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Professor Sir Karl Popper (1902-1994) was one
of the most influential philosophers of science
of the twentieth century. However, in his most

famous work The Logic of Scientific Discovery he
displays troubling misunderstandings of science and
mathematics at a basic level. These call into question
his conclusions concerning the philosophy of science.
Quanta 2012; 1: 13–18.

1 Introduction

Professor Sir Karl Popper was one of the most influential
philosophers of science in the twentieth century. He is
most widely known for his doctrine that scientific theories
are not provable, but to be accepted as scientific they must
be falsifiable. The most-cited statement of this is from
the Postscript to The Logic of Scientific Discovery [1]:

. . . we adopt, as our criterion of demarcation,
the criterion of falsifiability, i. e. of an (at least)
unilateral or asymmetrical or one-sided decid-
ability. According to this criterion, statements,
or systems of statements, convey information
about the empirical world only if they are ca-
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pable of clashing with experience; or more pre-
cisely, only if they can be systematically tested,
that is to say, if they can be subjected (in accor-
dance with a ‘methodological decision’) to tests
which might result in their refutation. [1, §*i, p.
315]

This was not a totally new idea. For instance, in 1902
Ernst Mach observed in passing, ‘Where neither con-
firmation nor refutation is possible, science is not con-
cerned’ [2, p. 490], and citations of this type can be mul-
tiplied. Popper may be credited, however, with the em-
phasis on falsifying as opposed to confirming; and his
popularity among practicing scientists is probably due
to the straightforward way this criterion rejects much
pseudoscience.

The book contains far more than this statement, how-
ever, including some truly troubling passages. Some of
these I detail below. My aim here is not to present a com-
plete evaluation of this book, for which a much larger and
more detailed work would be necessary. Instead, I wish
to highlight certain problems with Popper’s understand-
ing of science and mathematics in The Logic of Scientific
Discovery, without necessarily tracing their specific con-
sequences.
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2 The practice of science

Our first matter concerns experimental uncertainty. Ex-
perimental measurements are commonly accompanied by
a statement of uncertainty or ‘experimental error’, as in
5.03 ± 0.05 in whatever units are appropriate. Roughly
speaking, this means that the most probable value for the
measurement in question is 5.03, but that values from
4.98 to 5.08 are quite possible. To be more rigorous: the
actual value of which the measurement is an approxima-
tion is most probably 5.03; as one gets away from this
figure, the probability decreases. The way it decreases
depends in complicated way on many things, but in a
surprising number of cases it is distributed in a Gaussian
(normal) manner:
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which gives (infinitesimal) probability dP of x having a
value between x and x + dx. (The probability of finding
exactly any given value, for a continuous variable, is
zero; which is why the definition is given in terms of
the infinitesimal range dx.) Here µ is the mean and σ is
the standard deviation (Figure 1). If this is the case and
0.05 (in the expression 5.03 ± 0.05) is a single standard
deviation, about 68% of the time the actual value is within
the range indicated. If 0.05 is two standard deviations,
more than 95% of the time the actual value will be within
that range.

The convention of quoting one or more standard de-
viations is widespread, but not ubiquitous. In his 1906
textbook Newcomb [3, §29, pp. 53-57], for instance, be-
gins his discussion of the matter using a 50% limit before
proceeding to describe the normal distribution.

µ µ+σ µ+2σ µ+3σµ−σµ−2σµ−3σ
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Figure 1: For a Gaussian (normal) distribution about 68% of
the values lie within one standard deviation of the mean (µ±σ),
about 95% of the values lie within two standard deviations of
the mean (µ ± 2σ) and about 99.7% of the values lie within
three standard deviations of the mean (µ ± 3σ).

In no case can we state certainly that the actual value
is within the limits, though we can get pretty close. Any
competent scientist, in presenting a numerical result, will
tell you whether the quoted uncertainty is one or two
(or more) standard deviations, and whether the distribu-
tion is known to be, assumed to be, or known not to be,
Gaussian. That is, the shape of the probable distribution
around the quoted figure is Gaussian (or something else,
as specified); the size is given by the ± value.

Popper has a different interpretation. After asserting
that every physical measurement is equivalent to noting a
pointer’s position between two marks on a scale, which
thus correspond to an interval within which the measure-
ment lies, Popper continues:

It is the custom of physicists to estimate the
interval for every measurement. (Thus follow-
ing Millikan they give, for example, the ele-
mentary charge of the electron, measured in
electrostatic units, as e = 4.774 . 10−10, adding
that the range of imprecision is ±0.005 . 10−10.)
But this raises a problem. What can be the pur-
pose of replacing, as it were, one mark on a
scale by two—to wit, the two bounds of the
interval—when for each of these two bounds
there must again arise the same question: what
are the limits of accuracy for the bounds of the
interval?

Giving the bounds of the interval is clearly use-
less unless these two bounds in turn can be
fixed with a degree of precision greatly exceed-
ing what we can hope to attain for the original
measurement; fixed, that is, within their own
intervals of imprecision which should thus be
smaller, by several orders of magnitude, than
the interval they determine for the value of
the original measurement. In other words, the
bounds of the interval are not sharp bounds but
are really very small intervals, the bounds of
which are in their turn still much smaller inter-
vals, and so on. In this way we arrive at the idea
of what may be called the ‘unsharp bounds’ or

‘condensation bounds’ of the interval. [1, §37,
pp. 109-110]

By some unknown process, Popper has apparently in-
terpreted the quoted uncertainties of a measurement as
absolute limits; inside, the probability is unity, while out-
side it is zero. There are two points I wish to make about
this passage. First, while such a naive misconception
of experimental uncertainty might be understandable in
someone who had never had contact with science at all,
it is bizarre in a professor who is writing a book purport-
ing to set out very basic aspects of science. Second, this

Quanta | DOI: 10.12743/quanta.v1i1.3 November 2012 | Volume 1 | Issue 1 | Page 14

http://dx.doi.org/10.12743/quanta.v1i1.3


misunderstanding generates a whole conceptual structure
(of ‘condensation bounds’), not only taking up space in
itself but developing further ideas (notably [1, §68, pp.
190-197]).

3 Mathematics

Most of the book is taken up with an analysis of the
mathematical theory of probability, including criticism
of others’ formulations and a detailed presentation of
Popper’s own construction. Before treating probability as
such, I want to look at a couple of examples of Popper’s
use of mathematics. I will first set out some background
material for the benefit of those unfamiliar with this part
of analysis.

We start with infinite sequences. These may be of
points in a plane or in space, though with Popper we need
only worry about points on a line, and indeed numbers
on some limited section of the line: between 0 and 1, say.
An infinite sequence is any infinite collection of them,
taken one at a time in a certain order. Such a sequence
may be the relatively boring 0.5, 0.5, 0.5, . . . forever, or
may jump around and never spend more time one place
than another. An infinite sequence may converge to some
value, which means that, for any particular distance δ you
can specify, all the members of the sequence after some
nth member are closer to the value than that distance.

(It may be that no member of the sequence you can
name actually has the convergence value. This whole
apparatus of ‘for any δ . . . some nth’ may seem a devious
and unnecessary way to proceed, but it’s the way to be
rigorous when dealing with infinities and infinitesimals,
and is quite necessary.)

A sequence has an accumulation point if, for any dis-
tance you can name (call it δ again), there is some point
of the sequence which is not the accumulation point,
closer than δ to the accumulation point. Only an infi-
nite sequence can have an accumulation point. This is
because of the Hausdorff property, which holds in that
part of mathematics in which we will be working, and
says (roughly) that between any two distinct points there
is always some non-zero distance. So if you specify any
point of the sequence and the accumulation point, you’ll
need a later point of the sequence to put between them if
someone decides to use a smaller δ. Any infinite, bounded
sequence has at least one accumulation point, and may
have more. (This material with some additions is found
in [5, pp. 220-222])

Turning to Popper, he is concerned with the definition
of a probability apparently given by von Mises. In a
sequence of events, the fraction is formed of ‘successes’
in which a particular thing occurs divided by the total

number of events. If this fraction, called by Popper the
‘relative frequency,’ converges to a definite number in
the limit of an infinitely long sequence, that number is
the probability of success. (Popper does not quote von
Mises explicity. From the description it appears that the
latter dealt with ‘convergence in probability,’ a phrase that
Popper does not mention, but which he would not have
cared for.) The particular example used is the fraction of
ones in a sequence of ones and zeroes.

Popper wishes to do without the requirement of con-
vergence. That means, he argues, he needs a concept that
can be used in place of a limiting frequency, applicable
to all infinite sequences.

One frequency concept fulfilling these condi-
tions is the concept of a point of accumula-
tion of the sequence of relative frequencies. (A
value a is said to be a point of accumulation
of a sequence if after any given element there
are elements deviating from a by less than a
given amount, however small.) That this con-
cept is applicable without restriction to all in-
finite reference sequences may be seen from
the fact that for every finite alternative at least
one such point of accumulation must exist for
the sequence of relative frequencies which cor-
responds to it. Since relative frequencies can
never be greater than 1 nor less than 0, a se-
quence of them must be bounded by 1 and 0.
And as an infinite bounded sequence, it must
(according to the famous theorem of Bolzano
and Wierstrass) have at least one point of accu-
mulation. [1, §64, p. 176]

Popper’s definition of accumulation points is accept-
able for our purposes, and his statement of the Bolzano-
Wierstrass theorem is accurate, except for the application
to a ‘finite alternative.’

The theorem only holds for infinite squences; in fact,
as noted, a finite sequence has no accumulation points.
In the paragraph above, his mention of ‘finite sequences’
suggests (at least) that he has not grasped this require-
ment; this is proved on the next page [1, p. 177 footnote
4], where he applies the concept of accumulation points
to finite and infinite sequences indiscriminantly. Let me
be explicit: Popper is using a theorem that just isn’t true.

The real problem with using accumulation points is
that, while the Bolzano-Weierstrass theorem assures us
of at least one, there may be many. Popper realizes
this [1, p. 177 footnote 2], and spends some time on the
rather trivial point that, in this case, they are not useful
in defining probability. He also recognises that to require
a unique accumulation point is equivalent to requiring
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convergence [1, p. 177]. Then he requires uniqueness
anyway, asserting that it isn’t, and that in any case he is
free to choose such sections of any sequence as have the
behaviour he desires [1, p. 177 footnote 4].

I will pass over these last two problems with mathe-
matical logic, because in fact accumulation points are
irrelevant to the task Popper attempts in this section. The
importance of this episode is not so much that Popper
makes mistakes in the handling of accumulation points,
which could be considered a rather esoteric bit of analysis;
nor even in his failure to distinguish between finite and
infinite, though that is certainly a serious drawback for
anyone trying to do mathematics. It lies in the fact that he
is not competent in this whole area of analysis, deploying
irrelevant machinery and doing that improperly.

(Further criticism of this section of Popper’s work is
possible, but the point has been made. Actually, the
very use of sequences of this sort as a basis for a theory
of probability is untenable. The proof is now given to
undergraduate mathematicians as an exercise; see [6, pp.
25, 225])

Let us look at another section of mathematics, set the-
ory. Popper refers to Kolmogorov’s development of a
theory of probability that explicitly uses sets. But he does
not like it:

And yet, he [Kolmogorov] assumes that, in
‘p(a, b)’—I am using my own symbols, not his
[that is, the probability of a given b]—a and
b are sets; thereby excluding, among others,
the logical interpretation according to which a
and b are statements (or ‘propositions’, if you
like). He says, rightly, ‘what the members of
this set represent is of no importance’; but this
remark is not sufficient to establish the formal
character of the theory at which he aims; for in
some interpretations, a and b have no members,
nor anything that might correspond to mem-
bers. [1, §*iv, pp. 330-331]

Nowadays set theory is taught in elementary school; I
am not sure what its status was when Popper wrote. But
among the very first concepts one comes across is ∅, the
empty set, the set with no members. Also among the
first concepts is that a set may be made up of anything,
including points, statements, propositions, truth-values,
complex numbers, apples, oranges—or all at once. Pop-
per here asserts that these features are not found in set
theory, a sign of very basic misunderstanding. In a later
section [1, §*iv, pp. 350-351] he demonstrates the ‘supe-
riority’ of his ‘Boolean’ approach over the ‘set-theoretic’
approach by performing set operations. Somehow he has
learned the label ‘set theory’ without noticing that it con-
tains certain features he desires, and uses this flawed

understanding to attack Kolmogorov’s formulation of
probability.

In presenting these two examples I am not asserting
that Popper’s mistakes and misconceptions necessarily
make all of his later work wrong. That would take a rather
tedious effort of working through hundreds of pages of
sometimes convoluted logic. I am asserting that he has
attempted to produce results with mathematics that he
does not understand or, worse, understands wrongly.

4 Probability

In what follows I will use Popper’s notation as introduced
above. That is, p(a) denotes the probability of a, what-
ever a might be (heads, tails, the coin being unbiased,
rain ruining our picnic). The probability of a given b,
that is, we know that b occurred and now calculate the
probability of a happening, is p(a, b). Given both b and
c, the probability of a becomes p(a, bc). If we know that
b did not occur, we have p(a, b̄).

Popper takes issue with the idea that a theory, a hypoth-
esis, may be assigned a probability based on a series of
observations.

Let us now try to follow up the suggestion that
the hypotheses themselves are sequences of
statements. One way of interpreting it would
be to take, as elements of the sequence, the var-
ious singular statements which can contradict,
or agree with, the hypothesis. The probability
of the hypothesis would then be determined by
the truth-frequency of those among the state-
ments which agree with it. But this would give
the hypothesis a probability of 1/2 if, on the
average, it is refuted by every second singular
statement of the sequence! [1, §80, p. 255]

After considering a few modifications of this idea, he
concludes,

This seems to me to exhaust the possibilities of
basing the concept of the probability of a hy-
pothesis on that of the frequency of true state-
ments (or the frequency of false ones), and
thereby on the frequency theory of the prob-
ability of events. [1, §80, p. 258]

There are two points to make about these statements
immediately. One is that Popper has set up an algorithm
for hypothesis testing that would not for a moment be
entertained by a competent scientist actually attempting
to test a hypothesis. The second is that, in presenting this
algorithm, he has set up a ‘strawman,’ any by refuting it
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has pretended to refute all methods of testing a hypothesis
(and giving it a greater or lesser probability) by examining
events. (He may have derived this formulation from an
equation he attributes to Jeffries, [1, §*vii, p. 383], which
he does not appear to understand.)

Next I want to bring out two other examples presented
by Popper concerning basic calculations in probability.
First, he wants to disprove the ‘subjectivist theory of evi-
dence,’ what we would now call the Bayesian approach [1,
§*ix, pp. 425-426]. Given a coin, what is the probability
of heads? Well, one-half. Now given that the same coin
gave 500,000 heads (±1350) in one million trials, what
is the probability? One-half again. Hence, under the sub-
jectivist theory, after a million coin flips we have learned
nothing.

Popper believes this exercise disproves the idea of as-
sociating a probability with a subjective belief in an out-
come (the initial guess of one-half), what we would now
call a Bayesian prior. It is actually an exercise in asking
the wrong question (a useful one would be: how certain
are we that the coin is a fair one?). It also brings out
Popper’s inability to distinguish, functionally, between a
coin and a hypothesis.

Before we go on to the question of the absolute proba-
bility of a theory, there is one section that I think illumi-
nates Popper’s ideas in an interesting way. In [1, §*ix, pp.
402-7] he is concerned with the question of how much a
given event, a test in his words, will corroborate a theory.
He wants to show that the standard theory of probability
cannot calculate this, because in using it

. . . we should be forced to adopt a number of
highly paradoxical views, among them the fol-
lowing clearly self-contradictory assertion:

(*)There are cases in which x is strongly sup-
ported by z and y is strongly undermined by z
while, at the same time, x is confirmed by z to
a lesser degree than is y. [1, §*ix, p. 405]

What he means by strong support is set out on the next
page, using an example that deals with the throw of a die.
We take p(x) as the probability of throwing a six, p(x̄) that
of the negation (throwing anything else). Initially, with
no information, we set the probabilities as 1/6 and 5/6.
Then, we are given the information that that throw is an
even number. The probabilities are now 1/3 and 2/3. The
information has supported the hypothesis x and weakened
its negation x̄; the probability of x is still smaller than x̄.
As it stands, this result is conceded to be ‘far from para-
doxical.’ But if probabilities are interpreted as degrees
of corroboration, it leads to the statement (p. 407) that
a certain bit of information corroborates x and acts con-
versely on its negation, while x still has a lower degree of

confirmation than its negation; which Popper pronounces
‘clearly self-contradictory.’ He thus concludes that any
calculation of the support or refutation of a hypothesis (a
theory) cannot be done within conventional probability.

Popper is requiring a system of corroboration and con-
firmation in which any corroboration results in a sort of
absolute confirmation. Where this idea comes from is
not clear; Popper seems to consider it self-evident. And
he is certainly at liberty to produce technical definitions
of corroboration and confirmation in such a way, if he
desires. But in asserting that because normal probability
does not conform to this (essentially a bit of personal
prejudice), any system calculating support or otherwise
for a theory cannot be based on normal probability (p.
405), he certainly goes too far.

We now come to Popper’s calculation of the probabil-
ity of a theory, any theory, in the universe. It is proba-
bly set out most clearly in [1, §*vii, pp. 374-380]. The
probability of a theory is set equal to the product of the
probabilities of all events predicted by the theory

p(a) =
∏

n

p(an) (2)

Since each component p(an) can never be greater than
unity, may in fact be less, and they will be infinite in
number, the product will always go to zero. Hence the
probability of any theory is exactly zero.

I have already noted that this is not the way to work
out the probability of a hypothesis, given data. It also
assumes that all events in the universe are independent.
(This follows directly from his formula: the probability of
a collection of events all happening is equal to the product
of their individual probabilities only if they are indepen-
dent ( [5, p. 602]).) Popper formally recognises this, but
asserts obscurely that any dependence of one event on
another would be ‘non-logical.’ What the total indepen-
dence of all events actually implies is total chaos—no
event would have any relation to any other, and from one
moment to another, from one point to another, anything
could happen.

Popper explicitly concludes [1, §*vii, p. 375] some-
thing almost as depressing. If a is any theory and b is any
information, always

p(a) = 0 (3)

p(a, b) = 0 (4)

Consequences of this result will be traced in the next
section. For the moment, let me emphasize that Popper’s
understanding of elementary probability was inadequate
and flawed, not attaining the point of being able to test a
possibly biased coin.
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5 Popper’s probability

While it is not my purpose here to trace the detailed
consequences of Popper’s flawed understanding, I suggest
it is illuminating to look at one set of results.

Popper’s conclusions led him to construct a ‘calculus
of relative probability’ in which all of the following for-
mulae may be valid [1, §*iv, p. 335]:

p(a, bb̄) = 1 (5)

If p(b̄, b) , 0 then p(a, b) = 1 (6)

If p(a, āb) , 0 then p(a, b) = 1 (7)

These allow some very strange things. In the first, some
situation a is certain to happen, given both b and its nega-
tion. In the second and third, a situation is contemplated
in which the simultaneous occurrance of something and
its negation is given a nonzero probability. That is, the
given situations would require a single flip of a coin to be
both heads and tails.

In addition, one could also have simultaneously (for
theories a1 and a2),

p(a1, a2) = 0 (8)

p(a2, a1) = 1 (9)

while at the same time p(a1) = p(a2) = 0 [1, §*vii, p.
388]. Eventually he introduces a notion to express the fact
that, while the probability of every theory is zero, some
zeroes are bigger than others [1, §*vii, pp. 388-389].

The kindest thing to say about this system is that it
assigns meaning to something essentially meaningless.
The first three lines could be fairly paraphrased in words
starting with, ‘If something that never happens, happens
. . . ’ which, if not nonsense, is very close to it.

He does not appear to notice the inconsistency of this
with his claim to be implementing Boolean logic [1, §*iv,
p. 332]. (Contemplating the possibility of both b and
b̄ to happen is directly contradictory to the Boolean re-
quirement that a statement be either true or false [5, p.
501].)

This system is quite possibly useless for any real sci-
ence; it is certainly not used by scientists.

6 Implications

I must point out that, in criticising a philosopher’s un-
derstanding of science and mathematics, I do not mean
to imply that all philosophers must be highly competent
scientists or mathematicians. It is quite possible to make
serious contributions even to the philosophy of science
without a specialist’s deep background in the subjects;

although one must use care when working around one’s
ignorance.

That is not the situation we have here. Karl Popper’s
knowledge of certain parts (at least) of science and math-
ematics, at a basic level, was simply wrong. His under-
standing of the concept of experimental uncertainty was
erroneous. His comprehension of classical probability
was inadequate to test a possibly biased coin. He made
errors in the mathematics of set theory and infinite series.
The level of understanding of these fields displayed in his
book would fail an undergraduate course in science and
statistics.

These problems have consequences, though I have not
attempted to trace them all here. His critique of standard
probability theory is based on his own misunderstandings
(in setting up the formula to test a hypothesis, in erro-
neous assertions about set theory), and include at least
two requirements (that all events are independent, that
any support for a theory must make it absolutely more
probable than alternatives) that are at best arbitrary and
are arguably simply wrong.

Concerning his strictly philosophical ideas and writings
I have nothing to say; this study does not touch on them.
But it is difficult to justify attention to statements about
the logic of scientific discovery made by anyone with
such a basic misunderstanding of the subject.
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