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Representations of Spin groups and Clifford alge-
bras derived from the structure of qubit trees
are introduced in this work. For ternary trees

the construction is more general and reduction to bi-
nary trees is formally defined by deletion of superflu-
ous branches. The usual Jordan–Wigner construction
also may be formally obtained in this approach by
bringing the process up to trivial qubit chain (trunk).
The methods can also be used for effective simulation
of some quantum circuits corresponding to the binary
tree structure. The modeling of more general qubit
trees, as well as the relationship with the mapping
used in the Bravyi–Kitaev transformation, are also
briefly discussed.
Quanta 2022; 11: 97–114.

1 Introduction

In previous work [1] on effective modeling of quantum
state transfer in qubit chains, the problem of generaliz-
ing the suggested approach to arbitrary graphs was raised.
This present work provides an extension of some methods
used for qubit chains in Ref. [1] to qubit trees together
with appropriate applications. It is also interesting from
the point of view of generalizing the Jordan–Wigner trans-
formations [2] to trees and more general graphs discussed
in other works [3–7].

This is an open access article distributed under the terms
of the Creative Commons Attribution License CC-BY-3.0, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

The approach developed in this work associates rep-
resentations of Clifford algebras and Spin group with
ternary and binary qubit trees. It can be more naturally
defined by ternary trees with transition to binary trees
using some ‘pruning’. The application of similar ternary
trees for fermion-to-qubit mapping was also discussed
recently in Ref. [8].

Some preliminaries about Clifford algebras and Spin
groups with application to the construction of quantum
gates are introduced in Section 2. Representations of Clif-
ford algebras and Spin groups using ternary qubit trees
and deterministic finite automata are defined in Section 3,
together with the description of a ‘pruning process’ that
produces new trees by deletion of the branches. The pro-
cedure can also be used for the construction of binary
qubit trees, which are introduced in Section 4. The binary
trees can be considered as more natural generalization
of some methods touched upon earlier in Ref. [1] due to
the possibility of using some supplementary tools such as
annihilation and creation operators discussed in Section 5.
The application of the binary qubit trees in the construc-
tion of effectively modeled quantum circuits is described
in Section 6 with some examples appropriate for the the-
ory of quantum computation and communication.

The different scheme of qubit encoding by so-called
Fenwick trees was also discussed in Ref. [9] for possi-
ble application to the Bravyi–Kitaev transformation [10].
For trees of arbitrary size, the number of children for
some qubit nodes may not be limited. Such models can
be encoded by an alternative version of binary trees pre-
sented in Section 7.1 and an example of application to
Bravyi–Kitaev encoding is given in Section 7.2.
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2 Preliminaries

Let us recollect the standard properties and definitions
for Clifford algebras and Spin groups [11, 12] that will be
needed in the next sections. For the vector space V = Fn

(where F is R or C) the Clifford algebra Cl(V) provides
linear embedding of vector v ∈ V with the property

e : V −→ Cl(V),
(
e(v)

)2
= −|v|21, (1)

where 1 is the unit of the algebra and |v| is a norm of
the vector. For a vector v ∈ V with coordinates vk, the
embedding is written as

v = (v1, . . . , vn), e(v) =
n∑

k=1

vkek, (2)

where ek are generators of Clifford algebra. The pos-
sibility to work with complex vector spaces V = Cn is
desirable for many models below, but some definitions
and examples may be more naturally introduced for the
real case V = Rn. The Minkowski (pseudo-Euclidean)
norm is not considered here and for the Euclidean case
Eq. (1) can be rewritten using Eq. (2) as

{e j, ek} � e jek + eke j = −2δ jk1, j, k = 1, . . . , n. (3)

Due to the relations given in Eq. (3), the maximal
number of different products of generators up to sign
is 2n and Clifford algebra with such dimension is called
universal and denoted further Cℓ(n,F). The natural non-
universal examples are the algebra of Pauli matrices

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −ı

ı 0

)
, σ̂z =

(
1 0
0 −1

)
(4)

for V = C3 and the algebra of quaternions H for 3D real
space V = R3. The dimension of such algebras is not
maximal and one generator in this case could be dropped
to satisfy universality condition, but it may not be always
justified due to the structure of a model.

For complex vector space with even dimension C2m the
universal Clifford algebra Cℓ(2m,C) may be represented
as 2m×2m complex matrix algebra [11]. The generators of
Cℓ(2m,C) can be expressed using the Jordan–Wigner [2]
representation

e2k−1 = ı σ̂z ⊗ · · · ⊗ σ̂z︸          ︷︷          ︸
k−1

⊗ σ̂x ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
m−k

,

e2k = ı σ̂z ⊗ · · · ⊗ σ̂z︸          ︷︷          ︸
k−1

⊗ σ̂y ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
m−k

,
(5)

where k = 1, . . . ,m.
In odd dimensions, the universal Clifford algebra

Cℓ(2m + 1,C) can be represented using block diagonal
matrices(

A 0
0 B

)
∈ Cℓ(2m + 1,C), A,B ∈ Cℓ(2m,C), (6)

i.e., as the direct sum of two Cℓ(2m,C), but an irreducible
representation with the half of maximal dimension also
exists. It may be treated as Cℓ(2m,C) with the additional
generator that can be expressed up to possible imaginary
unit multiplier as product of all 2m generators. For the
representation given by Eq. (5), it may be written as

e2m+1 = ı σ̂
z ⊗ · · · ⊗ σ̂z︸          ︷︷          ︸

m

. (5′)

This case is essential for many examples considered be-
low. Using 2m generators Eq. (5) together with the extra
one Eq. (5′) denoted as e(2m)

j , the representation of gen-

erators e(2m+1)
j respecting Eq. (6) for universal Clifford

algebra Cℓ(2m + 1,C) can be written as

e(2m+1)
j = σ̂z ⊗ e(2m)

j , j = 1, . . . , 2m + 1. (7)

The group Spin(n) is defined as a subset of Cℓ(R, n)
generated by all possible products of even number of
elements e(v) with different vectors v of unit length

ŝ = e(v1)e(v2) · · · e(v2k), v j ∈ R
n,

|v j| = 1, j = 1, . . . , 2k.
(8)

The basic property of Spin(n) is the expression of orthog-
onal group as

ŝ e(v) ŝ−1 = e(v′), v′ = Rŝv, Rŝ ∈ SO(n), (9)

i.e., Rŝ is some n-dimensional rotation. It should be noted,
that the two elements ±ŝ ∈ Spin(n) in Eq. (9) correspond
to the same transformation Rŝ ∈ SO(n). Thus, Spin(n)
group doubly covers SO(n).

The Spin group also can be described as the Lie group.
The universal Clifford algebra Cℓn = Cℓ(F, n) is a Lie
algebra with respect to the bracket operation

[a, b] = ab − ba, a, b ∈ Cℓn.

For the Lie group Spin(n), the Lie algebra spin(n) is a
subalgebra of Cℓn with the basis e jek, 1 ≤ j < k ≤ n. The
Lie algebra so(n) of the orthogonal group is isomorphic
with spin(n).

The representation of Spin(n) groups using the Clif-
ford algebras discussed above has dimension 2n, but both
spin(n) and so(n) have dimension only n(n − 1)/2. The
Lie algebraic approach is also important due to direct
relation with Hamiltonians of quantum gates [1, 13].

There is some subtlety, because the exponential map
producing an element of the Spin group isAϵ = exp(ϵa),
but in the physical applications expressions with the gen-
erators are often written with an imaginary unit multi-
plier, e.g., the quantum gates near identity should be
written [14]

δÛ = eıϵĤ ≃ 1 + ıϵĤ, ϵ → 0. (10)
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In this case, the imaginary unit should also appear in
anticommutators. For example, the commutator algebra
with the bracket operation ı[Ĥa, Ĥb] appears in a proof
of two-qubit gates universality [14]. The set of gates
represented in such a way is universal if elements Ĥ from
Eq. (10) generate entire Lie algebra of unitary group by
the commutators.

Similar Lie-algebraic approach to Clifford algebras
can be used for construction of both universal and non-
universal sets of two-qubit gates [13]. The basis of the
Lie algebra spin(2m) consists of quadratic elements e jek.
The construction of the Lie algebra spin(2m) using Eq. (5)
represents the Spin(2m) group as some subgroup of the
unitary group U(2m).

Let us consider four consequent generators e2k−1, e2k,
e2k+1, e2k+2. The linear combinations of six different
quadratic elements produced from the generators for the
particular representation (5) correspond to Hamiltonians
of some one- and two-qubit gates. For different k it gen-
erates the non-universal set of quantum gates on nearest-
neighbor qubits often called matchgates [15, 16].

The Jordan–Wigner representation of generators for
Clifford algebra (5) is not unique. Alternative methods
based on tree-like structures are discussed in next sec-
tions.

3 Ternary Trees

Let us consider the following nine generators

ẽ1 = ıσ̂x ⊗ σ̂x ⊗ 1 ⊗ 1,
ẽ2 = ıσ̂x ⊗ σ̂y ⊗ 1 ⊗ 1,
ẽ3 = ıσ̂x ⊗ σ̂z ⊗ 1 ⊗ 1,
ẽ4 = ıσ̂y ⊗ 1 ⊗ σ̂x ⊗ 1,
ẽ5 = ıσ̂y ⊗ 1 ⊗ σ̂y ⊗ 1,
ẽ6 = ıσ̂y ⊗ 1 ⊗ σ̂z ⊗ 1,
ẽ7 = ıσ̂z ⊗ 1 ⊗ 1 ⊗ σ̂x,
ẽ8 = ıσ̂z ⊗ 1 ⊗ 1 ⊗ σ̂y,
ẽ9 = ıσ̂z ⊗ 1 ⊗ 1 ⊗ σ̂z.

(11)

A much more concise notation will be used further

ẽ1 = ıσ̂
x
1σ̂

x
2, ẽ2 = ıσ̂

x
1σ̂

y
2, ẽ3 = ıσ̂

x
1σ̂

z
2,

ẽ4 = ıσ̂
y
1σ̂

x
3, ẽ5 = ıσ̂

y
1σ̂

y
3, ẽ6 = ıσ̂

y
1σ̂

z
3,

ẽ7 = ıσ̂
z
1σ̂

x
4, ẽ8 = ıσ̂

z
1σ̂

y
4, ẽ9 = ıσ̂

z
1σ̂

z
4,

(11′)

where σ̂µj denotes Pauli matrix µ = x, y, z acting on qubit
with index j.

The universal Clifford algebra could be defined using
eight generators instead of nine and product of all ẽk is
identity up to possible multiplier with some power of the
imaginary unit denoted further as

ι ∈ {±1,±ı}, ι4 = 1. (12)

The nine generators (11) demonstrate natural threefold
symmetries derived from Pauli matrices. The general-
ization for arbitrary power of three using ternary trees is
discussed below. For the initial example (11), it corre-
sponds to four qubit nodes j = 1, . . . , 4 represented by
lower indices in Eq. (11′) where the root is j = 1 and
the three child nodes j = 2, 3, 4 are associated with three
generators each. Such construction can be generalized,
e.g., similar example with tree for thirteen qubits is pro-
vided in Fig. 1 with scheme of twenty seven generators
depicted in Fig. 2.

Figure 1: Ternary ΥL-tree with L = 3.

Let us recollect some useful properties of rooted trees
[17, 18]. A node of n-ary tree has up to n children, the
nodes without any children are called terminal nodes or
leafs. The level ℓ is defined here as the number of nodes
in the path from the root. The maximal level of nodes in
a tree is denoted further as L and, thus, the height of the
tree is L − 1.
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Ternary or binary trees with maximal number of nodes
for given L are denoted here as ‘ΥL-trees’. It could be
formally described using definitions from Ref. [18] as
directed rooted complete full ternary (or binary) tree with
height L − 1. In some constructions below, an auxiliary
root with index zero can also be attached to the first node
producing trees of height L. Such a method is relevant
to Eq. (21) and Eq. (22) below. It is also used for the
production of Υ◦L-tree from ΥL-tree in Section 7.1.

The number of nodes in a ternary ΥL-tree is

mL =

L−1∑
k=0

3k =
3L − 1

2
. (13)

Let us start with three generators ẽ(3)
1 = ıσ̂

x, ẽ(3)
2 = ıσ̂

y,
ẽ(3)

3 = ıσ̂
z for L = 1. For any L > 1, 3L+1 anticommuting

generators for ternary ΥL+1-tree can be produced by re-
cursion L → L + 1 using 3L anticommuting generators
defined for ΥL-tree

ẽ(3
L+1)

3 j−2 = ẽ(3
L)

j ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
j−1

⊗ σ̂x ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
3L− j

,

ẽ(3
L+1)

3 j−1 = ẽ(3
L)

j ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
j−1

⊗ σ̂y ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
3L− j

, (14)

ẽ(3
L+1)

3 j = ẽ(3
L)

j ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
j−1

⊗ σ̂z ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
3L− j

,

where j = 1, . . . , 3L and the total number of terms in
the tensor product is mL+1 = mL + 3L. All generators in
Eq. (14) anticommute — in different triples due to terms
ẽ(3

L)
j and in the same triple due to terms σ̂µj (µ = x, y, z).
Let us prove recursively that any 3L − 1 generators

between ẽ(3
L)

j generate whole basis for universal Clifford
algebra Cℓ(2mL,C). Let us start with a useful property:
the product of all 3L generators is ι1. It is true for L = 1,
ẽ(3)

k , k = 1, 2, 3 and for any L+1 it is derived directly from
Eq. (14). Due to this property any chosen generator up
to ι multiplier is represented as a product of all other gen-
erators and can be dropped. Thus, any 3L − 1 generators
between 3L can be used as a basis of Cℓ(2mL,C).

The standard basis of Cℓ(2mL,C) is naturally expressed
as 4mL tensor products using Pauli basis, i.e., three Pauli
matrices and 2× 2 unit matrix. Let us show, that the basis
can also be represented (not necessary in unique way) by
products of ẽ(3

L)
k . It is again true for L = 1 and Cℓ(2,C).

Let us consider L + 1 for some L ≥ 1 with the basis of
Cℓ(2mL,C) expressed by products of ẽ(3

L)
k . Arbitrary basic

element b of Cℓ(2mL+1,C) can be represented as tensor
products with mL+1 elements of Pauli basis. The product
of three generators for any j in Eq. (14) is

ι ẽ(3
L)

j ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
3L

,

so, the first mL terms in b can be rewritten by product of
such triples due to previous steps of recursion. Three pos-
sible products of two generators with given j in Eq. (14)
are

ι1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
mL+ j−1

⊗ σ̂µ ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
3L− j

, µ = x, y, z,

and remaining last 3L terms of b can also be expressed us-
ing products of such pairs. So, any element b of standard
basis Cℓ(2mL+1,C) with mL+1 = mL + 3L terms is some
product of ẽ(3

L+1)
k .

It was also shown, that any element can be expressed
up to ι as product of other generators. In this case, the
construction with one dropped element corresponds to
universal Clifford algebra. □

Each generator ẽ(3
L)

k , k = 1, . . . , 3L has mL=(3L − 1)/2
terms in tensor product with only L (non-unit) Pauli ma-
trices, because recursion (14) appends only one non-unit
term for each level. The scheme of such terms may be
represented by directed ternary ΥL-tree with first qubit
as root, see Fig. 1. Each triple of generators in Eq. (14)
formally corresponds to path from the root of the tree to
leaf nodes.

For example, the tree with three levels represented in
Fig. 1 may illustrate structure of nine triples with twenty
seven generators: ẽ(27)

1 = ıσ̂x
1σ̂

x
2σ̂

x
5, ẽ(27)

2 = ıσ̂x
1σ̂

x
2σ̂

y
5,

ẽ(27)
3 = ıσ̂x

1σ̂
x
2σ̂

z
5, ẽ(27)

4 = ıσ̂x
1σ̂

x
2σ̂

x
6, . . . , ẽ(27)

27 = ıσ̂
z
1σ̂

z
4σ̂

z
13.

The tree representation provides yet another explana-
tion of anticommutativity of all ẽ(mL)

j . Any two ‘branches’
of tree have some common part corresponding to qubits
with the same index and non-unit tensor factors, but only
the last pair of Pauli matrices in common subsequences
(corresponding to ‘fork node’ for pair of branches) may
differ. Such approach produces an illustrative argument
for the generalization with arbitrary ternary trees.

Let us first extend the model to provide formal defini-
tion using some methods from the theory of deterministic
finite automata (DFA) [19, 20]. The model of determinis-
tic finite automaton below uses extension [17] of ternary
ΥL-tree with basic nodes representing qubits and three
additional output nodes for each leaf. For more general
ternary trees discussed further, the number of children for
any qubit node is added up to three by new output nodes.

Each link is marked by letters x, y, z representing pos-
sible transition between nodes, see Fig. 2. The word
(sequence of letters x, y, z) corresponding to path from
the root to output nodes is recognized by deterministic fi-
nite automaton. The sequence of nodes generated by such
transition represents generator expressed as product of
terms with Pauli matrices indexed by the number of node
and letter, e.g., xxx→ σ̂x

1σ̂
x
2σ̂

x
5, . . ., xyz→ σ̂x

1σ̂
y
2σ̂

z
6, . . .,

zyx→ σ̂z
1σ̂

y
4σ̂

x
12, . . ., zzz→ σ̂z

1σ̂
z
4σ̂

z
13 for Fig. 2.
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1

4

13 z

y
x

z
12 z

y
xy

11 z

y
x

x

z

3

10 z

y
x

z
9 z

y
xy

8 z

y
x

x

y

2

7 z

y
x

z
6 z

y
xy

5 z

y
x

x

x

Figure 2: Deterministic finite automaton (DFA) from ternary
ΥL-tree extended by leaf nodes.

More generally, if some sequence µ1µ2 . . . µℓ of letters
µk ∈ {x, y, z} for k = 1, . . . , ℓ is recognized by determin-
istic finite automaton and generates sequence of nodes
(path)

j1
µ1
−−→ j2

µ2
−−→ · · ·

µℓ−1
−−−→ jℓ

µl
−→ oℓ+1 (15)

with root j1 = 1 and oℓ+1 is the output node, the generator
is

ẽoℓ+1 = ıσ̂
µ1
j1
σ̂
µ2
j2
· · · σ̂

µℓ
jℓ
= ı

ℓ∏
k=1

σ̂
µk
jk
. (16)

The model with deterministic finite automaton and
Eq. (16) can be applied for a general ternary tree for
a level ℓ that is not necessary equal to the maximal L
and the number of outbound links for each node may be
from zero to three. Let us start with a ternary ΥL-tree

discussed above with maximal number of qubit nodes
mq = (3L − 1)/2 and ng = 3L anticommuting generators

ng = 2mq + 1. (17)

Eq. (17) is also valid for any subtree.
Other ternary trees can be produced by recursive pro-

cess of ‘pruning’ discussed below. Let us delete all nodes
and generators of subtree ς originated from node jς at-
tached to parent node jp by link with label µp ∈ {x, y, z}.
Let us also add the new element including only initial
common sequence of nodes in products (16) coinciding
for all deleted nodes of the subtree ς

ẽς = ıσ̂
µ1
1 · · · σ̂

µp
jp
. (18)

The tree and all its subtrees after any deletion also
satisfy Eq. (17), because

n′g = ng − nςg + 1 = (2mq + 1) − (2mςq + 1) + 1 = 2m′q + 1,

where n′g, m′q and nςg, mςq denote parameters (number of
generators, number of qubit nodes) for produced tree and
deleted subtree respectively.

The new element (18) anticommutes with all elements
except deleted ones. Let us also prove that the product of
n′g generators for the new tree is ι1, where ι is possible
unessential multiplier (12). For the initial ternary ΥL-tree,
Eq. (17) holds true and the product of all generators was
already calculated earlier. Any subtree of the ΥL-tree is
also ternary ΥL′-tree for some L′ < L and the product of
all generators for such subtree is∏

k∈ς

ẽk = (ẽς)nςg (±1) = ∓ẽς,

because nςg is odd and (ẽς)2 = −1. So, after each deletion
the products of all generators of deleted trees up to sign
are equal with corresponding ẽς and the total product of
all elements is always ι1.

Let us prove, that for any tree with m′q qubit nodes
obtained by such pruning, the products of any subset
with n′g − 1 = 2m′q generators may be used as a basis of
universal Clifford algebra Cℓ(2m′q,C). Let us again for
simplicity start with all n′g = 2m′q + 1 generators, because
any generator may be expressed as a product of other
generators.

Let us note, that each deletion in the process of prun-
ing may be treated also as a two-stage process: (1) to
drop multipliers with Pauli matrices for excluded qubit
nodes from all products and (2) to remove duplicates from
the list of generators. The approach is also correct for
description of whole pruning as a series of consequent
deletions.
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Let us consider the final tree as a subtree of ternary
ΥL-tree. Any element of standard basis of the Clifford
algebra for qubits from this subtree can be represented by
product of generators of the initial tree. If when dropping
Pauli matrices for extra qubits from generators in such
products the result may only change sign, now it includes
only terms that are equal with generators of subtree. Thus,
the resulting terms provide a basis of the Clifford algebra
for the final tree. □

Let us describe formal procedure for construction of
generators from arbitrary ternary tree produced by the
pruning described above:

• Ternary tree should be extended by adding of termi-
nal (output) nodes, i.e., all initial nodes with number
of children nc < 3 should be connected with 3 − nc
new leafs associated with generators.

• Now all non-terminal (initial) nodes have three out-
put links marked by triple of labels x, y, z. Such a
tree also may be considered as a deterministic finite
automaton.

• Any path from the root to terminal node is described
by an analogue of Eq. (15) where l is the level of the
node and the generator for each terminal node can
be expressed as Eq. (16).

• Formally, a possible sequence of letters µk ∈ {x, y, z}
in Eq. (15) corresponds to a word recognized by
the deterministic finite automaton and any generator
is represented in such a way by product of Pauli
matrices (16).

Let us summarize the construction of generators using
an extended ternary tree. Rooted directed ternary tree is
defined by set of qubit nodes j = 1, . . . ,m and directed
links between pairs of nodes. Any node except the root
has one parent and up to three children. The links are
marked by labels x, y, z.

Let us first define an auxiliary operator (stub) r̂ j for
any qubit node j. For the root node j = 1, r̂1 = ı1 and for
any child node k linked with a parent node j by link with
a label µ ∈ {x, y, z}

j
µ
−→ k : r̂k = r̂ jσ̂

µ
j . (19)

Now for any node j with less than three children nc,
it is necessary to attach no = 3 − nc output generator
nodes with appropriate unique indices ȷ̃ by new links for
missing labels µ ∈ {x, y, z}.

The maximal total number of outbound links for m
nodes is 3m, but m − 1 children are qubit nodes (because

all of them except the root have one parent). Thus, the
number of generator nodes satisfies Eq. (17)

ng = 3m − (m − 1) = 2m + 1.

The generator associated with each such node is de-
fined as

ẽ ȷ̃ = ẽ j;µ = r̂ jσ̂
µ
j , ȷ̃ = 1, . . . , 2m + 1,

j = 1, . . . ,m.
(20)

An alternative notation ẽ j;µ is introduced for conve-
nience in Eq. (20). Any generator may be expressed in
this way ẽ ȷ̃ = ẽ j;µ after choosing of some map to set the
consequent indices ȷ̃ = ȷ̃( j, µ), but the number of elements
ẽ j;µ is bigger, 3m > 2m+ 1. Redundant ẽ j;µ correspond to
products of generators denoted earlier as ẽς (18). □

Eq. (20) together with the definition of stub opera-
tor (19) formalizes Eq. (16) used earlier without necessity
to introduce an enveloping ΥL-tree.

For the ternary ΥL-tree, deterministic finite automaton
recognizes any sequences with L letters and the resulting
3L generators are attached to leafs of the qubit tree shown
in Fig. 2. The number of nodes for such a tree is (3L−1)/2
according to Eq. (13).

For more general ternary tree with m nodes produced
with the method discussed above, the number of generator
leafs (DFA output nodes) on the extended tree is always
2m + 1. The product of all generators is proportional to
identity. It was already discussed that any subset with
2m generators may be used for construction of universal
Clifford algebra Cℓ(2m,C).

Let us consider yet another formal construction of
Cℓ(2m + 1,C) without necessity to get rid of one gen-
erator. Let us introduce an auxiliary node with index zero
to extend the set of generators to m + 1 qubits using a
straightforward method, cf Eq. (7)

é j = σ̂
z ⊗ ẽ j, j = 1, . . . , 2m + 1. (21)

The products of 2m + 1 elements (21) is σ̂z
0 and, thus,

Cℓ(2m+1,C) can be generated by Eq. (21) using standard
representation with block diagonal matrices, see Eq. (6).

The even subalgebra Cℓ0 is generated by products of
even number of generators é j (21). The cancellation of
σ̂z

0 in products illustrates natural isomorphism

Cℓ0(2m + 1,C) ≃ Cℓ(2m,C)

and it also produces representation of Spin(2m+ 1) group
by all 2m + 1 elements ẽ j ∈ Cℓ(2m,C).

For m > 1, the Spin(2m+2) can also be represented in a
similar way. Let us consider construction of Spin groups
as Lie algebras [11] recollected in Section 2. In this case,
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the element may be expressed as an exponent of linear
combinations of quadratic terms e jek.

Let us again introduce an extra zero node, but for an
alternative representation of 2m + 2 generators instead of
Eq. (21) should be used the following

è j = σ̂
x ⊗ ẽ j, j = 1, . . . , 2m + 1,

è0 = σ̂
y ⊗ 1 ⊗ · · · ⊗ 1.

(22)

The products of two such elements are either 1 ⊗ (ẽ jẽk)
or σ̂z ⊗ ẽl, where j, k, l = 1, . . . , 2m + 1. The quadratic
terms can be expressed as block-diagonal matrices (6).
For m > 1 all ẽ jẽk with j < k and ẽl are different and
exponents of matrices with linear combination of such el-
ements exp(A) ∈ Cℓ(2m,C) can be used for construction
of irreducible representation of Spin(2m + 2). It is not
true for m = 1 due to ẽ1ẽ2 = ẽ3, e.g., for quaternions or
Pauli matrices σ̂xσ̂y = ıσ̂z.

A standard representation of Clifford algebra may be
considered as an extreme case of pruning into a chain
of z-linked nodes. At least two generators (x, y) are
attached to each node with an additional one (z) on the
end. Such a degenerate tree corresponds to 2m Jordan–
Wigner generators (5)

e2k−1 = ıσ̂z
1 · · · σ̂

z
k−1 σ̂

x
k

e2k = ıσ̂z
1 · · · σ̂

z
k−1 σ̂

y
k

for k = 1, . . . ,m together with Eq. (5′)

e2m+1 = ıσ̂
z
1 · · · σ̂

z
2m.

4 Binary Trees

Binary ΥL-trees can be introduced formally by deletion
of all nodes attached to z-links of the ternary ΥL-trees, see
Fig. 3. The term binary x-y tree may be also used some-
times to distinguish that from an alternative construction
with deleted y-links, but such ‘x-z trees’ are introduced
only in Section 7.1.

The deterministic finite automaton for such binary tree
produces three generators for terminal qubit nodes with
maximal level l = L, but only one generator for other
qubit nodes with l < L, see Fig. 4.

The binary ΥL-tree has 2L − 1 qubit nodes. With ‘enu-
meration along levels’ the nodes j = 1, . . . , 2L−1 − 1
have two children 2 j and 2 j + 1, except leafs j =
2L−1, . . . , 2L − 1, see Fig. 5.

The stub operator r̂ j (19) used for construction of gen-
erators (20) can be constructed for binary case in the
similar way as r̂1 = ı1 and

r̂2 j = r̂ jσ̂
x
j , r̂2 j+1 = r̂ jσ̂

y
j . (23)

Figure 3: Binary (x-y) tree obtained from the ternary tree
shown in Fig. 2.

For the binary tree with mq = 2L − 1 qubits discussed
earlier, the structure of generators is described by exten-
sion into a ternary tree, see Fig. 4. Qubits with indices
j = 1, . . . , 2L−1 − 1 have only one generator node, but
three generators are linked to the remaining 2L−1 terminal
qubit nodes k = 2L−1, . . . , 2L − 1 with maximal level L.
Thus, the total number of generators satisfies Eq. (17)

ng = 2L−1 − 1 + 3 · 2L−1 = 2L+1 − 1 = 2mq + 1.

Here the ‘redundant’ notation for generators used in
Eq. (20) may be more illustrative

ẽ j;z = r̂ jσ̂
z
j, j = 1, . . . , 2L−1 − 1, (24a)

ẽ j;µ = r̂ jσ̂
µ
j , j = 2L−1, . . . , 2L − 1,

µ = x, y, z. (24b)

For the binary tree with L = 2 and three qubits, seven
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x
y
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z
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x
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x
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4
z

y

x

x

x

Figure 4: Deterministic finite automaton (DFA) for a binary
tree with additional leaf nodes.

generators can be written as

ẽ1;z = ıσ̂
z
1, ẽ2;µ = ıσ̂

x
1σ̂

µ
2, ẽ3;µ = ıσ̂

y
1σ̂

µ
3,

µ = x, y, z.
(25)

The sequence of terms with index z from Eq. (24) can
also be extended to all qubits. Let us use notation ě j

or ě(ng)
j , j = 1, . . . , ng = 2L+1 − 1 for generators with a

consequent indexing with ranges

ě
(ng)
j = ẽ j;z, j = 1, . . . , 2L − 1, (26a)

ě
(ng)
2 j = ẽ j;x

ě
(ng)
2 j+1 = ẽ j;y

 j = 2L−1, . . . , 2L − 1. (26b)

Thus, for the binary tree with three qubits, Eq. (25) can
be rewritten

ě(7)
1 = ıσ̂

z
1, ě

(7)
2 = ıσ̂

x
1σ̂

z
2, ě(7)

3 = ıσ̂
y
1σ̂

z
3,

ě(7)
4 = ıσ̂

x
1σ̂

x
2, ě(7)

5 = ıσ̂
x
1σ̂

y
2,

ě(7)
6 = ıσ̂

y
1σ̂

x
3, ě(7)

7 = ıσ̂
y
1σ̂

y
3.

(27)

The indexing (26) is convenient due to properties of
triples with generators ě j, ě2 j, ě2 j+1. Let us denote

ĥ
x
j = ıě2 j+1ě j, ĥ

y
j = ıě jě2 j, ĥ

z
j = ıě2 jě2 j+1,

j = 1, . . . , 2L − 1.
(28)

The terms (28) are trivial for index j corresponding to
terminal qubit nodes with three generators

ĥ
µ
j = σ̂

µ
j , j = 2L−1, . . . , 2L − 1, µ = x, y, z. (29)

1

3
7

6

2
5

4

1

3

7
15

14

6
13

12

2

5
11

10

4
9

8

Figure 5: Binary ΥL-trees for L = 3 and L = 4.

For nodes with single generator, the first pair of expres-
sions (28) can be associated with links of binary tree

ĥ
y
j = σ̂

y
jσ̂

z
2 j, ĥ

x
j = σ̂

x
jσ̂

z
2 j+1, j = 1, . . . , 2L−1 − 1.

(30)
It should be noted, that ĥ

x
j and ĥ

y
j in Eq. (30) correspond

to links marked by exchanged labels (y and x respectively,
see Fig. 4). Remaining z-elements in Eq. (28) can be
assigned to ‘forks’ with both links

ĥ
z
j = σ̂

z
jσ̂

z
2 jσ̂

z
2 j+1, j = 1, . . . , 2L−1 − 1. (31)

Due to the Lie-algebraic approach, the linear combina-
tions of quadratic expressions such as Eq. (28) correspond
to the Hamiltonians Ȟ and the quantum gates can be rep-
resented as exponents

Ǔ = e−ıȞτ = exp
(
τ
∑
j<k

h jkě jěk
)
. (32)

The Hamiltonians such as Eq. (29) and Eq. (30) gener-
ate one- and two-qubit gates and produce non-universal
set of quantum gates for representation of Spin group cor-
responding to Eq. (32). The arbitrary one-qubit gates may
be generated by such a way for all terminal qubit nodes
due to Eq. (29), but two-qubit gates defined on all links
of binary qubit tree are restricted by single-parameter
families with Hamiltonians from Eq. (30).
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5 Annihilation and creation
operators

Let us split 2m generators e j of some Clifford algebra
Cℓ(2m,C) into two parts with m elements e′j, e

′′
j to intro-

duce annihilation and creation (‘ladder’) operators

â j =
e′j + ıe

′′
j

2ı
, â†j =

e′j − ıe
′′
j

2ı
, j = 1, . . . ,m. (33)

Due to Eq. (3) the elements satisfy canonical anticommu-
tation relations

{â j, âk} = {â
†

j , â
†

k} = 0, {â j, â
†

k} = δ jk1, (34)

where j, k = 1, . . . ,m.
For the standard representation of Clifford algebra men-

tioned earlier (5) only the first 2m generators may be used
e′j = e2 j−1, e′′j = e2 j and thus

â j = σ̂
z
1 · · · σ̂

z
j−1 â j, â†j = σ̂

z
1 · · · σ̂

z
j−1 â†j , (35)

where j = 1, . . . ,m and â, â† are 2 × 2 matrices

â =
σ̂x + ıσ̂y

2
=

(
0 1
0 0

)
,

â† =
σ̂x − ıσ̂y

2
=

(
0 0
1 0

) (36)

with index j is for position in tensor product, i.e.,

â j ≡ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
j−1

⊗ â ⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
m− j

.

The usual Jordan–Wigner transformation [2] corresponds
to the standard representation (5).

Let us also introduce an analogous notation n̂k, n̂0k,
where

n̂ = â†â =
1 − σ̂z

2
=

(
0 0
0 1

)
,

n̂0 = ââ† =
1 + σ̂z

2
=

(
1 0
0 0

)
.

(37)

Sometimes in physical applications the ladder opera-
tors may be considered as primary objects and expressions
for generators follow directly from Eq. (33)

e′j = ı(â j + â
†

j), e′′j = â j − â
†

j . (38)

The generator e j itself due to such representation is also
often treated as a creation operator for a particle coincid-
ing with own antiparticle, e.g., Majorana mode [10, 21].

The ladder operators also can be used to express spe-
cific subgroup of Spin group corresponding to some quan-
tum gates generated by restricted set of quadratic Hamil-
tonians [1, 16]. Let us introduce the notation

Σ̂ j,k =
â†j âk + â

†

k â j

2
, Λ̂ j,k =

â†j âk − â
†

k â j

2ı
. (39)

For the ‘vacuum’ state

|∅⟩ ≡ | 00 . . . 0︸  ︷︷  ︸
m

⟩, (40)

âk|∅⟩ = 0 and thus, Σ̂ j,k|∅⟩ = Λ̂ j,k|∅⟩ = 0. Any Hamilto-
nian Ĥ expressed as a linear combination of Eq. (39) also
has the same property Ĥ|∅⟩ = 0 and the quantum gate
generated by such Hamiltonian for some parameter τ

Û = exp(−ıĤτ) (41)

does not change the vacuum state Û|∅⟩ = |∅⟩.
Let us define consequent indices 1 ≤ j < k ≤ m in

Eq. (39) with special notation for ‘occupation number’
operators n̂k and number of ‘particles’ (units in the com-
putational basis) operator N̂

n̂k = Σ̂k,k = â
†

k âk, N̂ =

m∑
j=k

n̂k. (42)

An important property of the operator (42) can be derived
directly from the definition and Eq. (34)

N̂ â j = â jN̂ − â j = â j (N̂ − 1),

N̂ â†j = â
†

j (N̂ + 1).
(43)

Here again N̂|∅⟩ = 0 and for states such as

|Ξ(N)
j1... jN
⟩ = â†jN · · · â

†

j1︸     ︷︷     ︸
N

|∅⟩,

1 ≤ j1 < · · · < jN ≤ m

(44)

from consequent application of Eq. (43) for all â†j it fol-
lows that

N̂|Ξ(N)
j1... jN
⟩ = N |Ξ(N)

j1... jN
⟩. (45)

It may be also derived from Eq. (43) or checked directly
that the quadratic operators (39) commute with N

Σ̂ j,kN̂ = N̂Σ̂ j,k, Λ̂ j,kN̂ = N̂Λ̂ j,k. (46)

The Hamiltonian Ĥ with linear combination of terms (39)
also commutes with N̂ and the quantum gate Û generated
by Ĥ (41) respects subspaces composed from states (44).
Such restricted case was introduced initially in Ref. [16]
and later discussed as a basic example in Ref. [1].
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With the standard representation (35), the expression
for N̂ (42) may be rewritten as

N̂ = N̂ z �
m∑

k=1

n̂k =

m∑
k=1

1 − σ̂z
k

2
=

m
2
1 −

1
2

m∑
k=1

σ̂z
k (47)

and the eigenvalues N (45) of the operator correspond to
the number of units in the computational basis, e.g., for
Nz = 1 there are m states

|Ξ(m)
k ⟩ = â

†

k |∅⟩ = |k⟩, (48)

where, for the standard (Jordan–Wigner) representation
we have

|k⟩ = | 0 . . . 0︸︷︷︸
k−1

1 0 . . . 0︸︷︷︸
m−k

⟩, k = 1, . . . ,m (49)

with only unit in position k of the computational basis
state, but the analogous constructions even for a binary
tree discussed below are more complicated.

Let us now introduce similar constructions for a binary
tree. The indexation (26) is used further with first element
ě1 dropped and Eq. (33) is applied to partition e′j = ě2 j,
e′′j = ě2 j+1, j = 1, . . . ,m. Let us also introduce slightly
different notation for binary tree ladder operators

ǎ j =
ě2 j + ıě2 j+1

2ı
, ǎ†j =

ě2 j − ıě2 j+1

2ı
(50)

with j = 1, . . . ,m.
Only for the terminal nodes j = 2L−1, . . . , 2L − 1 of the

binary tree with given L, the operators (50) have more
usual form with tensor product of only 2 × 2 matrices
similarly to Eq. (35). Let us consider the simple example
with L = 2 (27) where the first node j = 1 is not terminal

ǎ1 =
σ̂x

1σ̂
z
2 + ıσ̂

y
1σ̂

z
3

2
, ǎ†1 =

σ̂x
1σ̂

z
2 − ıσ̂

y
1σ̂

z
3

2
. (51)

Other operators for L = 2 corresponds to terminal nodes
with simpler expressions

ǎ2 =
σ̂x

1σ̂
x
2 + ıσ̂

x
1σ̂

y
2

2
= σ̂x

1â2,

ǎ3 =
σ̂
y
1σ̂

x
3 + ıσ̂

y
1σ̂

y
3

2
= σ̂

y
1â3.

(52)

The expressions for operators ǎ†j are complex conjuga-
tions of matrices and often omitted further. Let us rewrite
Eq. (51) using projectors (37)

ǎ1 = σ̂
x
1(n̂02 − n̂2)(n̂03 + n̂3) + ıσ̂y1(n̂02 + n̂2)(n̂03 − n̂3)

= â1n̂02n̂03 + â†1n̂02n̂3 − â†1n̂2n̂03 − â1n̂2n̂3. (53)

The expression corresponds to ‘conditional’ annihilation
and creation operators on the first qubit controlled by

a pair of other qubits. The more general case discussed
below for L ≥ 2 and j ≥ 1 is quite similar with appropriate
indices substituted instead of 1, 2, 3 in Eq. (53).

Let us rewrite Eq. (50) with two ranges for internal and
terminal nodes using the stub operator r̂ j (23) together
with Eq. (26) and Eq. (27)

ǎ j = r̂ j

σ̂x
jσ̂

z
2 j + ıσ̂

y
jσ̂

z
2 j+1

2
= r̂ jâ j◁2 j,

j = 1, . . . , 2L−1 − 1, (54a)

ǎ j = r̂ j

σ̂x
j + ıσ̂

y
j

2
= r̂ jâ j,

j = 2L−1, . . . , 2L − 1, (54b)

where â j◁2 j is generalization of the conditional opera-
tor (53) with index j ‘controlled’ by the pair 2 j, 2 j + 1

â j◁2 j �
σ̂x

jσ̂
z
2 j + ıσ̂

y
jσ̂

z
2 j+1

2
= â j(n̂02 jn̂

0
2 j+1 − n̂2 jn̂2 j+1) (55)

+ â†j(n̂
0
2 jn̂2 j+1 − n̂2 jn̂02 j+1).

An example for L = 4 is depicted in Fig. 6. The con-
structions of ǎ j, ǎ

†

j include three different nodes for
j = 1, . . . , 7 and only one node for j = 8, . . . , 15.

Figure 6: Nodes groups for ǎ j, ǎ
†

j in binary tree.

Let us now consider analogues of Eq. (39)

Σ̌ j,k =
ǎ†j ǎk + ǎ

†

k ǎ j

2
, Λ̌ j,k =

ǎ†j ǎk − ǎ
†

k ǎ j

2ı
. (56)
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and Eq. (42) for modified number (of ‘particles’) operator

Ň =

m∑
k=1

ǎ†k ǎk =

m∑
k=1

ňk, (57)

where ňk = ǎ
†

k ǎk are modified ‘occupation number’ oper-
ators.

The ‘vacuum state’ (40) for a binary tree also satisfies
ǎ j|∅⟩ = 0 for any j. It is clear that for terminal nodes
j ≥ 2L−1, because the tensor product for ǎ j includes
â j (54b). For alternative expression with three nodes
Eq. (54a) the controlled terms â j◁2 j (55) for |∅⟩ also act as
annihilation operator on qubit j, because the two ‘control
qubits’ 2 j and 2 j + 1 are zeros, cf Eq. (53).

Thus, operators (42) also satisfy the condition Σ̌ j,k|∅⟩ =

Λ̌ j,k|∅⟩ = 0 and the same is true for Hamiltonians repre-
sented as linear combination of the operators, Ȟ|∅⟩ = 0.
Quantum gates and circuits generated with such Hamilto-
nians

Ǔ = exp(−ıȞτ) (58)

do not change the ‘vacuum state’ Ǔ|∅⟩ = |∅⟩ similarly
to Û in Eq. (41), but must commute with the modified
operator Ň instead of N̂ .

Let us consider analogues of states (44)

|Ξ̌(Ň)
j1... jŇ
⟩ = ǎ†jŇ

· · · ǎ†j1 |∅⟩,

Ň|Ξ̌(Ň)
j1... jŇ
⟩ = Ň |Ξ̌(Ň)

j1... jŇ
⟩.

(59)

Quantum gates defined by Eq. (58) due to the property
ŇǓ = ǓŇ do not change Ň, but the number of units in
elements of the computational basis may not be fixed.

Let us consider an example of Eq. (59) with single
creation operator

|Ξ̌(1)
k ⟩ = ǎ

†

k |∅⟩ � |ǩ⟩, Ň|ǩ⟩ = |ǩ⟩, 1 ≤ k ≤ m. (60)

The operators ǎ†k are obtained from ǎk (54) by Hermi-
tian conjugation and |ǩ⟩ is up to phase ι an element of
the computational basis with units only in positions cor-
responding to the ‘path’ from the root to node k. The
number of units is equal to the level ℓ of the node in the
tree

N̂ z|ǩ⟩ = ℓk|ǩ⟩, ℓk = ⌊log2 k⌋ + 1. (61)

The eigenvalues of Ň operators Eq. (57) can be ex-
pressed directly in the computational basis using an ana-
logue of sums (42) or (47) with operators ň j written for
different ranges using Eq. (54)

ň j = ǎ
†

j ǎ j =
1 − σ̂z

jσ̂
z
2 jσ̂

z
2 j+1

2
,

j = 1, . . . , 2L−1 − 1, (62a)

ň j = ǎ
†

j ǎ j =
1 − σ̂z

j

2
,

j = 2L−1, . . . , 2L − 1. (62b)

The quadratic expressions ĥ defined in Eq. (28) may be
rewritten using Eq. (29) and Eq. (31)

ň j =
1 − ĥ

z
j

2
, j = 1, . . . , 2L − 1. (63)

The tensor product of σ̂z is built up from diagonal ma-
trices and the eigenvalues η j of ĥ

z
j (31) for eigenvectors

from the computational basis can be expressed as

ĥ
z
j|n1, . . . , nm⟩ = η j|n1, . . . , nm⟩,

η j = (−1)n j+n2 j+n2 j+1 ( j < 2L−1) (64)

and due to simple identity

1 − (−1)k

2
= k mod 2

eigenvalues of ň j using Eq. (62) and Eq. (64) can be
expressed as

ň j =

n j ⊕ n2 j ⊕ n2 j+1, j = 1, . . . , 2L−1 − 1,
n j, j = 2L−1, . . . , 2L − 1,

(65)

where ⊕ denotes XOR (exclusive OR) operation for bi-
nary values

ň j = n j ⊕ n2 j ⊕ n2 j+1 = (n j + n2 j + n2 j+1) mod 2. (66)

The eigenvalue of Ň is

Ň =
m∑

j=1

ň j. (67)

Let us consider an example with single creation opera-
tor for node k (60). The positions of units produce some
path from the root to k. Any triple of nodes in Eq. (65)
for j , k contains zero or two units and ň j is the only
nonzero element in sum (67), ň j = δ jk, thus, Ň = 1.

Let us consider m elements with a single unit in the
computational basis. The method used above illustrates
that Ň = 1 only for j = 1, but Ň = 2 for j > 1 due to
second unit in sum (67), because the triple for k = j div 2
in Eq. (65) also contains node j. It may be also checked
directly, that for given indexing (26)

|Ξ̌(2)
j′, j⟩ = ǎ

†

j ǎ
†

j′ |∅⟩, j = 2, . . . ,m = 2L − 1,

j′ = j div 2
(68)

is an element of the computational basis (up to ι) with
single unit in position j, see Eq. (49)

|Ξ̌(2)
j÷2, j⟩ = ǎ

†

j ǎ
†

j÷2|∅⟩ = ι| j⟩, j = 2, . . . ,m, (69)

where the notation j ÷ 2 = j div 2 is used for brevity and
both elements in each pair j ∈ {2 j′, 2 j′ + 1} are taken into
account for j > 1. Thus

Ň|1⟩ = |1⟩, Ň| j⟩ = 2| j⟩, j > 1. (70)
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However, elements of the computational basis with units
in both positions 2 j′ and 2 j′ + 1 also may be expressed
in similar way

|Ξ̌(2)
2 j′,2 j′+1⟩ = ǎ

†

2 j′+1ǎ
†

2 j′ |∅⟩ = |2 j′, 2 j′ + 1⟩,

j′ = 1, . . . , 2L−1 − 1,
(71)

where the notation from Ref. [1] is used

|k, k + 1⟩ = | 0 . . . 0︸︷︷︸
k−1

11 0 . . . 0︸︷︷︸
m−k−2

⟩. (72)

Thus, such states also belong to subspace corresponding
to eigenvalue 2 of the operator Ň , cf Eq. (70)

Ň|2 j, 2 j + 1⟩ = 2|2 j, 2 j + 1⟩, 1 ≤ j ≤ 2L−1 − 1. (73)

Let us recollect that quantum circuits with gates gener-
ated by Hamiltonian (58) can be used for transformation
between different states from subspaces with the same
eigenvalue of Ň .

6 Efficient simulation

Let us start with analogues of efficient classical simulation
considered in Ref. [22, 23] with calculation of expecta-
tion values of generators ě j for binary trees using the
exponential representation of gates Ǔ with ‘quadratic’
Hamiltonian Ȟ (32).

Unitary operators ±ǓR ∈ SU(2m) (elements of the Spin
group) are corresponding to orthogonal matrix R with the
property

ǓRě jǓ
†

R =
∑

k

Rk jěk, (74)

where the summation is applied to the actually used set
of indices. For a binary tree, natural choice may include
either k = 1, . . . , 2m + 1 for Cℓ(2m + 1), Spin(2m + 1)
and R ∈ SO(2m + 1) or k = 2, . . . , 2m + 1 for Cℓ(2m),
Spin(2m) and R ∈ SO(2m) ⊂ SO(2m + 1), cf Eq. (27) for
m = 3.

Here, consideration of all generators with R ∈

SO(2m+1) may be useful, because ě1 appears in the
quadratic Hamiltonian in terms for links such as ĥ

x
1, ĥ

y
1 in

Eq. (30). However, ě1 is dropped in constructions with
creation and annihilation operators (50).

The evolution of state due to such unitary operators is
|ϕ′⟩ = ǓR|ϕ⟩ and the expectation value of ě j is

⟨ϕ′|ě j|ϕ
′⟩ = ⟨ϕ|Ǔ†Rě jǓR|ϕ⟩ =

∑
k

R jk⟨ϕ|ěk|ϕ⟩, (75)

where the order of indices is changed in comparison
with Eq. (74) due to inversion Ǔ†R = Ǔ−1

R . Eq. (75) is

the formal algebraic analogue of an equation for match-
gates [22] with R ∈ SO(2m), but for the different opera-
tors ǓR, ě j are constructed using binary trees instead of
linear chains. The quadratic terms were more suitable in
Ref. [22, 23] and analogues of such expressions also can
be introduced

⟨ϕ′|ıě j1 ě j2 |ϕ
′⟩ = ⟨ϕ|ıǓ†Rě j1 ě j2ǓR|ϕ⟩

= ⟨ϕ|ı(Ǔ†Rě j1ǓR)(Ǔ†Rě j2ǓR)|ϕ⟩ (76)

=
∑

k1,k2

Rk1 j1Rk2 j2⟨ϕ|ıěk1 ěk2 |ϕ⟩,

where the condition k1 , k2 can be used because the
terms with equal indices disappear due to orthogonality
of matrix R.

For terminal indices j = 2L−1, . . . , 2L − 1 quadratic
terms ıě2 jě2 j+1 = ĥ

z
j (28) are equal with single Pauli

matrix σ̂z
j (29) and the expectation value is analogous

to Ref. [22, 23]. However, for internal indices j =
1, . . . , 2L−1 − 1, ĥ

z
j are product of three Pauli matrices

(31). The latter may be written

⟨ϕ|ıě2 jě2 j+1|ϕ⟩ =



⟨ϕ|σ̂z
jσ̂

z
2 jσ̂

z
2 j+1|ϕ⟩,

j = 1, . . . , 2L−1 − 1

⟨ϕ|σ̂z
j|ϕ⟩,

j = 2L−1, . . . , 2L − 1

. (77)

Using the definition of ň j (63), it may be rewritten in
agreement with analogous equation for ň j (65)

⟨ϕ|ň j|ϕ⟩ = ⟨ň j⟩ =


⟨n j ⊕ n2 j ⊕ n2 j+1⟩,

j = 1, . . . , 2L−1 − 1

⟨n j⟩, j = 2L−1, . . . , 2L − 1

, (78)

where the standard notation ⟨· · ·⟩ for expectation value is
used, e.g., ⟨n j⟩ = p1 j is the probability to measure value 1
for qubit j.

For the terminal nodes j = 2L−1, . . . , 2L − 1, the result
of qubit measurement in the computational basis n j = ň j

can be directly found from Eq. (76). For the previous
level ℓ j = L − 1 with indices j = 2L−2, . . . , 2L−1 − 1, it
includes an expression with three terms

n j = ň j ⊕ n2 j ⊕ n2 j+1 = ň j ⊕ ň2 j ⊕ ň2 j+1,

for level ℓ j = L − 2, the expression n via ň requires seven
terms

n j = ň j ⊕ ň2 j ⊕ ň4 j ⊕ ň4 j+1 ⊕ ň2 j+1 ⊕ ň4 j+2 ⊕ ň4 j+3.
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For deeper levels ℓ j = L − d, similar expansions produce
2d+1 − 1 terms

n j =



(
ň j +

∑
k∈d( j)

ňk
)

mod 2,

j = 1, . . . , 2L−1 − 1

ň j, j = 2L−1, . . . , 2L − 1

, (79)

where d( j) are all descendants of node j, or, more briefly

n j =
∑

k∈s( j)

ňk mod 2. (79′)

where s( j) = d( j) ∪ { j} are all nodes of the subtree with
root j, including the trivial case with a single term s( j) =
{ j} for terminal qubit nodes.

Thus, the analogue of the approach used in Ref. [22,23]
can be applied only either to computation of ⟨ň j⟩ or for
measurements of separate qubits in terminal nodes.

For internal nodes with level ℓ < L, even for a single
qubit measurement outcome should be used more com-
plicated approach such as the one applied to multi-qubit
outputs in a standard case [24], but with measurement
of 2L−l quantum ‘binary variables’ ň j expressed as XOR
operations with qubit values. Thus, despite of some re-
semblance with matchgate circuits, the effective modeling
with binary trees deserves special consideration.

Together with possible difficulties for internal nodes, it
has specific advantages for terminal qubits. Linear com-
binations of quadratic Hamiltonians (29) may generate
arbitrary rotation and the expectation values ⟨Z j⟩ in the
computational basis (77) can be extended for efficient
simulation of qubit measurement ‘along any axis.’

A pair of terminal qubits with indices 2 j, 2 j + 1 have
common parent j = 2L−2, . . . , 2L−1 − 1. Let us show, that
for parent qubit fixed in state |0⟩ any transformation from
SU(4) group may be implemented using only quadratic
Hamiltonian. The construction with auxiliary qubit uses
isomorphism between SU(4) and Spin(6) and is similar
to the method discussed in Ref. [25].

Let us extend a simpler example L = 2, m = 3 (27)
to write seven generators associated with the ‘terminal
triple’ of qubits with parent node 2L−2 ≤ j < 2L−1 for
arbitrary L ≥ 2

ě j = r̂ jσ̂
z
j, ě2 j = r̂ jσ̂

x
jσ̂

z
2 j, ě2 j+1 = r̂ jσ̂

y
jσ̂

z
2 j+1,

ě4 j = r̂ jσ̂
x
jσ̂

x
2 j, ě4 j+2 = r̂ jσ̂

y
jσ̂

x
2 j+1, (80)

ě4 j+1 = r̂ jσ̂
x
jσ̂

y
2 j, ě4 j+3 = r̂ jσ̂

y
jσ̂

y
2 j+1.

Products of two generators (80) produce 21 different
terms, but only 15 of them do not change the parent
qubit with state |0⟩

σ̂
µ
2 j, σ̂ν2 j+1, σ̂z

jσ̂
µ
2 jσ̂

ν
2 j+1, µ, ν = x, y, z. (81)

The linear combinations of analogues of terms (81) with-
out multiplier σ̂z

j would produce arbitrary traceless Hamil-
tonian for two qubits, but σ̂z acts as identity on state |0⟩
and so terms (81) also may generate arbitrary SU(4) trans-
formation of two terminal qubits if the common parent
qubit is |0⟩. □

Let us now consider construction of gates Ǔ (58) gen-
erated by quadratic combinations (56) of ladder operators
ǎ j and ǎ†k (50) for a binary tree. For this case, instead
of Eq. (74) an auxiliary matrix U ∈ SU(m) can be intro-
duced for operators ±ǓU ∈ SU(2m) with formal analogue
of well-known relations for ladder operators [1, 16]

ǓUǎkǓ
†

U =

m∑
j=1

Uk jǎ j, ǓUǎ
†

kǓ
†

U =

m∑
j=1

U†jkǎ
†

j , (82)

where Ūk j is complex conjugation of coefficients and
U† = U−1 for unitary matrix U.

A ‘path-state’ |ǩ⟩ (60) satisfies an analogue of equa-
tions used in Ref. [1] for |k⟩ defined by Eq. (48) up to
trivial change of variables, i.e.,

ǓU|ǩ⟩ = ǓUǎ
†

k |∅⟩ = ǓUǎ
†

kǓ
†

U|∅⟩

=

m∑
l=1

U†lkǎ
†

l |∅⟩ =
m∑

l=1

U†lk|ľ⟩.
(83)

Let us consider linear superposition of path states |χ̌⟩ =∑m
k=1 χk|ǩ⟩

ǓU|χ̌⟩ = ǓU

m∑
k=1

χk|ǩ⟩ =
m∑

l,k=1

U†lkχk|ľ⟩ ≡
m∑

l=1

χ′l |ľ⟩,

χ′l �
m∑

k=1

U†lkχk.

(84)

Eq. (84) for ‘single-path’ states (Ň = 1) is similar to the
evolution of ‘single-particle’ case (Nz = 1) for qubit chain
[1], but for all nodes except of the root in binary qubit tree,
|k⟩ belongs to Ň = 2 subspace due to Eq. (70). However,
the same subspace also includes pairs |2 j, 2 j + 1⟩ (70)
and an analogy with ‘two-particle’ case is also relevant.

For Hamiltonians respecting N̂ or Ň , the consideration
of ‘number-preserving’ subspaces is natural for models
of state transfer in quantum chains [1, 26] or trees. The
two-qubit state can be decomposed into three parts:

|ψ⟩ =

N=0︷ ︸︸ ︷
c00|00⟩︸ ︷︷ ︸

Ň=0

+

N=1︷               ︸︸               ︷
c01|01⟩ + c10|10⟩+

N=2︷ ︸︸ ︷
c11|11⟩︸                            ︷︷                            ︸

Ň=2

, (85)

but terms with N = 1 and N = 2 in Eq. (85) in the binary
tree for pairs of nodes 2 j, 2 j + 1 (0 < j < 2L−1) belong to
the same subspace Ň = 2, and, furthermore, N = Ň = 0
is not affected by Ǔ (58) for state transfer.
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For two consequent indices 2 j, 2 j + 1, three terms with
N , 0 (Ň = 2) in Eq. (85) are generated by application
to |∅⟩ of different pairs of operators between the same
triple ǎ†j , ǎ

†

2 j and ǎ†2 j+1 due to Eq. (69) and Eq. (71). Thus,
as a result of perfect transfer of such two-qubit pair into
new position 2k, 2k + 1 indices by operator ǓU should
correspond to unitary matrix U with simple constrains on
three elements

|U jk| = |U2 j,2k| = |U2 j+1,2k+1| = 1. (86)

For consideration of perfect transfer with single qubit,
one condition in Eq. (86) may be superfluous.

The example illustrates possibility of exponential de-
crease of model dimension from 2m to m, but the con-
struction of U with a sequence of steps or appropriate
Hamiltonians deserves separate consideration elsewhere.
Even the reduced problem is more difficult than analogous
example for qubit chain because of less trivial structure
of the graph itself and more complicated properties of
modified operators such as ǎ and ǎ†.

7 General trees

7.1 Alternative encoding of binary trees

In the binary trees discussed earlier, all nodes attached
to z-links were deleted. Let us consider as an alternative
the binary x-z trees with y-links collapsed instead. The
stub operator r̂ j (19) for such a tree contains σ̂x, σ̂z and
generators may contain no more than one σ̂y.

Some constructions discussed below become more nat-
ural, if new root with index zero is attached by x-link.
Similar method was briefly mentioned in Section 3 and
forΥL-tree it produces ‘Υ◦L-tree’ of height L with 2L nodes.
In this case appropriate pairs of generators can be chosen
to provide necessary coupling of σ̂x and σ̂y for qubits
with the same index for specific construction of ladder
operators (33) discussed below, see Fig. 7.

Let us consider an example with eight qubits. Similarly
to binary trees discussed earlier, only z-term for root σ̂z

0 is
excluded from such a coupling and internal nodes require
more complicated expressions for ladder operators

ă0 =
σ̂x

0σ̂
z
1σ̂

z
3σ̂

z
7 + ıσ̂

y
0

2
, ă1 = σ̂

x
0

σ̂x
1σ̂

z
2σ̂

z
5 + ıσ̂

y
1

2
,

ă2 = σ̂
x
0σ̂

x
1

σ̂x
2σ̂

z
4 + ıσ̂

y
2

2
, ă3 = σ̂

x
0σ̂

z
1

σ̂x
3σ̂

z
6 + ıσ̂

y
3

2
,

(87a)

x
y

z
x
y

z x
y

z
x
y

z

x
y

z

x
y

z

x
y

z

x

y

z

Figure 7: Pair of nodes in binary x-z Υ◦L-tree for L = 3.

in comparison with terminal qubit nodes, cf Eq. (54b)

ă4 = σ̂
x
0σ̂

x
1σ̂

x
2

σ̂x
4 + ıσ̂

y
4

2
, ă5 = σ̂

x
0σ̂

x
1σ̂

z
2

σ̂x
5 + ıσ̂

y
5

2
,

ă6 = σ̂
x
0σ̂

z
1σ̂

x
3

σ̂x
6 + ıσ̂

y
6

2
, ă7 = σ̂

x
0σ̂

x
1σ̂

z
3

σ̂x
7 + ıσ̂

y
7

2
.

(87b)

In such construction for each terminal node j there are
two generators with terms σ̂x

j and σ̂yj coupled by natural
way (87b), but the generator with σ̂z

j is coupled with some
internal node j′ linked with j by path xz · · · z in agreement
with Eq. (87a), see Fig. 7.

Let us consider the structure of expressions for internal
nodes such as Eq. (87a). For some set of nodes (‘chain’)
c = {c1, . . . , cl}, the following concise notation will be
used

ŝzc = σ̂
z
c1
· · · σ̂z

cl
. (88)

Let us also introduce the operators

n̂⊕c =
1 − σ̂z

c1
· · · σ̂z

cl

2
=
1 − ŝzc

2
,

n̂0⊕c
= 1 − n̂⊕c =

1 + ŝzc
2

.

(89)

Such projectors have eigenvalues expressed as XOR of
nodes from set c

n̂⊕c |n1, . . . , nm⟩ = n⊕c |n1, . . . , nm⟩,

n⊕c = nc1 ⊕ · · · ⊕ ncl .
(90)

Specific term from the expressions for internal nodes such
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as Eq. (87a) may be rewritten

â j⊕c =
σ̂x

j ŝ
z
c + iσ̂yj
2

=
σ̂x

j + ıσ̂
y
j

2
·
ŝzc + 1

2
+
σ̂x

j − ıσ̂
y
j

2
·
ŝzc − 1

2

= â j
1 + ŝzc

2
− â†j

1 − ŝzc
2
= â jn̂0⊕c

− â†j n̂⊕c .

(91)

Such a term is an analogue of conditional ladder oper-
ator (53), because â j⊕c is also controlled by few nodes
c1, . . . , cl ∈ c.

The analogue of Eq. (54) can be written for binary x-z
Υ◦L-tree with 2L nodes taking into account the new root
with index zero, see Fig. 7

ă j = r̂ j

σ̂x
j ŝ

z
c( j) + ıσ̂

y
j

2
= r̂ jâ j⊕c( j) ,

j = 0, . . . , 2L−1 − 1, (92a)

ă j = r̂ j

σ̂x
j + ıσ̂

y
j

2
= r̂ jâ j,

j = 2L−1, . . . , 2L − 1, (92b)

where r̂ j is stub operator already introduced earlier, cf
Eq. (92) for L = 3 with Eq. (87). The index c( j) in
Eq. (92) denotes set of nodes c1, . . . , cl attached to given
node j via chain of z links.

The generators of Clifford algebra for Eq. (92) in agree-
ment with Eq. (38) can be written as

ĕ′j = ır̂ jσ̂
x
j ŝ

z
c( j), ĕ

′′
j = ır̂ jσ̂

y
j , j < T , (93a)

ĕ′j = ır̂ jσ̂
x
j , ĕ′′j = ır̂ jσ̂

y
j , j ∈ T . (93b)

where T denotes set of terminal nodes, e.g., j =
2L−1, . . . , 2L − 1 for trees used in the examples above.

The analogues of Eq. (62) for quadratic operators are
also straightforward

n̆ j = ă
†

j ă j =
1 − σ̂z

jŝ
z
c( j)

2
, j < T , (94a)

n̆ j = ă
†

j ă j =
1 − σ̂z

j

2
, j ∈ T . (94b)

The particular example with 2L nodes is interesting due
to direct relation with Bravyi–Kitaev (BK) transformation
discussed below in Section 7.2, but binary x-z tree also can
be used to represent a general tree (g-tree). A node j with
l children c1, . . . , cl of such a g-tree should be mapped
into node j of binary x-z tree with x-link to only one child
node c1 together with chain of nodes c1, . . . , cl connected
by z-links, see Fig. 8. For construction of ladder operators
the last node cl is coupled with node j, cf Eq. (87a).

Such construction has some properties of the formal-
ism used earlier due to certain similarity of Eq. (54) and

x

z
y

x

z

y

x

z
y x

z
y x

z
y

a

Figure 8: Multiple children encoding.

Eq. (62) for binary x-y trees with Eq. (92) and Eq. (94) for
nodes with arbitrary number of children obtained from
binary x-z trees using the correspondence depicted in
Fig. 8.

An analogue of Eq. (65) is

n̆ j =

n j ⊕ nc1 ⊕ · · · ⊕ ncl , j < T ,
n j, j ∈ T ,

(95)

where c1, . . . , cl ∈ c( j) are indices used in ŝzc( j) from
Eq. (94a). It is a chain of z-linked nodes in node j of
initial binary x-z tree and the same indices correspond to
l children of node j in the g-tree obtained by construction
depicted in Fig. 8.

Inverse relation for Eq. (95) is similar to Eq. (79) used
earlier for binary x-y trees and may be written as

n j =
(
n̆ j +

∑
k∈D( j)

n̆k
)

mod 2, (96)

where D( j) is (possibly empty) set of all descendants of
node j for g-tree obtained from binary x-z tree. The set
of nodes D( j) may differs from d( j) for corresponding
binary x-z tree, because z-link to ‘peers’ should not be
included in D( j), e.g., in Fig. 9 below D(3) = {0, 1, 2},
but d(3) = {0, 1, 2, 4, 5, 6}.

7.2 Bravyi–Kitaev transformation

Let us compare the structure of ladder operators (92)
or generators (93) with analogous constructions used in
Bravyi–Kitaev transformation based on Fenwick trees,
see Ref. [9] and some earlier works [27, 28]. The ana-
logues of operators (93) with notation used in Ref. [9]
are

ĉ j = ẐP( j)X̂ jX̂U( j),

d̂ j = ẐC( j)Ŷ jX̂U( j) = ẐP( j)\F( j)Ŷ jX̂U( j)
(97)

where X̂, Ŷ , Ẑ denote either Pauli matrices or theirs prod-
ucts similar to Eq. (88), where U( j), C( j), F( j) and
P( j) = C( j) ∪ F( j) are some set of indices. It can be
rewritten to provide similarity with notations used here

ĕ′j = ıŝ
z
P( j)σ̂

x
j ŝ

x
U( j), ĕ′′j = ıŝ

z
C( j)σ̂

y
j ŝ

x
U( j), (98)
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where an analogue of Eq. (88) is used for given set of
indices S ( j) and Pauli matrix

ŝ
µ
S =

∏
s∈S

σ̂
µ
s . (88′)

Thus, the operator (97) from Ref. [9] corresponds to
Eq. (93) if c( j) is denoted as F( j) and the stub operator is
expressed as

r̂ j = ±ŝ
z
C( j)ŝ

x
U( j). (99)

Let us again consider the example with eight qubits.
The indices of nodes in binary x-z trees should be changed
to conform to the standard numeration in Bravyi–Kitaev
transformation also used in Ref. [9], cf Fig. 7 and Fig. 9

0 1 2 3 4 5 6 7
BK 7 3 1 5 0 2 4 6

(100)

x y z x y z x y z x y z

Figure 9: Representation of tree used in Bravyi–Kitaev trans-
formation as binary x-z tree.

Ladder operators up to numeration (100) coincide with
Eq. (87) for internal nodes

ă1 = σ̂
x
7σ̂

x
3(σ̂x

1σ̂
z
0 + ıσ̂

y
1)/2,

ă3 = σ̂
x
7(σ̂x

3σ̂
z
5σ̂

z
4 + ıσ̂

y
3)/2,

ă5 = σ̂
x
7σ̂

z
3(σ̂x

1σ̂
z
2 + ıσ̂

y
1)/2,

ă7 = (σ̂x
7σ̂

z
3σ̂

z
1σ̂

z
0 + ıσ̂

y
7)/2

(101a)

and external nodes, respectively

ă0 = σ̂
x
7σ̂

x
3σ̂
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ă2 = σ̂
x
7σ̂

x
3σ̂

z
1(σ̂x

2 + ıσ̂
y
2)/2,
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With the new indexing, Eq. (95) may be rewritten for
the eight qubits depicted in Fig. 9

n̆0 = n0, n̆2 = n2, n̆4 = n4, n̆6 = n6,

n̆1 = n1 ⊕ n0, n̆5 = n5 ⊕ n4,

n̆3 = n3 ⊕ n1 ⊕ n2, n̆7 = n7 ⊕ n3 ⊕ n5 ⊕ n6.

(102)

The inverse relations (96) are

n0 = n̆0, n2 = n̆2, n4 = n̆4, n6 = n̆6,

n1 = n̆1 ⊕ n̆0, n5 = n̆5 ⊕ n̆4,

n3 = n̆0 ⊕ n̆1 ⊕ n̆2 ⊕ n̆3,

n7 = n̆0 ⊕ n̆1 ⊕ n̆2 ⊕ n̆3 ⊕ n̆4 ⊕ n̆5 ⊕ n̆6 ⊕ n̆7.

(103)

Let us recollect, what n j corresponds to single qubit
with index j, but n̆ j is ‘BK number’ related with set of
qubits affected by ‘modified BK creation operator’ ă†j .

In such a way, the set of equations (103) is in agreement
with the usual scheme of Bravyi–Kitaev transformation
[10] and it corresponds to an example of Fenwick tree
with eight nodes considered in Ref. [9] taking into account
the correspondence between g-tree and binary x-z tree
discussed in Section 7.1.

8 Conclusion

The construction of Clifford algebras associated with
some kinds of trees is discussed in this work. Formally,
set of generators can be produced by deterministic finite
automaton obtained as the extension of ternary tree by
addition of some formal output nodes. The binary trees
can be formally considered as a reduced case of ternary
tree where at least one child for each node is omitted, see
Fig. 3. In appropriate cases, the trees can also be used for
modeling of quantum state transfer along the edges.

The Spin group can be expressed using exponents with
linear combination of terms quadratic by generators of
Clifford algebra. Such terms correspond to Hamiltoni-
ans in quantum mechanics. The trivial case is a chain
associated with standard (Jordan–Wigner) generators of
Clifford algebra (5). In this case, the quadratic expression
for Hamiltonian of a node is e2k−1e2k and more general
terms e jek represent expressions with Pauli matrices act-
ing on two or more consequent qubit nodes in the tree.

Both for binary and ternary trees the expressions for
generators include sequence of nodes from the root to
some terminal node. Thus, quadratic expressions repre-
sent single node or segment with a sequence between two
nodes. However, the number of formal output nodes of
deterministic finite automaton attached to given qubit is
no = 3 − nc, where nc is the number of children for given
qubit in the tree. Thus, for ternary trees, an internal qubit
node may be missing in such sequence and binary trees
with no > 0 are more preferable for some purposes.

The construction with trees naturally produces odd
number of generators, but any one of them can be ex-
pressed as product of others. Due to this property, any
generator could be dropped, yet a new set with even num-
ber of generators may lack the initial symmetry. Anyway,
even number of generators decomposed in pairs can be
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used for the definition of creation and annihilation (lad-
der) operators (33). Such construction is appropriate for a
general ternary tree, but it looks more natural for reduced
cases such as binary trees or linear chains.

The generators of Clifford algebra e j in some physical
applications can also be treated as creation operators, but
particle and antiparticle become equivalent in this case,
because e2j = 1. The quadratic expressions with gener-
ators are convenient for modeling of state transfer. For
a system with m qubits and Hilbert space with dimen-
sion 2m, the quadratic Hamiltonian produces evolution
described by matrices of rotations in a space with dimen-
sion only 2m due to main property of Spin groups (74).

Section 7 slightly extends the initial scope of this pa-
per about effective modeling and state transfer to show
relations with so-called fermion-to-qubit mapping for ap-
plications in quantum computers. It is demonstrated in
Section 7.1 that a model with general trees often used
for such purposes can be obtained from an alternative
reduction of the ternary tree illustrated in Fig. 8. The
particular example with Bravyi–Kitaev transformation is
explained in Section 7.2.
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[9] V. Havlı́ček, M. Troyer, J. D. Whitfield. Op-
erator locality in the quantum simulation of
fermionic models. Physical Review A 2017;
95(3):032332. arXiv:1701.07072. doi:10.
1103/PhysRevA.95.032332.

[10] S. B. Bravyi, A. Y. Kitaev. Fermionic quantum
computation. Annals of Physics 2002; 298(1):210–
226. arXiv:quant-ph/0003137. doi:10.1006/
aphy.2002.6254.

[11] J. E. Gilbert, M. A. M. Murray. Clifford Alge-
bras and Dirac Operators in Harmonic Analysis.
Vol. 26 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge,
1991. doi:10.1017/cbo9780511611582.

[12] I. R. Porteous. Clifford Algebras and the Classical
Groups. Vol. 50 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cam-
bridge, 1995. doi:10.1017/cbo9780511470912.

[13] A. Y. Vlasov. Clifford algebras and universal
sets of quantum gates. Physical Review A 2001;
63(5):054302. arXiv:quant-ph/0010071. doi:
10.1103/PhysRevA.63.054302.

[14] D. P. DiVincenzo. Two-bit gates are universal for
quantum computation. Physical Review A 1995;
51(2):1015–1022. arXiv:cond-mat/9407022.
doi:10.1103/PhysRevA.51.1015.

[15] L. G. Valiant. Quantum computers that can be sim-
ulated classically in polynomial time. Proceedings
of the 33rd Annual ACM Symposium on Theory
of Computing 2001; pp. 114–123. doi:10.1145/
380752.380785.

[16] B. M. Terhal, D. P. DiVincenzo. Classi-
cal simulation of noninteracting-fermion
quantum circuits. Physical Review A 2002;
65(3):032325. arXiv:quant-ph/0108010.
doi:10.1103/PhysRevA.65.032325.

Quanta | DOI: 10.12743/quanta.v11i1.199 December 2022 | Volume 11 | Issue 1 | Page 113

http://doi.org/10.1007/s11128-018-2036-1
http://doi.org/10.1007/s11128-018-2036-1
http://doi.org/10.1007/bf01331938
http://doi.org/10.1038/s41598-018-38128-8
http://doi.org/10.1038/s41598-018-38128-8
http://doi.org/10.1007/BF01209327
http://doi.org/10.1007/BF01209327
https://www.theorie.physik.uni-muenchen.de/TMP/theses/riedthesis.pdf
https://www.theorie.physik.uni-muenchen.de/TMP/theses/riedthesis.pdf
http://doi.org/10.1088/1367-2630/aac54f
http://doi.org/10.1088/1367-2630/aac54f
http://arxiv.org/abs/1810.02681
http://doi.org/10.1103/PhysRevA.99.022308
http://doi.org/10.1103/PhysRevA.99.022308
http://doi.org/10.22331/q-2020-06-04-276
http://doi.org/10.22331/q-2020-06-04-276
http://arxiv.org/abs/1701.07072
http://doi.org/10.1103/PhysRevA.95.032332
http://doi.org/10.1103/PhysRevA.95.032332
http://arxiv.org/abs/quant-ph/0003137
http://doi.org/10.1006/aphy.2002.6254
http://doi.org/10.1006/aphy.2002.6254
http://doi.org/10.1017/cbo9780511611582
http://doi.org/10.1017/cbo9780511470912
http://arxiv.org/abs/quant-ph/0010071
http://doi.org/10.1103/PhysRevA.63.054302
http://doi.org/10.1103/PhysRevA.63.054302
http://arxiv.org/abs/cond-mat/9407022
http://doi.org/10.1103/PhysRevA.51.1015
http://doi.org/10.1145/380752.380785
http://doi.org/10.1145/380752.380785
http://arxiv.org/abs/quant-ph/0108010
http://doi.org/10.1103/PhysRevA.65.032325
http://dx.doi.org/10.12743/quanta.v11i1.199


[17] D. E. Knuth. The Art of Computer Programming.
3rd Edition. Vol. 1. Addision-Wesley, Reading, Mas-
sachusetts, 1997.

[18] R. Garnier, J. Taylor. Discrete Mathematics:
Proofs, Structures and Applications. 3rd Edition.
CRC Press, Boca Raton, 2009. doi:10.1201/
9781439812815.

[19] J. H. Conway. Regular Algebra and Finite Machines.
Chapman and Hall, London, 1971.

[20] M. Sipser. Introduction to the Theory of Computa-
tion. 3rd Edition. Cengage, Boston, 2012.

[21] F. Wilczek. Majorana returns. Nature Physics 2009;
5(9):614–618. doi:10.1038/nphys1380.

[22] R. Jozsa, A. Miyake. Matchgates and classical simu-
lation of quantum circuits. Proceedings of the Royal
Society A: Mathematical, Physical and Engineer-
ing Sciences 2008; 464(2100):3089–3106. arXiv:
0804.4050. doi:10.1098/rspa.2008.0189.

[23] R. Jozsa, B. Kraus, A. Miyake, J. Watrous. Match-
gate and space-bounded quantum computations are
equivalent. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences
2010; 466(2115):809–830. arXiv:0908.1467.
doi:10.1098/rspa.2009.0433.

[24] D. J. Brod. Efficient classical simulation
of matchgate circuits with generalized in-
puts and measurements. Physical Review A
2016; 93(6):062332. arXiv:1602.03539.
doi:10.1103/PhysRevA.93.062332.

[25] A. Y. Vlasov. Quantum circuits and Spin(3n) groups.
Quantum Information and Computation 2015; 15(3-
4):235–259. arXiv:1311.1666. doi:10.26421/
qic15.3-4-3.

[26] S. Lorenzo, T. J. G. Apollaro, S. Paganelli, G. M.
Palma, F. Plastina. Transfer of arbitrary two-
qubit states via a spin chain. Physical Review A
2015; 91(4):042321. arXiv:1502.02458. doi:
10.1103/PhysRevA.91.042321.

[27] J. T. Seeley, M. J. Richard, P. J. Love. The Bravyi–
Kitaev transformation for quantum computation of
electronic structure. Journal of Chemical Physics
2012; 137(22):224109. arXiv:1208.5986. doi:
10.1063/1.4768229.

[28] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. Mc-
Clean, R. Babbush, P. V. Coveney, F. Mintert, F. Wil-
helm, P. J. Love. The Bravyi–Kitaev transformation:
Properties and applications. International Journal
of Quantum Chemistry 2015; 115(19):1431–1441.
doi:10.1002/qua.24969.

Quanta | DOI: 10.12743/quanta.v11i1.199 December 2022 | Volume 11 | Issue 1 | Page 114

http://doi.org/10.1201/9781439812815
http://doi.org/10.1201/9781439812815
http://doi.org/10.1038/nphys1380
http://arxiv.org/abs/0804.4050
http://arxiv.org/abs/0804.4050
http://doi.org/10.1098/rspa.2008.0189
http://arxiv.org/abs/0908.1467
http://doi.org/10.1098/rspa.2009.0433
http://arxiv.org/abs/1602.03539
http://doi.org/10.1103/PhysRevA.93.062332
http://arxiv.org/abs/1311.1666
http://doi.org/10.26421/qic15.3-4-3
http://doi.org/10.26421/qic15.3-4-3
http://arxiv.org/abs/1502.02458
http://doi.org/10.1103/PhysRevA.91.042321
http://doi.org/10.1103/PhysRevA.91.042321
http://arxiv.org/abs/1208.5986
http://doi.org/10.1063/1.4768229
http://doi.org/10.1063/1.4768229
http://doi.org/10.1002/qua.24969
http://dx.doi.org/10.12743/quanta.v11i1.199

	Introduction
	Preliminaries
	Ternary Trees
	Binary Trees
	Annihilation and creation operators
	Efficient simulation
	General trees
	Alternative encoding of binary trees
	Bravyi–Kitaev transformation

	Conclusion

