the measurement outcomes is used to analyze
the joint statistics for verifying whether corresponding
correlations are nonlocal. Such a verification is made
by testing the violation of a Bell inequality. For the re-
maining part of the measurement outcomes, the parties
publicly compare their measurement bases and keep out-
comes only corresponding to the correlated bases (dis-
carding the remaining outcomes). These outcomes (ob-
tained from correlated bases) form the raw key [54]. The
parties can then extract a secure key from the remaining
part of the raw key by performing information reconcilia-
tion [48, 58] and privacy amplification [48].

3.2.1 Quantum Bit Error Rate

For any given state ρ, QBER (Q) is defined as the average
mismatch between Alice and Bob’s outcomes obtained
when they measure in correlated bases. With CA and
CB denoting collection of correlated bases (3) of the two
parties (as considered above), QBER can be expressed as

Q =
1
N

N∑
β=1

d∑
i, j=1

⟨ψ
β
i ϕ

β
j |ρ|ψ

β
i ϕ

β
j⟩. (5)

The above expression of Q holds for any N ≤ d + 1 num-
ber of bases. For instance, when source Λ generates a
two-qubit state (d = 2) and each party chooses from a
collection of two bases, i.e., |CA| = |CB| = 2, QBER is
given by [32]

Q =
1
4

(2 − u⃗1.Wv⃗1 − u⃗2.Wv⃗2) (6)

where u⃗i, v⃗ j (i, j = 1, 2) denote Bloch vectors of the mea-
surement bases of Alice and Bob respectively and W
denotes the correlation tensor (1). Minimization over all
possible measurement directions u⃗1, u⃗2, v⃗1, v⃗2 gives

Q ≥
1
4

(2 −maxi, j(|tii| + |t j j|)), i , j (7)

where t11, t22, t33 denote the singular values of correlation
tensor T of ρ

′

(2) and hence singular values of correlation
tensorW of ρ (1).

3.3 Steering Inequality

Linear steering inequalities, based on linear functions of
expectation values of observables, provide a useful way
to detect the steerability of a state. In general, if a given
state in finite dimensions is steerable, then there exists a
linear criterion to exhibit steering [39]. In [39], a linear
steering inequality was formulated, under the assumption
that both the parties (Alice and Bob) sharing a bipartite
state ρ perform n dichotomic quantum measurements (on
their respective particles). Cavalcanti, Jones, Wiseman,
and Reid (CJWR) derived a series of correlators based
inequalities [39] for verifying the steerability of ρ:

Fn(ρ, ν) =
1
√

n
|

n∑
l=1

⟨Al ⊗ Bl⟩| ≤ 1 (8)

where Al = âl ·
−→σ, Bl = b̂l ·

−→σ with âl ∈ R
3 being unit

vectors, whereas b̂l ∈ R
3 denote orthonormal vectors.

ν = {â1, â2, ....ân, b̂1, b̂2, ..., b̂n} stands for the collection
of measurement directions, ⟨Al ⊗Bl⟩ = Tr(ρ(Al ⊗Bl)) and
ρ ∈ HA ⊗ HB is any bipartite quantum state. Violation of
Eq. (8) ensures both-way steerability of ρ in the sense that
it is steerable from A to B and vice versa. In particular,
for n = 3, CJWR inequality (8) for three settings takes
the form

F3(ρ, ν) =
1
√

3
|

3∑
l=1

⟨Al ⊗ Bl⟩| ≤ 1. (9)

In [47], analytical expressions for the upper bound of
CJWR steering inequality was formulated in terms of
correlation tensor parameters of ρ. Analytical expression
of the upper bound of corresponding inequality (9) is
given by

MaxνF3(ρ, ν) =
√

Tr[WTW] (10)

whereW denote the correlation tensor corresponding to
Bloch matrix representation of ρ (1). So, by the linear
inequality (9), any two-qubit state ρ (1), shared between
A and B is both-way F3 steerable if√

Tr[WTW] > 1. (11)
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3.4 Local Filtering Operations

Local filtering operations form a special class of sequen-
tial quantum operations [49–51]. By applying suitable
local filtering operations, the entanglement concentration
and nonlocal content of any state ρ can be increased. Let
M(1)

A(B), M(2)
A(B) denote the local filtering operations applied

by Alice (Bob) on their respective subsystems. Under
the application of these filtering operation, state ρ gets
transformed to a new state ρ

′

[50, 51]:

ρ
′

=
M(1)

A ⊗ M(1)
B ρ(M(1)

A ⊗ M(1)
B )†

Tr[M(1)
A ⊗ M(1)

B ρ(M(1)
A ⊗ M(1)

B )†]
. (12)

For simplicity, we consider M(2)
A(B) =

√
I2 − M(1)

A(B) with

the following specific forms of M(1)
A(B) :

M(1)
A = ϵ1|0⟩⟨0| + |1⟩⟨1| (13)

M(1)
B = ϵ2|0⟩⟨0| + |1⟩⟨1|, with ϵ1, ϵ2 ∈ [0, 1]. (14)

It may be noted here that local filtering operations for
two-qubit states may be considered as single copy entan-
glement distillation operations [50, 51].

3.5 Absolutely Bell–CHSH local states

An intriguing status is presented by some quantum states
which remain Bell–CHSH local even under the applica-
tion of global unitary operations [52, 53]. Such states are
termed as absolutely Bell–CHSH local [53].

If a1, a2, a3, a4 are eigenvalues of a two-qubit density
matrix in descending order a1 ≥ a2 ≥ a3 ≥ a4, then the
state is absolutely Bell–CHSH local iff,

(2a1 + 2a2 − 1)2 + (2a1 + 2a3 − 1)2 ≤ 1. (15)

4 Characterizing arbitrary two-qubit
states based on Q

In this section, we characterize any given quantum state
concerning its utility in a QKD protocol. Before starting
our analysis, we first discuss the scenario in detail.

4.1 Measurement Specifications

For our purpose, we consider the usual bipartite
entanglement-assisted QKD protocol (Section 3.2) such
that ρ shared between Alice and Bob is a two-qubit state
(d = 2). At this junction, one may note that except-
ing the dimensionality (2 in this case), neither Alice nor
Bob has any other information about ρ. In this proto-
col, each of the parties performs local measurements on

their respective subsystems. Alice chooses randomly
from a collection of three projective measurements in
arbitrary directions CA = {B

(β)
A }

3
β=1. Bob chooses ran-

domly from a collection of three mutually unbiased bases
(MUBs [59]): CB = {B

(β)
B }

3
β=1. B

(β)
A(B) are given by Eq. (3)

for d = 2. Bases of Bob being mutually unbiased [59],

⟨ϕ
β
i |ϕ

β
′

i′
⟩ = 1√

2
where i, i

′

∈ {0, 1} and β , β
′

. Alice cannot
use MUBs as this will make her measurements character-
ized. After making measurements, the parties reconcile
their measurement bases publicly. Now with x, y denot-
ing measurements and a, b denoting outcomes of Alice
and Bob respectively, the correlation statistics P(a, b|x, y),
corresponding to a fraction of raw data (measurement out-
comes) is used for checking the F3 steerability of ρ via the
violation of CJWR inequality for three settings (9). Both
Alice and Bob perform projective measurements in arbi-
trary directions: u⃗i.σ⃗ and v⃗i.σ⃗ (i = 1, 2, 3) respectively.
∀i, u⃗i and v⃗i represent Bloch vectors of measurement ba-
sis with Alice and Bob respectively. Each party choosing
from a collection of three bases implies that each of them
can choose to perform a projective measurement in any
one of three arbitrary directions: u⃗1, u⃗2, u⃗3 for Alice and
v⃗1, v⃗2, v⃗3 for Bob. While u⃗1, u⃗2, u⃗3 is only unit vectors,
v⃗1, v⃗2, v⃗3 are orthonormal vectors so that Bob’s measure-
ments are mutually unbiased qubit measurements. Having
specified the measurement scenario, we next approach to
optimize the QBER (Q) for our scenario.

4.2 Optimization of Q

In a QKD protocol involving three measurement settings
per party, Q (5) turns out to be

Q =
1
6

(3 −
3∑

i=1

u⃗i.Wv⃗i) (16)

where W is the correlation tensor appearing in Bloch
matrix representation of ρ (1). Minimization over all
possible measurement directions u⃗1, u⃗2, u⃗3, v⃗1, v⃗2, v⃗3 gives
(see Appendix I)

Q ≥ Qmin, where,

Qmin =
1
6

(3 −
3∑

i=1

tii). (17)

where T = diag(t11, t22, t33) denote correlation tensor of
ρ
′

(2). As discussed in Section 3, t11, t22, t33 are the sin-
gular values of correlation tensorW of ρ (1). Now let
ρ be an F3 unsteerable state. For simplicity, let singular
values of its correlation tensor (W) satisfy

t2
11 + t2

22 + t2
33 = 1. (18)
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Now we minimize Q concerning all such possible F3 un-
steerable quantum states. Imposition of such a restriction
is required as we are considering the violation of CJWR
inequality (9) by ρ necessary for successful key genera-
tion in the protocol (using ρ). If Q0 denote the least pos-
sible value of Q under such restriction (see Appendix II),
then

Q0 = 0.211. (19)

Consequently, when any F3 unsteerable state is used for
key distribution, QBER generated in the protocol cannot
be less than 0.211. The minimum error rate (Q0) may
also be referred to as the critical error rate of our QKD
protocol. However, when any F3 steerable state is used,
QBER can be less thanQ0 (to be discussed in Section 4.4).
Critical error rate (Q0) is obtained for t11 = t22 = t33 =

1√
3

(see Appendix II).
Having obtained the critical value of QBER (Q0), we

precisely list down the steps used to check the security of
our protocol.

4.3 Steps of the QKD Protocol

Consider that N copies of a two-qubit state ρ are gener-
ated from a source and distributed between Alice and Bob.
Each of them thus receives N qubits (one from each copy
of ρ).

Step 1: Some of N copies, for instance, say k1 < N are
used to test CJWR inequality. For that, the parties perform
local projective measurements on their respective qubits
(as discussed in Section 4.1). If corresponding statistics
do not violate the inequality then the protocol is aborted.
If the violation is observed then the users perform the
next step.

Step 2: They measure remaining N − k1 copies in local
bases. Using classical communication, they compare their
bases and keep the outputs corresponding to correlated
bases only. A portion of those measurement statistics is
then used to calculate QBER. If QBER exceeds Q0, proto-
col is aborted. Else the remaining outputs corresponding
to the correlated bases are used for secure key generation.

We next characterize two-qubit state spaces in the con-
text of secure key generation.

4.4 Characterization of Two Qubit State
Space

As already discussed before, here we intend to character-
ize an arbitrary two-qubit state ρ about its utility in the
QKD scenario discussed in Section 3.2. As is evident
from our discussion so far in Section 4, analyzing the
singular value space of correlation tensorW (1) suffices
for our purpose.

In general, since ρ is a quantum state, each of
t11, t22, t33 ∈ [0, 1]. Let C denote a unit cuboid:

C = {(t11, t22, t33) : 0 ≤ t11, t22, t33 ≤ 1}. (20)

So density matrix corresponding to any point lying out-
side the cuboid C (20) does not represent any valid quan-
tum state (see Fig. 1). For the rest of our analysis, we
denote the quantum state corresponding to any point R
inside C as ρR. Now, consider the unit sphere (S , say)
with center at the origin given by Eq. (18). Only first
octant (S +, say) of S lies inside C. F3 unsteerable states
reside on and inside S +. So any point lying inside C but
outside S + corresponds to an F3 steerable quantum state
(see Fig. 1). Now, as discussed in Section 4.2, when an
F3 unsteerable state ρ is used then Q ≥ Q0. This in turn
restricts the singular values ofW (corresponding to ρ):

t11 + t22 + t33 ≤
√

3. (21)

Eq. (21) represents region lying below a tangent plane
to S + at the point P( 1√

3
, 1√

3
, 1√

3
). Clearly when ρ corre-

sponding to any point lying below or on the tangent plane
(21) is used in the protocol, estimated QBER is greater
than or at most equal to the critical error rate (Q0). On the
contrary, when ρ used in the protocol corresponds to any
point (R, say) lying above the same plane, QBER is less
thanQ0. Clearly, in such a case, the point R lies outside S +
(see Fig. 1). Consequently, ρR is F3 steerable. Under our
assumption of CJWR inequality’s violation necessary for
ensuring secure key generation in the protocol, ρR thus
turns out to be useful. In this context, we consider any
state ρ as useful in our QKD protocol if QBER obtained
in the protocol (using ρ) is less than Q0. Hence two-qubit
state ρ corresponding to any point lying in C is useful if
and only if

t11 + t22 + t33 >
√

3. (22)

Now, let us focus on the region lying outside S + and
inside C. Let L be any point lying in that region. So ρL

is F3 steerable. L may lie below or above the tangent
plane (21). Utility of ρL thus depends on the position
of L. To be precise, if L lies above the tangent plane then
ρL is useful in our protocol whereas ρL turns out to be
useless in the other case (L lying below the plane). This
in turn points out the insufficiency of the F3 steerability
criterion to ensure secure key generation. Three settings
CJWR inequality (9) being a Bell-type inequality, our
observation simply points out the following:

Violation of a Bell-type inequality by any two-qubit
state ρ is necessary but not sufficient to guarantee se-
cure key generation in an entanglement assisted protocol
involving ρ.

In practical situations owing to the unavailability of a
pure entangled state for key distribution, observation of
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S+: Unsteerable
Tangent Plane: t11+t22+t33= 3
Steerable but Q ≤ 0.211
Steerable but Q > 0.211

Figure 1: Singular value space of correlation tensor of an
arbitrary two-qubit state considered here. Cuboid indicates all
possible two-qubit states whereas any point from the first octant
S + of sphere S (18) gives F3 unsteerable state. The region
lying outside S + and below the tangent plane at P( 1

√
3
, 1
√

3
, 1
√

3
)

indicates steerable but useless states whereas that lying above
the tangent plane gives useful states.

maximal violation of CJWR inequality becomes impos-
sible. Hence, based on the amount of violation, identi-
fying two-qubit entangled states useful in entanglement-
assisted QKD protocol is important from a practical view
point.

Identifying Useful States: Let in a QKD protocol,
CJWR inequality (9) be violated by some fixed amount
V (say). Let ϱ be some unknown two-qubit state used
in the corresponding protocol. Let λ11, λ22, λ33 denote
the singular values of the correlation tensor of ϱ. Viola-
tion being observed, restriction is imposed on these three
unknown (as ϱ is unknown) quantities, namely

λ2
11 + λ

2
22 + λ

2
33 = V2

Alternatively, λ11 =

√
V2 − λ2

22 − λ
2
33. (23)

Now ϱ is useful for secure key generation in the protocol
if it satisfies Eq. (22). Hence, ϱ is useful if

√
3 − λ33 − λ22 <

√
V2 − λ2

22 − λ
2
33 ≤ 1. (24)

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

λ22

λ
3
3 υ =1.2

υ =1.4

υ =1.6

υ = 3

Figure 2: Shaded regions give two-qubit states useful for QKD
for some specific violation amounts of CJWR inequality ob-
served in the protocol.

Eq. (24) thus specifies the criterion required to be satisfied
by an unknown state providedV amount of violation of
CJWR inequality is observed in the protocol (see Fig. 2).

4.5 Illustrations

Let us now analyze the above characterization for a few
well-known classes of two qubit states.

Bell Diagonal states: The class of Bell diagonal states
[7] is represented as follows

ϱBell = w1|ψ
−⟩⟨ψ−|+w2|ϕ

+⟩⟨ϕ+|+w3|ϕ
−⟩⟨ϕ−|+w4|ψ

+⟩⟨ψ+|,

(25)
with wi ∈ [0, 1] ∀i = 1, 2, 3, 4,

∑4
i=1 wi = 1 and

|ϕ±⟩ = |00⟩±|11⟩
√

2
, |ψ±⟩ = |01⟩±|10⟩

√
2

denote the Bell states.
Eq. (25) is often referred to as the class of states hav-
ing maximally mixed marginals.

The correlation matrix is given by diag(1 − 2(w1 +

w3), 1 − 2(w2 + w3), 1 − 2(w1 + w2)). Bell diagonal states
are F3 steerable provided the following relation holds√√√√

8

 3∑
i, j=1

wi ∗ w j + w4

 − 5 > 1. (26)

On the other hand, Bell diagonal states useful for QKD
protocol(satisfying Eq. (22)) are characterized by

3∑
i, j=1

|1 − 2(wi + w j)| >
√

3, where i , j. (27)

Combination of Eqs. (26,27) points out that not all
F3 steerable states from this family are useful for our
QKD protocol (see Fig. 3).

Quanta | DOI: 10.12743/quanta.v12i1.210 April 2023 | Volume 12 | Issue 1 | Page 7

http://dx.doi.org/10.12743/quanta.v12i1.210


Figure 3: Shaded region forms a part of parameter space of the
Bell diagonal family (25). Bell diagonal state corresponding
to any point in the shaded region is useful in QKD protocol.

Now let us consider the Werner class of states from the
family of Bell diagonal states

ϱW = ω|ψ
−⟩⟨ψ−| +

(1 − ω)
4
I2 × I2, ω ∈ [0, 1]. (28)

For ω ∈ (0.5772, 1] corresponding member from Werner
class (28) is F3 steerable. Again Eq. (22) is satisfied for
the same range of values of ω. Consequently for this
subclass of Bell diagonal states (25), any F3 steerable
state is always useful in QKD protocol.

Family of States Not Diagonal in Bell Basis: Consider
the following class [60, 61]

γ = q|φ⟩⟨φ| + (1 − q)|00⟩⟨00| (29)

where |φ⟩ = cosα|10⟩ + sinα|01⟩, with α ∈ [0, π4 ] and
0 ≤ q ≤ 1. This class of states was used in [60] for
increasing maximally entangled fractions in an entan-
glement swapping network. Correlation tensor is given
by diag(q sin 2α, q sin 2α, 1 − 2q). A member from this
family is F3 steerable if

2q2 sin2 2α + (1 − 2q)2 > 1. (30)

Again any state from this class is useful in QKD protocol
in case it satisfies the following relation

2q sin 2α + |1 − 2q| >
√

3. (31)

The QKD protocol will run successfully if states satisfy-
ing both the above relations (Eqs. (30,31)) are used in the
protocol (see Fig. 4).

0.0 0.2 0.4 0.6 0.8
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

α

q
Figure 4: Shaded region gives the states (29) which can be
used for secure key generation.

4.6 Higher Tolerance to QBER

Owing to the communication of quantum states over
noisy channels, non-zero QBER is generated in any
entanglement-assisted QKD protocol even in absence
of any eavesdropper. For analyzing QBER tolerance in
CHSH-based protocol with that in CJWR-based one, we
assume that the QKD protocol involves only the legiti-
mate users (Alice and Bob), i.e., the absence of any third
party (eavesdropper). In [32], it was shown that an arbi-
trary two-qubit state is useful in standard entanglement-
assisted QKD protocol (involving Bell–CHSH violation)
if

Max{t11 + t22, t33 + t22, t11 + t33} >
√

2. (32)

However, the same state is useful in our protocol if it
satisfies Eq. (22). Comparison of Eqs. (22,32) points
out existence of two qubit states (see Fig. 5) satisfying
Eqs. (22) but violating Eq. (32). Let us now explore with
few specific instances in this regard.

Consider the family of Bell diagonal states (25). Any
state from this family is not useful in the protocol relying
on Bell–CHSH violation if

Max3
i, j=1|1 − 2(wi + w j)| ≤

√
2, where i , j. (33)

However, the same state is useful in our protocol if
Eq. (27) is satisfied. There exist states from this fam-
ily (see Fig. 6) which satisfy both Eqs. (27,33).

For a more specific instance from this family (25), let
us consider the Werner class of states (28). Any member
from this subclass of Bell diagonal states, characterized

Quanta | DOI: 10.12743/quanta.v12i1.210 April 2023 | Volume 12 | Issue 1 | Page 8

http://dx.doi.org/10.12743/quanta.v12i1.210


Figure 5: Shaded region forms a part of singular value space
of correlation tensor of an arbitrary two-qubit state. State
corresponding to any point from this region is useless in CHSH-
based QKD protocol whereas the same is useful in our protocol.

Figure 6: Shaded part of parameter space of Bell diagonal
family (25) gives states useful in CJWR-based QKD protocol
but useless in CHSH-based protocol.

by ω ∈ (0.5, 0.707], is useful in QKD protocol only if the
protocol relies on violation of CJWR inequality.

For the family of states given by Eq. (29), a state is not

0.2 0.3 0.4 0.5 0.6 0.7

q

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

α

Figure 7: Shaded part of parameter space of family of states
given by Eq. (29)) gives states useful in CJWR-based QKD
protocol but useless in CHSH-based protocol.

useful in CHSH-based QKD protocol if

Max{2q sin 2α, q sin 2α + |1 − 2q|} >
√

2. (34)

Comparing Eq. (34) with Eq. (31), we get states that can
be used in our protocol but are useless in CHSH-based
ones (Fig. 7).

As discussed in Section 4.2, whenever an unsteerable
state is used in our protocol QBER can never be less than
Q0 = 0.211. Critical value of QBER for our protocol
(based on CJWR inequality) is greater than that obtained
in the protocol when it relies upon Bell–CHSH inequality
where Q0 = 0.14 [32]. Hence, for any state ρ, if QBER
in QKD protocol (assuming the absence of any eaves-
dropper) lies in the range (0.14, 0.211], then the protocol
can be used if it relies upon CJWR inequality’s violation
but cannot be used if it is based on Bell–CHSH viola-
tion. Consequently, the protocol turns out to be more
QBER tolerant when based upon the notion of steerabil-
ity compared to that obtained in Bell–CHSH-based QKD
protocol.

5 Incorporating Local Filtering
Operations in QKD

As noted before, local filtering operations are crucial to
enhance utility in information processing tasks [62–64].
Let us now consider an entanglement-assisted protocol
where both parties can perform local filtering operations
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before measuring their subsystems in correlated bases.
We next discuss the protocol in detail.

5.1 Modified QKD Protocol

The steps of the protocol are specified below:

• SourceΛ distributes many copies of a two qubit state
(ρ) between the two parties Alice and Bob.

• On receiving the qubits, the parties perform full-state
tomography.

• Being ensured that the shared state is an entangled
state they perform local filtering operations: Alice
using operators {M(1)

A ,M(2)
A } and Bob performing

{M(1)
B ,M(2)

B } where the operators are specified in Sec-
tion 3.4.
It is known that in QKD protocols the optical sys-
tem adopts a prescription wherein the photons are
destroyed due to measurements. Hence the interme-
diate step given below is crucial.

• Postselection of outcomes: After completion of mea-
surements, they announce the outcome of measure-

ments in {M(i)
A } and {M( j)

B }. They postselect those
qubit pairs for which M(1)

A and M(1)
B clicked. Only

these qubit pairs are considered further in the pro-
tocol discarding the remaining ones. Each pair of
two-qubit states selected is denoted by ρ

′

.

• Rest of the protocol runs as usual (Section 4.1).

5.2 Expression of Q
′

min

Let us now formulate the expression of Q
′

min, i.e., Qmin

obtained from postselected state (obtained corresponding
to clicking of measurement M(1)

A and M(1)
B ). Firstly, Psucc

(possibility of measurement M(1)
A and M(1)

B clicking) takes
the form

Psucc = Tr[M(1)
A ⊗ M(1)

B ρ(M(1)
A ⊗ M(1)

B )†], (35)

where M(1)
A ,M(1)

B are given by Eq. (13). Cor-
relation tensor (T f iltered, say) of correspond-
ing postselected state (ρ f iltered, say) obtained
from the initial state ρ

′

(2) is given by

T f iltered =



ϵ1ϵ2t11 0 1
2m1ϵ1(ϵ2

2 − 1)

0 ϵ1ϵ2t22
1
2m2ϵ1(ϵ2

2 − 1)

1
2n1ϵ2(ϵ2

1 − 1) 1
2n2ϵ2(ϵ2

1 − 1) 1
4 (h− − r− − ϵ2

2 (h− + r−) − ϵ2
1 (h+ − r+) + ϵ2

2 (h+ + r+))


(36)

where h± = 1 ± m3, r± = n3 ± t33. Sum of the singular values of T f iltered (36) being given by trace of the matrix√
(T f iltered)∗T f iltered, QBER (Q) in the modified protocol is given by

Q
′

min = Psucc ∗
1
6

(3 − 2

√√√ 2∑
i=1

(ϵ2
2 (1 − ϵ2

1 )2n2
i + 4ϵ2

1 t2
ii) −

√
B) (37)

where B is a function of ϵ1, ϵ2:

B = ϵ2
1

(
1 − ϵ2

2

)2 (
m

2
1 +m

2
2

)
+
(
h− − r− − ϵ2

2 (h− + r−) + ϵ2
1

(
−h+ + r+ + ϵ2

2 (h+ + r+)
))2

. (38)

Explicit form of success probability Psucc is given by

Psucc =
1

h− − r− + ϵ2
2 (h− + r−) + ϵ2

1 (h+ − r+ + ϵ2
2 (h+ + r+))

. (39)

Q
′

min < Q0 can thus be written as:

2

√√√ 2∑
i=1

(ϵ2
2 (1 − ϵ2

1 )2n2
i + 4ϵ2

1 t2
ii) −

√
B > 3 − Q0 ∗

6
Psucc

. (40)
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The above relation (40) in turn characterizes the states
useful in the QKD after applying suitable local filter-
ing operations of the form given by Eq. (13). For further
discussion in this section, we will refer to this QKD proto-
col (with filtering operations) as Modified QKD protocol
while that without any filtering operations as QKD proto-
col only. There exist two qubit states violating Eq. (22)
but satisfying Eq. (40) for some values of ϵ1, ϵ2. Next, we
provide some specific examples in support of our claim.

5.3 Illustrations

Consider the family of states given by Eq. (29). F3 steer-
able members from this class which are useless in the
QKD violate Eq. (31). Let any such F3 steerable state be
used in the modified protocol. For some suitable local
filtering operations (specific values of ϵ1, ϵ2 in Eq. (13)),
the protocol runs successfully (see Fig. 8, with the spe-
cific values mentioned therein). For a particular instance,
consider α = 0.25, q = 0.9 in Eq. (29). Before filtering
Qmin = 0.22839 > Q0. On using this state in the modi-
fied QKD protocol with ϵ1 = 0.16119 and ϵ2 = 0.12563,
Psucc ≈ 0.015, and by Eq. (37), Q

′

min = 0.13756. As
Q
′

min < Q0, so successful key generation takes place in the
protocol. For some fixed values of α, range of noise level
parameter q for useful states (30) are given in Table 1.
Now, for obvious reasons, not all local filtering operations
(13) turn out to be useful in the modified protocol. De-
pending on the state to be used, (ϵ1, ϵ2), parameterizing
these operations (13) are to be selected. For the above
class of states (29) considered, a suitable range of (ϵ1, ϵ2)
is shown in Fig. 9.

Next, let F3 unsteerable states [violating Eq. (30)] from
this family be used in the modified protocol. Again for
some suitable filtering operations made by the users, se-
cure key generation becomes possible for some of these
F3 unsteerable states (see Fig. 9). Some specific instances
are given in Table 1.

5.4 Other Local Filters

Now, as already stated before in Section 3, the form of
filters (13) is not general. Depending on the state pro-
vided, another form of filters may also turn out to be
suitable in the modified protocol. For instance, consider
the well-known family of Gisin states [50]:

γ = s|φ⟩⟨φ| +
1 − s

2
(|11⟩⟨11| + |00⟩⟨00|) (41)

where |φ⟩ = cos β|01⟩ + sin β|1⟩, with β ∈ [0, π4 ] and
0 ≤ s ≤ 1. Correlation tensor of this class of states is
diag(s sin 2β, s sin 2β, 1 − 2s). Suitable local filters for

α

q

α

q
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(b)
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Figure 8: Shaded region in subfigure (a) gives the unsteer-
able states (29) useful in the modified QKD protocol for
ϵ1 = 0.02119 and ϵ2 = 0.02563. Similarly, the shaded region in
subfigure (b) gives steerable states that are useful in the same
modified protocol (i.e., for ϵ1 = 0.02119 and ϵ2 = 0.02563).
None of these states (in both subfigures) is useful in the QKD
protocol (without filtering operations).

this state are of the form [65]:

F(1)
A =

√
tan(β)|0⟩⟨0| + |1⟩⟨1| (42)

F(1)
B = |0⟩⟨0| +

√
tan(β)|1⟩⟨1| (43)

Correlation tensor of the postselected state [output
corresponding to above filters (42)] is given by

1
1−s+s sin 2βdiag(s sin 2β, s sin 2β,−1 + s + s sin 2β). There
exist members from this class of states (41), which
turn out to be useful in our modified QKD protocol
(see Fig. 10). For a particular example, consider the
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Figure 9: The parameter space (ϵ1, ϵ2) characterizing local
filtering operations is considered in both subfigures. Shaded
regions characterize suitable local filtering operations (used
in the modified QKD protocol) for some specific states from
the class given by Eq. (29). Consider two F3 unsteerable
states specified by (q, α) = (0.6, 0.7) and (q, α) = (0.5, 0.4).
In subfigure (a), any point in the region R1 ∪ R2 gives suitable
local filters for the first state, whereas that for the second state
is given by any point from the region R2∪R3. Next consider two
steerable states: (q, α) = (0.9, 0.26) and (q, α) = (0.68, 0.7).
In subfigure (b), suitable local filters for these two steerable
states are given by any point from region R1 ∪ R2 and R2 ∪ R3,
respectively.

state specified by s = 0.87 and β = 0.29. For this
state Qmin = 0.21774. Success probability (Psucc) that
F(1)

A ⊗ F(1)
B will click is 0.18 and Q

′

min = 0.14283. The
state is thus useful in the modified QKD protocol but can-
not be used for the secure key generation before filtering.

After discussing how our QKD protocol can be modi-
fied by allowing the users to apply local filtering opera-
tions, we next consider another significant aspect of our
protocol.

Table 1: Modified QKD protocol with ϵ1 = 0.15, ϵ2 = 0.02563
is considered. For some specific values of state parameter α,
range of the other parameter q is specified for which corre-
sponding state is useful for secure key generation in this modi-
fied QKD protocol. The second column in the table indicates
whether the state used in the protocol violates CJWR inequality
or not. The last two instances point out the fact that initially
F3 unsteerable states can also be used for the modified QKD
protocol.

State F3 Range of

parameter Steerability q

α = 0.24 Steerable [0.904, 1]

α = 0.7 Steerable [0.674, 1]

α = 0.2 Unsteerable [0.5, 1]

α = 0.6 Unsteerable [0.52, 1]

6 Absolute Bell–CHSH Local States
In Secure Key Generation

Our QKD protocol is semi-device independent in the
sense that the source distributing the particles (among
the parties) is not trusted but both the parties perform
quantum measurements (see Section 3.3). So entangled
state is distributed from some unknown source Λ. Let an
untrusted third party Eve has access to Λ. So if ρ be the
state generated from Λ, then Eve has access to both the
qubits of ρ. Let, Eve measure ρ in some suitable global
basis such that ρ transforms into ρ

′

, where ρ
′

remains
entangled but becomes Bell–CHSH local in the new basis.
Under the control of Eve, source Λ thus distributes an
absolutely Bell–CHSH local state ρ

′

between Alice and
Bob in the protocol. Unlike that any standard QKD pro-
tocol relying on Bell–CHSH violation, our protocol can
securely generate keys for some of these states. Owing to
the existence of absolutely Bell–CHSH local F3 steerable
two-qubit states, our QKD protocol gives an advantage
over the standard ones. We provide an example below.

Consider the family of Bell diagonal states (25). Pa-
rameters of absolutely Bell–CHSH local states from this
family satisfy [53]:

Max(i, j,k)[1 − 4(wi − w
2
i − wi ∗ w j − wi ∗ wk)

−2(w j + wk − w
2
j − w

2
k)] ≤

1
2

(44)

where (i, j, k) denote all possible cyclic permutations
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Figure 10: Subfigure (a) gives F3 unsteerable states (41) useful
in the modified QKD protocol. Similarly, the shaded region
in subfigure (b) gives steerable states that are useful in the
modified protocol. None of these states (in both subfigures) is
useful in the QKD protocol (without filtering operations).

(of length three) over 1, 2, 3 : (1, 2, 3), (2, 3, 1) (3, 1, 2).
Let any such state gets distributed between the two users
of the protocol. Some of these states satisfy Eq. (27).
Consequently, the protocol runs successfully for them
(see Fig. 11).

7 Discussion

The notion of Bell nonlocality has been rigorously an-
alyzed concerning the study of QKD in entanglement-
assisted protocols. However, whether Bell’s violation pro-
vides a sufficient criterion is a matter of great debate. The

Figure 11: Corresponding to any point from the shaded re-
gions of the parameter space (w1, w2, w3), absolutely local Bell
diagonal state (25) is useful in our QKD protocol.

present discussion points out the insufficiency of a Bell-
type inequality in this perspective. CJWR inequality (9),
a Bell-type inequality for detecting the steerability is used
here, to prescribe a QKD protocol. Using the notion of
F3 steerability, characterization of arbitrary two-qubit
state is obtained in the context of its usefulness in QKD
protocol. Interestingly, any F3 steerable Werner state is
useful in QKD protocol. For any amount of violationV
of Eq. (9), one can identify whether the state (givingV
amount of violation) is useful in the protocol or not. Such
identification is completely based on the singular values
of the correlation tensor of the corresponding state.

Furthermore, in case local filtering operations are al-
lowed (before the users perform local base measurements)
in the protocol, some F3 unsteerable states become useful
in the modified QKD protocol. The utility of absolutely
local Bell–CHSH states in our modified protocol further
buttresses our work.

Critical quantum bit error rate Q0 (19) in our protocol
is greater than that obtained for protocol depending on
Bell–CHSH nonlocality (Q0 = 0.14 [32]). Increased
number of measurement settings per party (2 in [32] and
3 here) is one of the potent causes for such a contrast.

To perform entanglement based QKD protocols, one
needs to transmit part of quantum systems through noisy
channels, which can in turn affect the state of the quantum
systems. In this non-ideal scenario identification of states
offering utility in QKD assumes significance, which our
work addresses.
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In experimental situations, there exist loopholes
in testing any correlator-based inequality. Owing to
experimental imperfections, testing CJWR inequality
(Bell-type inequality) may suffer from three major loop-
holes: locality loopholes (due to hidden communication
between the parties [66, 67]), detection loopholes (due to
unfair sampling of ensemble which is measured [68]) and
freedom-of-choice loophole (owing to possible influences
from or on the selection of measurement settings [69]).
Our protocol, being based on CJWR violation, these
loopholes will exist in any experimental demonstration
of the same. Also, classical communication over a
public channel (for key generation) forms a potent factor
of experimental imperfections. Furthermore, in the
modified QKD protocol, the parties need to perform
full tomography (involving classical communication
between the parties) on the quantum state received from
the source. After state tomography, in case the state turns
out to be an entangled one, local filtering operations
are performed followed by the usual steps of QKD
protocol. The parties need to communicate classically
for performing state tomography which may again
potentially open up loopholes for the protocol. In [70], an
experimental demonstration of Einstein–Podolsky–Rosen
steering has been provided where each of detection,
locality, and freedom of choice loophole is closed
simultaneously. It will be interesting to explore possi-
ble means of closing the loopholes arising in our protocol.

As already specified before, the entire analysis in our
work is applicable for those QKD protocols where the
secure key rate is a function of QBER (Q) only [25].
However owing to the complexity of practical situations,
rmin may depend on many other factors. So, characteriz-
ing arbitrary two-qubit states for more general QKDs is
a potential source of future research. A generalization
of the scheme to include other Bell-like inequalities also
warrants attention. Also, it will be interesting to analyze
the situation when the users of the protocol do not have
any knowledge about the dimension of the quantum state
distributed by the source.
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8 Appendix I

8.1 Proof regarding optimization of Q (16)

Let m⃗ = (m1,m2,m3) denote an arbitrary direction. Eigen-
basis operators corresponding to projective measurement
along m⃗ are given by { I2+m⃗.σ⃗2 , I2−m⃗.σ⃗2 }. Now, as discussed
in the main text, in our QKD protocol each of Alice and
Bob perform projective measurements along any one of
three arbitrary directions: u⃗1, u⃗2, u⃗3 for Alice and v⃗1, v⃗2, v⃗3
for Bob. So for Alice the collection of measurement basis
operators (4) is given by

O
( j)
A = {

I2 + u⃗ j.σ⃗

2
,
I2 − u⃗ j.σ⃗

2
}, j = 1, 2, 3. (45)

Similarly, collection of measurement basis operators of
Bob is given by

O
( j)
B = {

I2 + v⃗ j.σ⃗

2
,
I2 − v⃗ j.σ⃗

2
}, j = 1, 2, 3. (46)

As discussed in the main text, corresponding to correlated
bases of Alice and Bob, the operator bases are given by
O

( j)
A ,O

( j)
B ( j = 1, 2, 3).

An arbitrary two qubit state ρ (1) is shared between Al-
ice and Bob. In case Alice and Bob measure u⃗i.σ⃗, v⃗i.σ⃗,

probability of them obtaining mismatching outputs while
measuring in correlated bases is given by

P j =
1
4

∑
i=0,1

Tr[(I2 + (−1)iu⃗ j.σ⃗) ⊗ (I2 + (−1)i+1v⃗ j.σ⃗).ρ],

(47)
∀ j = 1, 2, 3. Using Eq. (47) the expression for quantum
bit error rate Q (5) becomes

Q =

3∑
i=1

Pi =
1
6

(3 −
3∑

i=1

3∑
j=1

ui j

3∑
k=1

w jkvik)

=
1
6

(3 −
3∑

i=1

u⃗i.W v⃗i), (48)

where u⃗i = (ui1, ui2, ui3)t and v⃗i = (vi1, vi2, vi3),∀i =
1, 2, 3. Eq. (48) gives Eq. (16).
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8.2 Proof of Eq. (17)

We perform minimization of Q over all possible bases of
the two parties. Clearly Q is summation of the probabil-
ity terms appearing in Eq. (47). Let us introduce a few
notations Gz1

i , Hz2
i ,∀i = 1, 2, 3 for ease of use in further

calculations

Gz1
i =

1
2

(I2 + (−1)z1 u⃗i.σ⃗), z1 = 0, 1 (49)

Hz2
i =

1
2

(I2 + (−1)z2 v⃗i.σ⃗), z2 = 0, 1. (50)

Now, let La and Lb denote the local unitary operations
such that

ρ = (La ⊗ Lb)ρ
′

(La ⊗ Lb)†. (51)

Let the unitary operations be specified as follows

La(b) =


l(11)
a(b) l(12)

a(b)

l(21)
a(b) l(22)

a(b)

 . (52)

Using Eq. (51), ∀ j = 1, 2, 3, from Eq. (47), we get

P j =
∑
i=0,1

Tr[Gi
j ⊗ Hi+1

j ((La ⊗ Lb)ρ
′

(La ⊗ Lb)†)] =
∑
i=0,1

Tr[(La ⊗ Lb)†Gi
j ⊗ Hi+1

j (La ⊗ Lb)ρ
′

]

=
∑
i=0,1

Tr[(L†aGi
jLa) ⊗ (L†bHi+1

j Lb) ρ
′

]. (53)

From Eq. (53), consider the term L†aGi
jLa for i = 0 (say). Let us now further analyze this term. Using Eqs. (49,52),

we get

L†aG0
j La = L†a

1
2

(I2 + u⃗ j.σ⃗)La =
1
2

(I2 + L†au⃗ j.σ⃗La). (54)

Now using Eq. (52), La, L
†
a can be expressed in terms of Pauli matrices(σ1, σ2, σ3) as follows

La =
1
2

((l(11)
a + l(22)

a )I2 + (l(11)
a − l(22)

a ))σ3 + (l(12)
a + l(21)

a )σ1 + ı(l
(12)
a − l(21)

a )σ2

L†a =
1
2

((l(11)
a + l(22)

a )I2 + (l(11)
a − l(22)

a ))σ3 + (l(12)
a + l(21)

a )σ1 + ı(l
(21)
a − l(12)

a )σ2 (55)

with l(i j)
a denoting complex conjugate of l(i j)

a . Using Eq. (55), from Eq. (54), we get

L†au⃗ j.σ⃗La =


A11 A12

A21 A22

 , where,

A11 = (l(21)
a(b)(u j1 − ı u j2) + l(11)

a(b)u j3)l(11)
a(b) + (l(11)

a(b)(u j1 + ı u j2) − l(21)
a(b)u j3)l(21)

a(b)

A12 = (l(21)
a(b)(u j1 − ı u j2) + l(11)

a(b)u j3)l(12)
a(b) + (l(11)

a(b)(u j1 + ı u j2) − l(21)
a(b)u j3)l(22)

a(b)

A21 = (l(22)
a(b)(u j1 − ı u j2) + l(12)

a(b)u j3)l(11)
a(b) + (l(12)

a(b)(u j1 + ı u j2) − l(22)
a(b)u j3)l(21)

a(b)

A22 = (l(22)
a(b)(u j1 − ı u j2) + l(12)

a(b)u j3)l(12)
a(b) + (l(12)

a(b)(u j1 + ı u j2) − l(22)
a(b)u j3)l(22)

a(b). (56)

La being an unitary matrix, La.L
†
a = L†a.La = I2. Using that we get

|l(11)
a |

2 + |l(12)
a |

2 = 1

|l(21)
a |

2 + |l(22)
a |

2 = 1

l(22)
a l(12)

a = −l(21)
a l(11)

a

l(11)
a l(21)

a = −l(12)
a l(22)

a . (57)
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Using above set of relations (57), L†au⃗ j.σ⃗La (56) can be expressed in terms of Pauli matrices as follows

L†au⃗ j.σ⃗La = u⃗ j
′

.σ⃗ (58)

where u⃗ j
′

= (u
′

j1, u
′

j2, u
′

j3). Its components are specified as follows

u
′

j1 =
1
2

(ıu j2(−l(22)
a l(11)

a − l(21)
a l(12)

a + l(12)
a l(21)

a + l(11)
a l(22)

a ) + u j1(l(22)
a l(11)

a + l(21)
a l(12)

a + l(12)
a l(21)

a + l(11)
a l(22)

a )

+u j3(−l(22)
a l(21)

a − l(21)
a l(22)

a ))

u
′

j2 =
ı

2
(u j1(l(22)

a l(11)
a − l(21)

a l(12)
a + l(12)

a l(21)
a − l(11)

a l(22)
a ) + u j2(l(22)

a l(11)
a − l(21)

a l(12)
a − l(12)

a l(21)
a + l(11)

a l(22)
a )

+ıu j3(−l(22)
a l(21)

a + l(21)
a l(22)

a ))

u
′

j3 = u j1(−l(22)
a l(12)

a − l(12)
a l(22)

a ) + ıu j2(l(22)
a l(12)

a − l(12)
a l(22)

a ) + u j3(−1 + 2l(22)
a l(22)

a ). (59)

On simplification of the above equations, each component of u⃗ j
′

turns out to be real quantity

u
′

j1 = u j2(Im[l(22)
a l(11)

a ] + Im[l(21)
a l(12)

a ]) + u j1(Re[l(22)
a l(11)

a ] + Re[l(21)
a l(12)

a ]) − 2u j3Re[l(22)
a l(21)

a ]

u
′

j2 = u j1(−Im[l(22)
a l(11)

a ] + Im[l(21)
a l(12)

a ]) + 2u j3Im[l(22)
a l(21)

a ] + u j2(Re[l(22)
a l(11)

a ] − Re[l(21)
a l(12)

a ])

u
′

j3 = −1 + 2|l(22)
a |

2 − 2u j2Im[l(22)
a l(12)

a ] − 2u j1Re[l(22)
a l(12)

a ]. (60)

Using above relations, length of u⃗ j
′

turns out to be 1.

So, in totality, Eq. (54) can be expressed as

L†aG0
j La =

1
2

(I2 + u⃗ j
′

.σ⃗) (61)

where u⃗ j
′

is a unit length real vector for each of j = 1, 2, 3.
Analogous argument can be put for each of

L†aG1
j La, L†aH0

j La and L†aH1
j La. So P j (53) now becomes

P j =
1
4

∑
i=0,1

Tr[(I2 + (−1)iu⃗ j
′

.σ⃗) ⊗ (I2 + (−1)i+1v⃗ j
′

.σ⃗).ρ
′

],

(62)
where v⃗ j

′

.σ⃗ = L†bv⃗ j.σ⃗Lb. Using Eq. (62), Q now becomes

Q =
1
6

(3 −
3∑

i=1

3∑
j=1

u
′

i j

3∑
k=1

T jkv
′

ik)

=
1
6

(3 −
3∑

i=1

u⃗i
′

.T v⃗i
′

)

=
1
6

(3 −
3∑

i=1

⟨u⃗i
′

,T v⃗i
′

⟩) (63)

where T = diag(t11, t22, t33) is the correlation tensor of
ρ
′

(2). To prove Eq. (17), we now need to mini-
mize Q (63) over all possible measurement directions

u⃗ j
′

, v⃗ j
′

( j = 1, 2, 3).

|⟨u⃗i
′

,T v⃗i
′

⟩| ≤ ||u⃗i
′

||||T v⃗i
′

|| ∀i = 1, 2, 3

= ||T v⃗i
′

|| as ||⃗u
′

i || = 1

−||T v⃗i
′

|| ≤ ⟨u⃗i
′

,T v⃗i
′

⟩ ≤ ||T v⃗i
′

||

So,
3∑

i=1

⟨u⃗i
′

,T v⃗i
′

⟩ ≤

3∑
i=1

||T v⃗i
′

|| (64)

Hence, by Eqs. (63,64), we get

Q ≥
1
6

(3 −
3∑

i=1

||T v⃗i
′

||). (65)

As said in the main text, Alice is not allowed to per-
form measurements in mutually unbiased basis whereas
Bob performs measurement in mutually unbiased bases
(MUBs). Now for local dimension d = 2, up to
global phase factor, there exist three possible MUBs [59]:
{|0⟩, |1⟩}, { |0⟩±|1⟩2 } and { |0⟩±ı |1⟩2 }. Collection of possible op-
erator bases for each of Alice and Bob are enlisted in
Table 2. Minimization of Q is now performed over all
these measurement operators.

Now, all tii ≥ 0. So minimum value of R.H.S. of
Eq. (65) is obtained for v⃗′1 = m⃗3, v⃗

′

2 = m⃗5 and v⃗′3 = m⃗1
(see Table 2):

Q =
1
6

(3 − t11 − t22 − t33). (66)

Expression for Qmin (17) is thus obtained.
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Table 2: All possible mutually unbiased operator bases for local dimension 2 are specified here for Bob. Corresponding direction
m⃗ of projective measurement m⃗.σ⃗ is given. Clearly, up to global phase, the three possible MUB operator bases are given
corresponding to directions m⃗1, m⃗3 and m⃗5. Each of three measurement directions of Bob is thus given by third column of the
table, i.e., ∀ j = 1, 2, 3, v⃗ j

′

∈ {m⃗1, m⃗2, m⃗3, m⃗4, m⃗5, m⃗6}. As Bob performs three measurement in MUBs, so if v⃗1
′

is one of m⃗1 or m⃗2

(say), then v⃗2
′

, m⃗1, m⃗2. It can be any one of from (m⃗3,m⃗4) or from (m⃗5,m⃗6). If say v⃗2
′

= m⃗3, then v⃗3
′

is any one of m⃗5 or m⃗6.

i Oi m⃗i

1 {|0⟩⟨0|, |1⟩⟨1|} m⃗1 = (0, 0, 1)

2 {−|0⟩⟨0|,−|1⟩⟨1|} m⃗2 = (0, 0,−1)

3 { 12 (|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| + |1⟩⟨1|), 1
2 (|0⟩⟨0| − |0⟩⟨1| − |1⟩⟨0| + |1⟩⟨1|)} m⃗3 = (1, 0, 0)

4 {− 1
2 (|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| + |1⟩⟨1|),−1

2 (|0⟩⟨0| − |0⟩⟨1| − |1⟩⟨0| + |1⟩⟨1|)} m⃗4 = (−1, 0, 0)

5 { 12 (|0⟩⟨0| + ı|0⟩⟨1| + ı|1⟩⟨0| − |1⟩⟨1|), 1
2 (|0⟩⟨0| − ı|0⟩⟨1| − ı|1⟩⟨0| − |1⟩⟨1|)} m⃗5 = (0, 1, 0)

6 {− 1
2 (|0⟩⟨0| + ı|0⟩⟨1| + ı|1⟩⟨0| − |1⟩⟨1|),−1

2 (|0⟩⟨0| − ı|0⟩⟨1| − ı|1⟩⟨0| − |1⟩⟨1|)} m⃗6 = (0,−1, 0)

9 Appendix II

9.1 Proof regarding critical error rate (19)

It may be noted that minimizing Qmin (17), is equivalent
to maximizing the following expression

f (t11, t22, t33) = t11 + t22 + t33 (67)

where f (t11, t22, t33) is a symmetric function of eigen-
values of the correlation tensor of ρ (1). Here we use
Lagrange multiplier’s method to maximize f (t11, t22, t33)
subjected to the constraint provided by Eq. (18).

Let γ1 be the Lagrange multiplier. Consider the follow-
ing function

F1(t11, t22, t33, γ1) = t11 + t22 + t33 +γ1(t2
11 + t2

22 + t2
33 −1).

(68)
Partial differentiation of F1(t11, t22, t33, γ1) with respect
to each of the variables t11, t22, t33 gives

∂F1

∂tii
= 1 + 2γ1tii, i = 1, 2, 3. (69)

Critical point is then given by ∂F1
∂tii
= 0 which in turn gives

tii = −
1

2γ1
, i = 1, 2, 3. (70)

Using Eq. (70), in Eq. (18), we get

γ1 = ±

√
3

2
. (71)

Now, for this case, as all tii ≥ 0, so by Eqs. (69,70),
γ1 = −

√
3

2 . Critical point (K1, say) is thus given by

K1 = (
1
√

3
,

1
√

3
,

1
√

3
). (72)

Now calculating second order differential of
F1(t11, t22, t33, γ1), we get

d2F1(t11, t22, t33, γ1) =
3∑

i, j=1

∂2F1

∂tii∂t j j
(dtiidt j j)

= 2γ1(dtii)2

= −
1
√

3
< 0. (73)

Eq. (72) points out that d2F turns out to be negative at all
points. Hence, K1 is the maxima of the objective function
f (67), maximum value being given by

f (
1
√

3
,

1
√

3
,

1
√

3
) =
√

3. (74)

Eqs. (17,74) in turn give Eq. (19).
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