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We first show that every operation possesses
an unique dual operation and measures an
unique effect. If a and b are effects and J is

an operation that measures a, we define the sequen-
tial product of a then b relative to J. Properties of
the sequential product are derived and are illustrated
in terms of Lüders and Holevo operations. We next
extend this work to the theory of instruments and
observables. We also define the concept of an instru-
ment (observable) conditioned by another instrument
(observable). Identity, state-constant and repeatable
instruments are considered. Sequential products of
finite observables relative to Lüders and Holevo in-
struments are studied.
Quanta 2022; 11: 15–27.

1 Sequential Products of Effects

Let S be a quantum system described by a complex
Hilbert space H. One of the main points of this arti-
cle is that the sequential product of two observables for
S depends on the instrument I employed to measure the
first observable and is independent of the instrument used
to measure the second. In this way, the measurement of
the first observable influences the measurement of the
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second but not vice versa. As we shall see, the sequential
product is defined in terms of the dual I∗ of I.

We denote the set of bounded linear operators on H by
L(H) and the set of trace-class operators on H by T (H).
For A, B ∈ L(H) we write A ≤ B if ⟨ϕ, Aϕ⟩ ≤ ⟨ϕ, Bϕ⟩ for
all ϕ ∈ H. We say that A ∈ L(H) is positive if A ≥ 0 and
A is an effect if 0 ≤ A ≤ I where 0, I are the zero and
identity operators on H, respectively [1–5]. The set of
effects on H is denoted by E(H). We interpret effects as
measurements that have two possible outcomes, true and
false. If a ∈ E(H), then its complement a′ = I − a is true
if and only if a is false. If a, b ∈ E(H) and a + b ∈ E(H)
we write a ⊥ b and interpret a + b as the statistical sum
of the measurements a and b. Of course, 0 ⊥ a for all a ∈
E(H) and we interpret 0 as the effect that is always false.
Similarly, 1 ⊥ a if and only if a = 0 and 1 is the effect
that is always true. Moreover, b ⊥ a if and only if b ≤ a′.
A map K : E(H) → E(H) is additive if K(a) ⊥ K(b)
whenever a ⊥ b and we have that K(a+b) = K(a)+K(b).
If K is additive, then K preserves order because if a ≤ b,
then there exists a c ∈ E(H) such that a + c = b and we
obtain

K(a) ≤ K(a) + K(c) = K(a + c) = K(b)

If K is additive and K(I) = I, then K is a morphism
[1, 6–8].

A state for S is a positive operator ρ ∈ T (H) such
that tr (ρ) = 1. We denote the set of states by S(H)
and interpret ρ ∈ S(H) as an initial condition for the
system S [1, 6]. We define the probibility that a ∈ E(H)
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is true when S is in the state ρ by Pρ(a) = tr (ρa). It
follows that Pρ(a′) = 1 − Pρ(a) and a ≤ b if and only if
Pρ(a) ≤ Pρ(b) for all ρ ∈ S(H). An operation on H is
a completely positive linear map J : L(H)→ L(H) that
is trace non-increasing for T (H) operators. We denote
the set of operations on H by O(H). It can be shown
[1,2,6,9] that every J ∈ O(H) has a Kraus decomposition
J(A) =

∑
CiAC∗i , A ∈ L(H), where Ci ∈ L(H) satisfy∑

C∗i Ci ≤ I. This condition follows from the fact that for
every A ∈ T (H) with A ≥ 0 we have that

tr
(∑

C∗i CiA
)
=
∑

tr (C∗i CiA) =
∑

tr (CiAC∗i )

= tr
(∑

CiAC∗i
)
≤ tr (A)

holds if and only if
∑

C∗i Ci ≤ I. If an operation pre-
serves the trace, it is called a channel [1, 5, 6, 10]. A
dual operation on H is a completely positive linear map
K : L(H) → L(H) that satisfies K : E(H) → E(H). It
follows that K|E(H) is additive. We denote the set of dual
operations on H by O∗(H).

Theorem 1. If J : L(H) → L(H) is an operation, then
there exists a unique J∗ ∈ O∗(H) such that tr

[
ρJ∗(a)

]
=

tr
[
J(ρ)a

]
for all a ∈ E(H), ρ ∈ S(H). Conversely, if

K ∈ O∗(H), then there exists a unique J ∈ O(H) such that
J∗ = K. Moreover, J is a channel if and only if J∗(I) = I.

Proof. Let J ∈ O(H) with Kraus decomposition J(A) =∑
CiAC∗i where

∑
C∗i Ci ≤ I and define J∗(A) =

∑
C∗i ACi

for all A ∈ L(H). If a ∈ E(H) and ϕ ∈ H, since 0 ≤ a ≤ I,
we have that〈

ϕ, J∗(a)ϕ
〉
=
〈
ϕ,
∑

C∗i aCiϕ
〉

=
∑
⟨Ciϕ, aCiϕ⟩ ≤

∑
⟨Ciϕ,Ciϕ⟩

=
〈
ϕ,
∑

C∗i Ciϕ
〉
≤ ⟨ϕ, ϕ⟩

Moreover, ⟨ϕ, J∗(a)ϕ⟩ ≥ 0 so 0 ≤ J∗(a) ≤ I and we
conclude that J∗(a) ∈ E(H). Since J∗ also has a Kraus
decomposition, it follows that J∗ ∈ O∗(H). The duality
condition holds because

tr
[
ρJ∗(a)

]
= tr
(
ρ
∑

C∗i aCi
)
=
∑

tr (ρC∗i aCi)

=
∑

tr (CiρC∗i a) = tr
[∑

CiρC∗i a
]

= tr
[
J(ρ)a

]
(1)

for all a ∈ E(H), ρ ∈ S(H). To show that J∗ is unique,
suppose K ∈ O∗(H) satisfies tr

[
ρK(a)

]
= tr
[
J(ρ)a

]
for

all a ∈ E(H), ρ ∈ S(H). Then tr
[
ρK(a)

]
= tr
[
ρJ∗(a)

]
for all a ∈ E(H), ρ ∈ S(H) so K = J∗. Conversely, let
K ∈ O∗(H) with Kraus decomposition K(a) =

∑
C∗i aCi.

Since K : E(H) → E(H) and I ∈ E(H) we have that
K(I) ≤ I. Hence, ∑

C∗i Ci = K(I) ≤ I

It follows that the map J(A) =
∑

CiAC∗i is an operation.
As in (1) we have that

tr
[
ρK(a)

]
= tr
[
J(ρ)a

]
= tr
[
ρJ∗(a)

]
We conclude that J∗ = K and as before, J is unique. If
J∗(I) = I, then

tr
[
J(ρ)
]
= tr
[
J(ρ)I

]
= tr
[
ρJ∗(I)

]
= tr (ρ) = 1

for every ρ ∈ S(H) so J is a channel. Conversely, if J is
a channel, then

tr
[
ρJ∗(I)

]
= tr
[
J(ρ)I

]
= tr
[
J(ρ)
]
= 1

so J∗(I) = I. □

In the proof of Theorem 1, we defined J∗(A) =∑
C∗i ACi, where J has Kraus decomposition J(A) =∑
CiAC∗i . The Kraus operators Ci are not unique and

there can be many such operators [2, 5]. Suppose we
have another Kraus decomposition J(A) =

∑
D jAD∗j . By

uniqueness, we conclude that J∗(A) =
∑

D∗jAD j so the
form of the Kraus operators is immaterial. We say that an
operation J measures an effect a if

tr
[
J(ρ)
]
= tr (ρa) = Pρ(a)

for every ρ ∈ S(H). We think of J as an apparatus that
can be employed to measure the effect a [10–13]. Then
tr
[
J(ρ)
]

gives the probability that a is true when the
system S is in the state ρ. The operation J gives more
information than the effect a. If α ∈ T (H) with α > 0 we
define its corresponding state to be α̃ = α/tr (α). After
an operation J is performed, the state ρ is updated to the
state (Jρ)∼ [10–13].

If 0 ≤ λi ≤ 1 with
∑
λi = 1 and ai ∈ E(H), then

it is clear that
∑
λiai ∈ E(H) and if ρi ∈ S(H) we

have that
∑
λiρi ∈ S(H). We conclude that E(H) and

S(H) are closed under convex combinations and hence
form convex sets. In a similar way, if Ji ∈ O(H),
Ki ∈ I

∗(H), then
∑
λiJi ∈ O(H) and

∑
λiKi ∈ O

∗(H)
so O(H) and O∗(H) form convex sets. If J1, J2 ∈ O(H),
we define their sequential product J1 ◦ J2 ∈ O(H) by
J1 ◦ J2(A) = J2 (J1(A)) [10–13]. Physically, J1 ◦ J2 spec-
ifies the operation obtained by first employing the op-
eration J1 and then employing J2. In a similar way, if
K1,K2 ∈ O

∗(H), their sequential product K1◦K2 ∈ O
∗(H)

is K1 ◦ K2(A) = K2 (K1(A)).

Theorem 2. (i) An operation J measures an unique effect
given by Ĵ = J∗(I). (ii) If 0 ≤ λi ≤ 1 with

∑
λi = 1 and

Ji ∈ O(H), then (
∑
λiJi)∗ =

∑
λiJ∗i and (

∑
λiJi)∧ =∑

λi Ĵi. (iii) If we also have 0 ≤ µ j ≤ 1 with
∑
µ j = 1

and K j ∈ O(H) then∑
i

λJi

 ◦
∑

j

µ jK j

 =∑
i, j

λiµ jJi ◦ K j
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and this result also holds if Ji,K j ∈ O
∗(H). (iv) If J,K ∈

O(H) then (J ◦ K)∗ = K∗ ◦ J∗ and (J ◦ K)∧ = J∗(K̂ ).
(v) The following statements are equivalent: (a) J is a
channel, (b) Ĵ = I, (c) J∗(I) = I, (d) (K ◦ J)∧ = K̂ for
all K ∈ O(H).

Proof. (i) Since

tr
[
J(ρ)
]
= tr
[
J(ρ)I

]
= tr
[
ρJ∗(I)

]
for all ρ ∈ S(H), we conclude that J measures J∗(I). For
uniqueness, if J also measures a, then

tr (ρa) = tr
[
J(ρ)
]
= tr
[
ρJ∗(I)

]
for all ρ ∈ S(H) so a = J∗(I).
(ii) Since

tr
[
ρ
(∑

λiJi
)∗

(a)
]
= tr
[(∑

λiJi
)

(ρ)a
]

= tr
[∑

λiJi(ρ)a
]

=
∑

λitr
[
Ji(ρ)a

]
=
∑

λitr
[
ρJ∗i (a)

]
= tr
[
ρ
∑

λiJ∗i (a)
]

for all ρ ∈ S(H), a ∈ E(H), it follows that (
∑
λiJi)∗ =∑

λiJ∗i . We then obtain(∑
λiJi
)∧
=
(∑

λiJi
)∗

(I) =
∑

λiJ∗i (I) =
∑

λi Ĵi

which gives the result.
(iii) For all A ∈ L(H) we obtain∑

i

λiJi

 ◦
∑

j

µ jK j

 (A) =
∑

j

µ jK j

∑
i

λiJi(A)


=
∑
i, j

λiµ jK j (Ji(A))

=
∑
i, j

λiµ jJi ◦ K j(A)

and the result follows. The proof for Ji,K j ∈ O
∗(H) is

similar.
(iv) For all ρ ∈ S(H), a ∈ E(H) we have that

tr
[
ρ(J ◦ K∗)(a)

]
= tr
[
(J ◦ K)(ρ)a

]
= tr
[
K (J(ρ)) a

]
= tr
[
J(ρ)K∗(a)

]
= tr
[
ρJ∗
(
K∗(a)

)]
= tr
[
ρ(K∗ ◦ J∗)(a)

]
Hence, (J ◦ K)∗ = K∗ ◦ J∗. It then follows from (i) that

(J◦K)∧ = (J◦K)∗(I) = (K∗◦J∗)(I) = J∗
(
K∗(I)

)
= J∗(K̂ )

(v) (a) �⇒(b) If J is a channel, then for every ρ ∈ S(H)
we have that

tr (ρI) = 1 = tr
[
J(ρ)I

]
= tr
[
ρJ∗(I)

]
= tr (ρĴ )

Hence, Ĵ = I. (b)⇔(c) This follows from (i). (c)�⇒(d) If
Ĵ = J∗(I) = I, applying (i) and (iv) gives

(K ◦ J)∧ = (K ◦ J)∗(I) = (J∗ ◦ K∗)(I) = K∗
(
J∗(I)
)

= K∗(Ĵ ) = K∗(I) = K̂

(d) �⇒(a) Suppose (d) holds and let K be the identity chan-
nel K(ρ) = ρ for all ρ ∈ S(H). Then K̂ = I so by (d) we
have that

Ĵ = (K ◦ J)∧ = K̂ = I

We then obtain for all ρ ∈ S(H) that

tr
[
J(ρ)
]
= tr
[
J(ρ)I

]
= tr
[
ρJ∗(I)

]
= tr (ρĴ ) = tr (ρ) = 1

Hence, J is a channel. □

The proof of the following result is similar to Theo-
rem 2(ii)

Corollary 3. If J,K ∈ O(H) and J + K ∈ O(H), then
(J + K)∗ = J∗ + K∗ and (J + K)∧ = Ĵ + K̂.

If a, b ∈ E(H) and J ∈ O(H) measures a so that Ĵ = a,
we define the sequential product of a then b relative to J
by a [J] b = J∗(b). We interpret a [J] b as the effect that
results from first measuring a with the operation J and
then measuring b. In this way, the measurement of a can
influence (or interfere with) b, but since we measure b
second, the measurement of b does not influence a. An
important point is that a [J] b depends on J. As we shall
see, there are many operations that measure a so if K̂ = a,
then a [J] b , a [K] b, in general. Moreover, a [J] b does
not depend on an operation that measures b.

Theorem 4. (i) If Ĵ = a, K̂ = b, then a [J] b = (J ◦ K)∧.
(ii) a [J] b ≤ a for all a, b ∈ E(H). (iii) If 0 ≤ λ ≤ 1
and Ĵ = a, then (λa) [λJ] b = λ (a [J] b) = a [J] (λb).
(iv) a [J] I = a for all a ∈ E(H). (v) a [J] b′ = a − J∗(a).
(vi) If Ĵi = ai, 0 ≤ λi ≤ 1 with

∑
λi = 1 and 0 ≤ µ j ≤ 1

with
∑
µ j = 1, then for any bi ∈ E(H) we have that(∑
λiai
) [∑

λiJi
] (∑

µ jb j
)
=
∑
i, j

λiµ jai [Ji] b j

Proof. (i) By Theorem 2(iv) we obtain

a [J] b = J∗(b) = J∗(K̂ ) = (J ◦ K)∧

(ii) This follows from

a [J] b = J∗(b) ≤ J∗(I) = Ĵ = a

(iii) We have that

(λa) [λJ] b = (λJ)∗(b) = λJ∗(b) = λ (a [J] b)
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and

λJ∗(b) = J∗(λb) = a [J] (λb)

(iv) This follows from

a [J] I = J∗(I) = Ĵ = a

(v) We have that

a [J] a′ = a [J] (I − a) = J∗(I − a) = J∗(I) − J∗(a)

= Ĵ − Ĵ(a) = a − J∗(a)

(vi) Applying Theorem 2(ii) we obtain(∑
λiai
) [∑

λiJi
] (∑

µ jb j
)
=
(∑

λiJi
)∗ (∑

µ jb j
)

=
∑

λ jJ∗i
(∑

µ jb j
)

=
∑
i, j

λiµ jJ∗i (b j)

=
∑
i, j

λiµ jai [Ji] b j

□

We end this section with some definitions suggested by
the theory. We say that a, b ∈ E(H) commute relative to a
subset R ⊆ O(H) if there exist operations J,K ∈ R such
that

a [J] b = b [K] a (2)

Of course, (2) is equivalent to J∗(b) = K∗(a), where Ĵ = a
and K̂ = b. In particular, when (2) holds, then a and b
commute relative to {J,K} ⊆ O(H). When R = O(H), we
just say that a and b commute. Since

a [J] 0 = J∗(0) = 0 = 0∗(a) = 0 [0] a

we conclude that any a ∈ E(H) commutes with 0. Simi-
larly,

a [J] I = J∗(I) = a = I∗(a) = I [I] a

So any a ∈ E(H) commutes with I. Suppose a commutes
with b so (2) holds. If 0 ≤ λ ≤ 1, then

a [J] (λb) = λb [λK] a

Hence, a commutes with λb. We do not know if the
following conjecture holds.

Conjecture 1. If a commutes with b and c where b ⊥ c,
then a commutes with b + c.

Let a, b ∈ E(H) and let J,K ∈ O(H) with Ĵ = a, K̂ = a′.
We define the effect b conditioned by the effect a relative
to {J,K} by

(b |J,K| a) = a [J] b + a′ [K] b

We interpret (b |J,K| a) as the effect b conditioned on
whether a is true or false as measured by the operations,
J,K respectively, In terms of probabilities, we have

Pρ (b |J,K| a) = tr
[
ρJ∗(b)

]
+ tr
[
ρK∗(b)

]
= tr
[
J(ρ)b

]
+ tr
[
K(ρ)b

]
= Pρ(a)PJ̃(ρ)(b) + Pρ(a′)PK̃(ρ)(b) (3)

Equation (3) is a type of Bayes’ rule where PJ̃(ρ) is the
probability that b is true given that a is true and PK̃(ρ)(b)
is the probability that b is true given that a is false. We
say that b is not influenced by a relative to {J,K} if b =
(b |J,K| a).

2 Lüders and Holevo Operations

The most important example of an operation is the Lüders
operation La, a ∈ E(H), given by La(A) = a

1
2 Aa

1
2 . Since

tr
[
La(ρ)b

]
= tr (a

1
2 ρa

1
2 b) = tr (ρa

1
2 ba

1
2 ) = tr

[
ρ(La)∗(b)

]
we have that (La)∗(b) = a

1
2 ba

1
2 = La(b) so La is self-

adjoint in the sense that La = (La)∗. Moreover, (La)∧ =
(La)∗(I) = a so La measures a. In fact, La is the unique
Lüders operation that measures a. An effect a is sharp if
a is a projection. We denote the set of Lüders operations
by L.

Theorem 5. (i) (La ◦ J)∧ = a
1
2 Ĵa

1
2 for all J ∈ O(H).

(ii) a [La] b = a
1
2 ba

1
2 = La(b). (iii) (J ◦ La)∧ = J∗(a).

(iv) (La ◦ Lb)∧ = a
1
2 ba

1
2 . (v) a commutes with b relative

to L if and only if ab = ba, that is, a and b commute in
the usual operator sense. (vi) If a is sharp, then b is not
influenced by a relative to

{
La, La′

}
if and only if ab = ba.

Proof. (i) By Theorem 2(iv) we have that

(La ◦ J)∧ = (La)∗(Ĵ ) = a
1
2 Ĵa

1
2

(ii) This follows from

a
[
La] b = (La)∗(b) = a

1
2 ba

1
2 = La(b)

(iii) Applying Theorem 2(iv) we obtain

(J ◦ La)∧ = J∗
[
(La)∧

]
= J∗(a)

(iv) follows from (i).
(v) We have that a commutes with b relative to L if and
only if

a
1
2 ba

1
2 = a

[
La] b = b

[
Lb
]

a = b
1
2 ab

1
2

which holds if and only if ab = ba [8]. (vi) If a is sharp
then a

1
2 = a so b is not influenced by a relative to

{
La, La′

}
if and only if

b = a
[
La] b + a′

[
La′
]

b = aba + a′ba′
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Multiplying on left by a gives ab = aba. Hence, ab =
(ab)∗ = b∗a∗ = ba. Conversely, if ab = ba, then

aba + a′ba′ = ab + a′b = b □

Theorem 5(i) and (iii) show that La◦ J measures a
1
2 Ĵa

1
2

and J◦La measures J∗(a) for all J ∈ O(H). We call a□b =
a [La] b = a

1
2 ba

1
2 the standard sequential product of a and

b [7, 8, 10, 13]. Of course, if J , La then a [J] b , a
1
2 ba

1
2 ,

in general. Theorem 4(vi) shows that in a certain sense, a
sequential product preserves convex combinations. This
does not imply that when 0 ≤ λ ≤ 1 we have

[λa + (1 − λ)b]□c = λa□c + (1 − λ)b□c

which does not hold in general. In fact, we have that

[λa + (1 − λ)b]□c = [λa + (1 − λ)b]
1
2 c [λa + (1 − λ)b]

1
2

On the other hand

λa□c + (1 − λ)b□c = λa
1
2 ca

1
2 + (1 − λ)b

1
2 cb

1
2

For α ∈ S(H), a ∈ E(H), we call H(α,a)(ρ) = tr (ρa)α
the Holevo operation with state α and effect a [14]. The
next theorem shows that the sequential product of any
operation with a Holevo operation is again a Holevo op-
eration. It also shows that Ĥ(α,a) = a for any α ∈ S(H).
This illustrates the fact that an effect can be measured by
many operations. We denote the set of Holevo operations
byH .

Theorem 6. (i) H∗(α,a)(b) = tr (αb)a and Ĥ(α,a) = a for
all α ∈ S(H), a, b ∈ E(H). (ii) H(α,a) ◦ J = H(J̃α,tr (Jα)a)
and J ◦H(α,a) = H(α,J∗(a)). (iii) (H(α,a) ◦ J)∧ = tr [J(α)] a
and (J ◦H(α,a))∧ = J∗(a). (iv) H(β,b) ◦H(α,a) = H(α,tr (βa)b).
(v) a

[
H(α,a)

]
b = [tr (αb)] a. (vi) a commutes with b rel-

ative to H if and only if there exists α, β ∈ S(H) such
that tr (αb)a = tr (βa)b. (vii) a does not influence b rela-
tive to

{
H(α,a),H(β,a′)

}
if and only if b = tr

[
(α − β)b

]
a +

tr (βb)I. In particular, if α = β then b = tr (αb)I.
(viii)

(
b
∣∣∣H(α,a),H(β,a′)

∣∣∣ a) = tr
[
(α − β)b

]
a + tr (βb)I.

Proof. (i) We have that

tr
[
ρH∗(α,a)b

]
= tr
[
H(α,a)(ρ)b

]
= tr
[
tr (ρa)αb

]
= tr (ρa)tr (αb) = tr

[
ρtr (αb)a

]
It follows that H∗(α,a)(b) = tr (αb)a. We conclude that
H(α,a) measures the effect

Ĥ(α,a) = H∗(α,a)(I) = tr (αI)a = a

(ii) For all ρ ∈ S(H) we obtain

(H(α,a) ◦ J)(ρ) = J
[
H(α,a)(ρ)

]
= J
[
tr (ρa)α

]

= tr (ρa)J(α)

= tr
[
ρtr (Jα)a

]
J̃α = H(J̃α,tr (Jα)a)(ρ)

and the result follows. Moreover, for all ρ ∈ S(H) we
obtain

(J ◦ H(α,a))(ρ) = H(α,a)
[
J(ρ)
]
= tr
[
J(ρ)a

]
α

= tr
[
ρJ∗(a)

]
α = H(α,J∗(a))(ρ)

and the result follows.
(iii) These follow from (i) and (ii).
(iv) Applying (i) and (ii) gives

H(β,b) ◦ H(α,a) = H(
α,H∗(β,b)

)(a) = H(α,tr (βa)b)

(v) Applying (i) gives

a
[
H(α,a)

]
b = H∗(α,a)(b) = tr (αb)a

(vi) By (v) we have that a
[
H(α,a)

]
b = tr (αb)a and

b
[
H(β,b)

]
a = tr (βa)b. Hence, a

[
H(α,a)

]
b = b

[
H(β,b)

]
a if

and only if tr (αb)a = tr (βa)b.
(vii) For all α, β ∈ S(H) we have by (v) that

a
[
H(α,a)

]
b+a′

[
H(β,a′)

]
b = H∗(α,a)(b) + H∗(β,a′)(b)

= tr (αb)a + tr (βb)a′

= tr (αb)a + tr (βb)I − tr (βb)a

= tr
[
(α − β)b

]
a + tr (βb)I

The result follows.
(viii) This follows from (vii). □

Theorem 4(iv) shows that a [J] I = a for all a ∈ E(H).
We can use Holevo operations to show that I [J] a , a, in
general. Applying Theorem 6(i) we have that

I
[
H(α,I)

]
a = H∗(α,I)(a) = tr (αa)I , a

in general.

3 Instruments and Observables

We now extend our previous work to the theory of in-
struments and observables. If (ΩI,FI) is a measur-
able space, an instrument on H with outcome space
(ΩI,FI) is an operation-valued measure on FI. That
is, ∆ 7→ I(∆) ∈ O(H) is countably additive relative to a
suitable topology and I(ΩI) = I is a channel [1, 2, 5, 6].
We denote the set of instruments on H by In(H). We in-
terpret an instrument as an apparatus that can be employed
to perform measurements. Then I(∆) is the operation that
results when a measurement of I gives an outcome in
∆. For any ρ ∈ S(H), we call ΦIρ (∆) = tr

[
I(∆)(ρ)

]
the

distribution of I in the state ρ and interpret ΦIρ (∆) as the
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probability that a measurement of I results in an outcome
in ∆ when the system is in the state ρ. Notice that since
I = I(ΩI) is a channel, we have that

ΦIρ (ΩI) = tr
[
I(ρ)
]
= 1

so ΦIρ is a probability measure for every ρ ∈ S(H). If J
is another instrument with outcome space (ΩJ ,FJ ), their
sequential product I ◦ J of I then J is the instrument
with outcome space (ΩI ×ΩJ ,FI × FJ ) that satisfies

(I ◦ J)(∆ × Γ)(ρ) = J(Γ) (I(∆)(ρ))

for all ∆ ∈ FI, Γ ∈ FJ , ρ ∈ S(H). The joint distribution
satisfies

ΦI◦Jρ (∆ × Γ) = tr
[
(I ◦ J)(∆ × Γ)(ρ)

]
= tr
[
J(Γ) (I(∆)) (ρ)

]
We define J conditioned by I to be the instrument (J |
I) with outcome space (ΩJ ,FJ ) given by

(J | I)(Γ)(ρ) = J(Γ)
[
I(ρ)
]
= J(Γ)

[
I(ΩI)(ρ)

]
If I ∈ In(H) we have that I(∆) ∈ O(H) and hence

I(∆)∗ ∈ O∗(H) for all ∆ ∈ FI. We call I∗(∆) = I(∆)∗

a dual instrument. Thus, I∗ is a dual operation-valued
measure on (ΩI,FI) satisfying I∗(∆) : E(H)→ E(H) for
all ∆ ∈ FI and by Theorem 1

I∗(ΩI)(I) = I(I) = I

Moreover, I∗ is the unique dual instrument satisfying

tr
[
ρI∗(∆)(a)

]
= tr
[
I(∆)(ρ)a

]
(4)

for all ρ ∈ S(H), ∆ ∈ FI, a ∈ E(H). We denote the set of
dual instruments by In∗(H).

If (ΩA,FA) is a measurable space, an observable A
on H with outcome space (ΩA,FA) is an effect-valued
measure on FA satisfying A(ΩA) = I [1, 2, 5, 6, 11]. We
denote the set of observables on H by Ob(H). If A ∈
Ob(H), we interpret A(∆) as the effect resulting from A
having an outcome in ∆ ∈ FA when A is measured. The
probability that A results in an outcome in ∆ when the
system is in the state ρ ∈ S(H) is given by ΦA

ρ (∆) =
tr
[
ρA(∆)

]
and ΦA

ρ is the distribution of A in the state ρ.
If I ∈ In(H), the unique observable Î ∈ O(H) measured
by I has outcome space (ΩI,FI) and satisfies [1, 2, 5]

ΦÎρ (∆) = tr
[
ρÎ(∆)

]
= tr
[
I(∆)(ρ)

]
= ΦIρ (∆) (5)

Applying (4) and (5) we obtain

tr
[
ρÎ(∆)

]
= tr
[
ρÎ(∆)I

]
= tr
[
I(∆)(ρ)I

]
= tr
[
ρI∗(∆)(I)

]

for all ρ ∈ S(H). Hence, for all ∆ ∈ FI we have

Î(∆) = I∗(∆)(I) (6)

As with operations, although I ∈ In(H) measures an
unique observable Î, an observable is measured by many
instruments. Moreover, we interpret an instrument I as an
apparatus that can be employed to measure the observable
Î. The next result follows from Theorem 2.

Theorem 7. (i) If 0 ≤ λi ≤ 1 with
∑
λi = 1 and Ii ∈

In(H), then
∑
λiIi ∈ In(H), (

∑
λiIi)∗ =

∑
λiI
∗
i and

(
∑
λiIi)∧ =

∑
λiÎi. (ii) If we also have 0 ≤ µ j ≤ 1 with∑

µ j = 1 and J j ∈ In(H), then(∑
λiIi
)
◦
(∑

µ jJ j
)
=
∑
i, j

λiµ jIi ◦ J j

and a similar result holds where Ii,J j ∈ In∗(H). (iii) If
I,J ∈ In(H), then (I ◦ J)∗ = J∗ ◦ I∗ and (I ◦ J)∧ =
I∗( Ĵ).

Let A, B ∈ Ob(H) and let I ∈ In(H) satisfy Î = A.
We define the sequential product of A then B relative to I
as the observable with outcome space (ΩA×ΩB, FA×FB)
given by A [I] B = I∗(B). This is shorthand notation for

A [I] B(∆ × Γ) = I∗(B)(∆ × Γ) = I∗(∆) (B(Γ))

= I(∆)∗ (B(Γ)) (7)

Notice that A [I] B depends on the instrument I that mea-
sures A, but does not depend on the instrument measuring
B. This is because B is measured second so its measure-
ment cannot influence the A measurement. Applying (4)
and (7), the distribution of A [I] B satisfies

Φ
A[I]B
ρ (∆ × Γ) = tr

[
ρA [I] B(∆ × Γ)

]
= tr
[
ρI(∆)∗ (B(Γ))

]
= tr
[
I(∆)(ρ)B(Γ)

]
(8)

It follows from (8) that

Φ
A[I]B
ρ (∆ ×ΩB) = tr

[
I(∆)(ρ)

]
= ΦA

ρ (∆)

for all ρ ∈ S(H), ∆ ∈ FA. We define B conditioned by
A relative to I as the observable with outcomes space
(ΩB,FB) given by

(B | I | A) (Γ) = I ∗ (B(Γ))

for all Γ ∈ FB. The distribution of (B | I | A) becomes

Φ
(B|I|A)
ρ (Γ) = tr

[
ρI ∗ (B(Γ))

]
= tr
[
I(ρ)B(Γ)

]
= tr
[
I(ΩI)(ρ)B(Γ)

]
= Φ

A[I]B
ρ (ΩI × Γ) (9)

Quanta | DOI: 10.12743/quanta.v11i1.197 August 2022 | Volume 11 | Issue 1 | Page 20

http://dx.doi.org/10.12743/quanta.v11i1.197


Notice that this idea has already been presented in the
quantum formalism when we consider the updated state
after the measurement of A results in an outcome in ∆.
This updated state depends on the instrument I employed
to measure A and is given by

ρ 7→ I(∆)ρ/tr
[
I(∆)(ρ)

]
=
[
I(∆)(ρ)

]∼
Using a different instrument to measure A results in a
different updated state in general. Even though A [I] B
and (B | I | A) do not depend on the instrumentJ used to
measure B, the next result gives an expression involving
J .

Lemma 8. Let I,J ∈ In(H) satisfy Î = A, Ĵ = B.
(i) A [I] B = (I ◦ J)∧. (ii) (B | I | A) = (J | I)∧.

Proof. (i) By Theorem 7(iii) we obtain

(I ◦ J)∧ = I∗( Ĵ ) = I∗(B) = A [I] B

(ii) For all ρ ∈ S(H), Γ ∈ FB we have

tr
[
ρ(J | I)∧(Γ)

]
= tr
[
ρ(J | I)∗(Γ)(I)

]
= tr
[
(J | I)(Γ)(ρ)I

]
= tr
{
J(Γ)

[
I(ρ)
]

I
}

= tr
[
I(ρ)J∗(Γ)(I)

]
= tr
[
I(ρ) Ĵ(Γ)

]
= tr
[
I(ρ)B(Γ)

]
= tr
[
ρI ∗ (B(Γ))

]
Hence,

(J | I)∧(Γ) = I ∗ (B(Γ)) = (B | I | A) (Γ)

for all Γ ∈ FB so (J | I)∧ = (B | I | A). □

If µ is a probability measure on (Ω,F ) we call
Iµ(∆)(ρ) = µ(∆)ρ for ∆ ∈ F an identity instrument with
measure µ. Similarly, we define the identity observable
with measure µ as Aµ(∆) = µ(∆)I for ∆ ∈ F . These
are the simplest types of instruments and observables.
The next theorem illustrates this theory in terms of these
simple types. We first need an elementary lemma.

Lemma 9. If A, B ∈ Ob(H), then A [I] B(ΩA × Γ) =
(B | I | A) (Γ) and A [I] B(∆ ×ΩB) = A(∆).

Proof. For all Γ ∈ FB we obtain

A [I] B(ΩA × Γ) = I(ΩI)∗ (B(Γ))

= I ∗ (B(Γ))

= (B | I | A) (Γ)

Moreover, for all ∆ ∈ FA we obtain

A [I] B(∆ ×ΩB) = I(∆)∗ (B(ΩB)) = I(∆)∗I

= Î(∆) = A(∆) □

Theorem 10. Let Iµ be the identity instrument with mea-
sure µ. (i) I∗µ(∆)(a) = µ(∆)(a) for all ∆ ∈ F , a ∈ E(H)
and Îµ(∆) = µ(∆)I is the identity observable with mea-
sure µ. (ii) If A = Îµ and B = Ĵ , then

A
[
Iµ

]
B(∆ × Γ) = B [J] A(Γ × ∆) = µ(∆)B(Γ)

(iii) If A = Îµ and B = Ĵ , then
(
B | Iµ | A

)
= B and

(A | J | B) = A. (iv) If A = Îµ and B = Îν, then
A
[
Iµ

]
B is the identity observable with measure µ × ν.

(v) If J ∈ In(H), then
(
J | Iµ

)
= J ,

(
Iµ | J

)
(∆)(ρ) =

µ(∆)
[
Ĵ(ρ)

]
, (J | Iµ)∧ = Ĵ and (Iµ | J)∧ = Îµ.

Proof. (i) For all ρ ∈ S(H), a ∈ E(H), ∆ ∈ F we have[
ρI∗µ(∆)(a)

]
= tr
[
Iµ(∆)(ρ)a

]
= tr
[
µ(∆)ρa

]
= tr
[
ρµ(∆)a

]
Hence, I∗µ(∆)(a) = µ(∆)a. It follows that

Îµ(∆) = I∗µ(∆)(I) = µ(∆)I

(ii) Since A
[
Iµ

]
B = I∗µ(B), applying (i) we obtain

A
[
Iµ

]
B(∆ × Γ) = I∗µ(∆) (B(Γ)) = µ(∆)B(Γ)

Since B [J] A = J∗(A) we obtain

B [J] A(Γ × ∆) = J∗(Γ) (A(∆)) = J∗(Γ) (µ(∆)I)

= µ(∆)J∗(Γ)(I) = µ(∆)Ĵ(Γ) = µ(∆)B(Γ)

(iii) Applying (ii) and Lemma 9 gives(
B | Iµ | A

)
(Γ) = A

[
Iµ

]
B(ΩA ×Γ) = µ(ΩI)B(Γ) = B(Γ)

Hence,
(
B | Iµ | A

)
= B. Since Ĵ = B, applying

Lemma 9 gives

(A | J | B) (∆) = B [J] A(ΩB × ∆) = µ(∆)B(ΩB)

= µ(∆)I = A(∆)

Hence, (A | J | B) = A.
(iv) Applying (ii) gives

A
[
Iµ

]
B(∆ × Γ) = µ(∆)B(Γ) = µ(∆)Îν(Γ)

= µ(∆)ν(Γ)I = (µ × ν)(∆ × Γ)I

and the result follows.
(v) For all Γ ∈ FJ , ρ ∈ S(H) we obtain(

J | Iµ

)
(Γ)(ρ) = J(Γ)

[
Iµ(ρ)

]
= J(Γ)(ρ)

Hence,
(
J | Iµ

)
= J . For all ∆ ∈ F , ρ ∈ S(H) we obtain(

Iµ | J
)

(∆)(ρ) = Iµ(∆)
[
J(ρ)

]
= µ(∆)

[
J(ρ)

]
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Moreover, for all Γ ∈ FJ we have(
J | Iµ

)∧
(Γ) = I

∗

µ

(
Ĵ(Γ)

)
= Ĵ(Γ)

Hence,
(
J | Iµ

)∧
= Ĵ . Finally, we have for all ∆ ∈ F

that (
Iµ | J

)∧
(∆) = J ∗

(
Îµ(∆)

)
= J ∗

[
µ(∆)I

]
= µ(∆)J ∗(I) = µ(∆)I = Îµ(∆)

so
(
Iµ | J

)∧
= Îµ. □

We can extend the definition of a Holevo operation to a
Holevo instrument as follows. A Holevo instrument with
state α and observable A has the form H(α,A)(∆)(ρ) =
tr
[
ρA(∆)

]
α for all ∆ ∈ ΩA.

Theorem 11. Let H(α,A) be a Holevo instrument.
(i) H∗(α,A)(∆)(a) = tr (αa)A(∆) for all ∆ ∈ FA, a ∈

E(H) and Ĥ(α,A) = A. (ii) A
[
H(α,A)

]
B(∆ × Γ) =

tr [αB(Γ)] A(∆). (iii)
(
B | H(α,A) | A

)
(Γ) = tr [αB(Γ)] I

which is an identity observable.

Proof. (i) For every ρ ∈ S(H), ∆ ∈ FA, a ∈ E(H), we
obtain

tr
[
ρH∗(α,A)(∆)(a)

]
= tr
[
H(α,A)(∆)(ρ)a

]
= tr
{
tr
[
ρA(∆)

]
αa
}

= tr
[
ρA(∆)

]
tr (αa)

= tr {ρtr (αa)A(∆)}

Hence,H∗(α,A)(∆)(a) = tr (αa)A(∆). Moreover,

Ĥ(α,A)(∆) = H∗(α,A)(∆)I = A(∆)

for all A ∈ FA so Ĥ(α,A) = A.
(ii) Applying (i) we have

A
[
H(α,A)

]
B(∆ × Γ) = H∗(α,A)(B)(∆ × Γ)

= H∗(α,A)(∆) (B(Γ))

= tr [αB(Γ)] A(∆)

(iii) Applying Lemma 9 and (ii) give(
B | H(α,A) | A

)
(Γ) = A

[
H(α,A)

]
B(ΩA × Γ)

= tr [αB(Γ)] A(ΩA)

= tr [αB(Γ)] I □

An instrument I is state constant if I(∆)(ρ1) =
I(∆)(ρ2) for all ρ1, ρ2 ∈ S(H), ∆ ∈ FI. If J ∈ In(H),
α ∈ S(H), we define the α-state constant instrument Jα
by Jα(∆)(ρ) = J(∆)(α) for all ∆ ∈ FJ , ρ ∈ S(H). It
follows that I is state constant if and only if I = Jα for

some J ∈ In(H), α ∈ S(H). For example, the α-state
constant instrument

[
H(β,A)

]
α

is given by[
H(β,A)

]
α

(∆)(ρ) = H(β,A)(∆)(α) = tr [αA(∆)] β

for all ∆ ∈ FA, ρ ∈ S(H). Notice thatJα can be extended
by linearity to all T (H).

Theorem 12. If I,J ∈ In(H), α ∈ S(H), the following
statements hold. (i) J∗α(∆)(a) = tr [J(∆)(α)a] I and
Ĵα is the identity observable Ĵα(∆) = tr [J(∆)(α)] I.
(ii) (I | Jα) = I

J(α), (Jα | I) = Jα. (iii) (I | Jα)∧ is
the identity observable,

(I | Jα)∧ (∆) = tr
[
J(α)Î(∆)

]
I

and (Jα | I)∧ = Ĵα. (iv) If A = Ĵα, then A [Jα] B
is the identity observable with measure µ(∆ × Γ) =
tr [J(∆)(α)B(Γ)] and (B | Jα | A) is the identity ob-
servable with measure tr

[
J(α)B(Γ)

]
. (v)

(
J | H(α,A)

)
=

Jα.

Proof. (i) For all ρ ∈ S(H), ∆ ∈ FJ , a ∈ E(H), we have
that

tr
[
ρJ∗α(∆)(a)

]
= tr
[
Jα(∆)(ρ)(a)

]
= tr [J(∆)(α)a]

= tr {ρtr [J(∆)(α)a] I}

Hence, J∗α(∆) = tr [J(∆)(α)a] I. Moreover,

Ĵα(∆) = J∗α(∆)(I) = tr [J(∆)(α)] I

(ii) For all ∆ ∈ FI, ρ ∈ S(H) we have

(I | Jα)(∆)(ρ) = I(∆)
[
Jα(ρ)

]
= I(∆)

[
J(α)

]
= I

J(α)(∆)(ρ)

Hence, (I | Jα) = I
J(α). Moreover, for all ∆ ∈ FJ ,

ρ ∈ S(H) we obtain

(Jα | I)(∆)(ρ) = Jα(∆)
[
I(ρ)
]
= J(∆)(α) = Jα(∆)(ρ)

Thus, (Jα | I) = Jα.
(iii) For all ∆ ∈ FI we obtain

(I | Jα)∧(∆) = J
∗

α

[
Î(∆)
]
= tr
[
J(α)Î(∆)

]
I

Applying (ii) gives (Jα | I)∧ = Ĵα.
(iv) For ∆ ∈ FA, Γ ∈ FB, applying (i) we obtain

A [Jα] B(∆ × Γ) = J∗α(∆) (B(Γ)) = tr [J(∆)(α)B(Γ)] I

Moreover, for all Γ ∈ FB we obtain by Lemma 9 that

(B | Jα | A) (Γ) = A [Jα] B(ΩA × Γ) = tr
[
J(α)B(Γ)

]
I

(v) For all ∆ ∈ FJ , ρ ∈ S(H) we have(
J | H(α,A)

)
(∆)(ρ) = J(∆)

[
H (α,A)(ρ)

]
= J(∆)(α) = Jα(∆)(ρ)

and the result follows. □

Quanta | DOI: 10.12743/quanta.v11i1.197 August 2022 | Volume 11 | Issue 1 | Page 22

http://dx.doi.org/10.12743/quanta.v11i1.197


An instrument I is repeatable if tr
[
I(∆) (I(∆)ρ)

]
=

tr
[
I(∆)(ρ)

]
for all ∆ ∈ FI, ρ ∈ S(H) [2].

Theorem 13. The following statements are equivalent.
(i) I is repeatable.
(ii) Î(∆) = (I ◦ I)∧(∆ × ∆) for all ∆ ∈ FI.
(iii) (I ◦ I)∧(∆1 × ∆2) = 0 whenever ∆1 ∩ ∆2 = ∅.
(iv) I ◦ I(∆1 × ∆2) = 0 whenever ∆1 ∩ ∆2 = ∅.
(v) (I ◦ I)∧(∆1 × ∆2) = Î(∆1 ∩ ∆2) for all ∆1,∆2 ∈ FI.
(vi) Î [I] Î(∆1 × ∆2) = Î(∆1 ∩ ∆2) for all ∆1,∆2 ∈ F .

Proof. (i)⇔(ii) If I is repeatable, then for all ∆ ∈ FI,

ρ ∈ S(H) we obtain by Lemma 8 that

tr
[
ρÎ(∆)

]
= tr
[
I(∆)(ρ)

]
= tr
[
I(∆) (I(∆)ρ))

]
= tr
[
I(∆)(ρ)Î(∆)

]
= tr
[
ρI∗(∆)

(
Î(∆)
)]

= tr
[
ρ(I ◦ I)∧(∆ × ∆)

]
Hence, Î(∆) = (I ◦ I)∧(∆ × ∆) for all ∆ ∈ FI. This also
implies the converse.
(iii)⇔(ii) Suppose (ii) holds and ∆1 ∩ ∆2 = ∅. Then

Î(∆1) + Î(∆2) = Î(∆1 ∪ ∆2) = (I ◦ I)∧(∆1 ∪ ∆2 × ∆1 ∪ ∆2) = (I ◦ I)∧(∆1 × ∆1 ∪ ∆2 × ∆2 ∪ ∆1 × ∆2 ∪ ∆2 × ∆1)

= (I ◦ I)∧(∆1 × ∆1) + (I ◦ I)∧(∆2 × ∆2) + (I ◦ I)∧(∆1 × ∆2) + (I ◦ I)∧(∆2 × ∆1)

= Î(∆1) + Î(∆2) + (I ◦ I)∧(∆1 × ∆2) + (I ◦ I)∧(∆2 × ∆1)

It follows that (I ◦ I)∧(∆1 × ∆2) = 0. To show the converse, suppose (iii) holds. Denoting the complement of ∆ by
∆′, we obtain

tr
[
I(∆)(ρ)

]
= tr
[
I(∆ ∪ ∆′)(I(∆)ρ)

]
= tr
[(
I(∆) + I(∆′)

)
(I(∆)ρ)

]
= tr
[
I(∆) (I(∆)ρ)

]
+ tr
[
I(∆′) (I(∆)ρ)

]
Applying Lemma 8 gives

tr
[
I(∆′) (I(∆)ρ)

]
= tr
[
I(∆)(ρ)Î(∆′)

]
= tr
[
ρI∗(∆)

(
Î(∆′)

)]
= tr
[
ρ(I ◦ I)∧(∆ × ∆′)

]
= 0

Hence, tr
[
I(∆)(ρ)

]
= tr
[
I(∆) (I(∆)ρ)

]
so (i) and (ii) hold.

(iii)⇔(iv) If J(Γ) = 0 then
tr
[
ρĴ(Γ)

]
= tr
[
J(Γ)(ρ)

]
= 0

so Ĵ(Γ) = 0. Conversely, if Ĵ(Γ) = 0, then tr
[
J(Γ)(ρ)

]
= 0 for all ρ ∈ S(H). Since J(Γ)(ρ) is positive, it follows

that J(Γ)(ρ) = 0 for all ρ so J(Γ) = 0. Replacing J with I ◦ I gives the result.
(iii)⇔(v) Suppose (iii) holds. Since

∆1 × ∆2 = ∆1 ×
[
(∆2 ∩ ∆1) ∪ (∆2 ∩ ∆

′
1)
]
= [∆1 × (∆2 ∩ ∆1)] ∪

[
∆1 × (∆2 ∩ ∆

′
1)
]

and

[∆1 × (∆2 ∩ ∆1)] ∪
[
∆1 × (∆2 ∩ ∆

′
1)
]
= ∆1 ∩ (∆2 ∩ ∆

′
1) = ∅

we have by (iii) that
(I ◦ I)∧

[
∆1 × (∆2 ∩ ∆

′
1)
]
= 0

Since (iii)⇒(ii) we obtain

(I ◦ I)∧(∆1 × ∆2) = (I ◦ I)∧ [∆1 × (∆2 ∩ ∆1)]

= (I ◦ I)∧
[
(∆1 ∩ ∆2) ∪ (∆1 ∩ ∆

′
2) × (∆2 ∩ ∆1)

]
= (I ◦ I)∧

[
(∆1 ∩ ∆2) × (∆1 ∩ ∆2) ∪ (∆1 ∩ ∆

′
2) × (∆1 ∩ ∆2)

]
= (I ◦ I)∧ [(∆1 ∩ ∆2) × (∆1 ∩ ∆2)] = Î(∆1 ∩ ∆2)
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Clearly, (v) implies (iii).
(v)⇔(vi) This follows because by Lemma 8 we have that
Î [I] Î = (I ◦ I)∧. Reversing the implication shows that
(vi) implies (i). Alternatively, since Î [I] Î = (I ◦ I)∧,
letting ∆1 = ∆2 = ∆ we obtain from (v) that

Î(∆) = Î [I] Î(∆ × ∆) = (I ◦ I)∧(∆ × ∆) □

Corollary 14. The following statements are equivalent.
(i) I is repeatable. (ii) I∗(∆)I = I∗(∆) [I∗(∆)I] for all
∆ ∈ FI. (iii) I∗(∆1) [I∗(∆2)I] = 0 whenever ∆1∩∆2 = ∅.
(iv) I∗(∆1) [I∗(∆2)I] = I∗(∆1∩∆2)I for all ∆1,∆2 ∈ FI.

Proof. By Theorem 13(ii), I is repeatable if and only if
for all ∆ ∈ FI we have

I∗(∆)I = Î(∆) = (I ◦ I)∗(∆ × ∆)

= I∗(∆)
[
Î(∆)
]
= I∗

[
I∗(∆)I

]
By Theorem 13(iii), I is repeatable if and only if when-
ever ∆1 ∩ ∆2 = ∅ we have

I∗(∆1)
[
I∗(∆2)I

]
= (I ◦ I)∧(∆1 × ∆2) = 0

By Theorem 13(v), I is repeatable if and only if for all
∆1,∆2 ∈ FI we have

I∗(∆1)
[
I∗(∆2)I

]
= (I ◦ I)∧(∆1 × ∆2) = Î(∆1 ∩ ∆2)

= I∗(∆1 ∩ ∆2)I □

4 Finite Instruments and
Observables

We now consider finite instruments and observables. One
of the main advantages of the finite case is that we can
introduce Lüders instruments [3, 4] which do not seem to
exist in the infinite case. Although finiteness is a strong
assumption, it is general enough to include quantum com-
putation and information theory [2, 5, 15]. For a finite set
Ω = {x1, x2, . . . , xn} we assume that the corresponding σ-
algebra is 2Ω so the outcome space is specified by Ω and
we need not mention the σ-algebra. A finite instrument
with outcome space Ω corresponds to a set

I =
{
Ix1 ,Ix2 , . . . ,Ixn

}
⊆ O(H)

for which I =
n∑

i=1
Ixi is a channel. We then define

I(∆) =
∑

xi∈∆

Ixi for all ∆ ⊆ Ω so ∆ 7→ I(∆) be-

comes an instrument [2, 5, 11, 12]. Similarly, a finite
observable with outcome space Ω corresponds to a set

A =
{
Ax1 , Ax2 , . . . Axn

}
⊆ E(H) for which

n∑
i=1

Axi = I. We

again define A(∆) =
∑

xi∈∆

Axi and ∆ 7→ A(∆) becomes

an observable. As before, an instrument I measures a
unique observable Î that satisfies tr (ρÎxi) = tr

[
Ixi(ρ)

]
,

i = 1, 2, . . . , n, ρ ∈ S(H). Of course, this is equivalent to

tr
[
ρÎ(∆)

]
= tr
[
I(∆)(ρ)

]
for all ∆ ⊆ Ω, ρ ∈ S(H). For conciseness, we use the
notion

I(x) = I ({x}) = Ix

Theorem 15. A finite instrument I is repeatable if and
only if

tr
[
Ix(ρ)

]
= tr
[
Ix (Ix(ρ))

]
for all x ∈ ΩI, ρ ∈ S(H).

Proof. If I is repeatable, then

tr
[
Ix(ρ)

]
= tr
[
I(x)(ρ)

]
= tr
[
I(x) (I(x)(ρ))

]
= tr
[
Ix (Ix(ρ))

]
for all x ∈ ΩI, ρ ∈ S(H). Conversely, suppose
tr
[
Ix(ρ)

]
= tr
[
Ix (Ix(ρ))

]
holds. Since∑

y

tr
[
Iy (Ix(ρ))

]
= tr
[
I (Ix(ρ))

]
= tr
[
Ix(ρ)

]
we conclude that

∑
y,x

tr
[
Iy (Ix(ρ))

]
= 0 so

tr
[
Iy (Ix(ρ))

]
= 0 for all ρ ∈ S(H) and y , x.

We conclude that

tr
[
I(∆) (I(∆)(ρ))

]
= tr


∑
y∈∆

Iy


∑

x∈∆

Ix(ρ)




=
∑
x,y∈∆

tr
[
Iy (Ix(ρ))

]
=
∑
x∈∆

tr
[
Ix (Ix(ρ))

]
=
∑
x∈∆

tr
[
Ix(ρ)

]
= tr
[
I(∆)(ρ)

]
for all ∆ ⊆ ΩI, ρ ∈ S(H). Hence, I is repeatable. □

The instrument I ◦ J and observables A [I] B are de-
termined by their outcomes (I ◦ J)(x,y) = Ix ◦ Jy and
(A [I] B)(x,y) = I

∗
x(By). The next result follows from

Theorem 13.

Corollary 16. The following statements for a finite in-
strument I are equivalent. (i) I is repeatable. (ii) Îx =

(I ◦ I)∧(x,x) for all x ∈ ΩI. (iii) (I ◦ I)∧(x,y) = 0 if x , y.

(iv) (I ◦ I)∧(x,y) = Î ({x} ∩ {y}) for all x, y ∈ ΩI. (v) For
all x, y ∈ ΩI we have(

Î [I] Î
)
(x,y)
= Î ({x} ∩ {y}))
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We now consider a generalization of a Holevo instru-
ment for the finite case. If A = {Ax : x ∈ Ω} is a finite
observable and αx ∈ S(H), x ∈ Ω, then the instrument[

H(α,A)
]

x (ρ) = tr (ρAx)αx

is called a (finite) Holevo instrument with states αx and
observable A. The instrument H(α,A) is also called a
conditional state preparator [2].

Lemma 17. A Holevo instrumentH(α,A) is repeatable if
and only if tr (αxAx) = 1 for all x with Ax , 0.

Proof. For all ρ ∈ S(H), x ∈ Ω, writing I = H(α,A) we
obtain

tr
[
Ix (Ix(ρ))

]
= tr
[
Ix (tr (ρAx)αx)

]
= tr (ρAx)tr [Ix(αx)]

= tr (ρAx)tr (αxAx)

Hence, I is repeatable if and only if

tr
[
Ix (Ix(ρ))

]
= tr
[
Ix(ρ)

]
= tr (ρAx)

which is equivalent to tr (ρAx)tr (αxAx) = tr (ρAx) for all
ρ ∈ S(H), x ∈ Ω. Choosing ρ such that tr (ρAx) , 0 we
conclude that tr (αxAx) = 1 for all x satisfying Ax , 0.

□

In Lemma 17 we can choose αx = |ψx⟩⟨ψx| where
|ψx⟩ is a unit eigenvector for Ax. We now generalize
Theorem 11 for finite Holevo instruments.

Theorem 18. (i) (H∗(α,A))x(a) = tr (αxa)Ax and Ĥ(α,A) =

A so H(α,A) measures A. (ii) If I ∈ In(H) is finite,
then I ◦ H(α,A) is a Holevo instrument with states αy
and observable B(x,y) = I

∗
x(Ay). (iii) If I ∈ In(H)

is finite, then H(α,A) ◦ I is a Holevo instrument with
states Iy(αx)∼ where tr

[
Iy(αx)

]
, 0 and observable

B(x,y) = tr
[
Iy(αx)

]
Ax. (iv) H(β,B) ◦ H(α,A) is a finite

Holevo instrument with states αy and observable C(x,y) =

tr (βxAy)Bx. (v)
(
B | H(α,A) | A

)
y =
∑
x

tr (αxBy)Ax.

Proof. (i) For every ρ ∈ S(H) x ∈ ΩA, a ∈ E(H) we
have

tr
[
ρ(H∗(α,A))x(a)

]
= tr
[
(H(α,A))x(ρ)a

]
= tr
[
tr (ρAx)αxa

]
= tr (ρAx)tr (αxa) = tr

[
ρtr (αxa)Ax

]
Hence, (H∗(α,A))x(a) = tr (αxa)Ax. Moreover,

( Ĥ(α,A))x = tr (H∗(α,A))x(I) = Ax

so Ĥ(α,A) = A.

(ii) For all x ∈ ΩI, y ∈ ΩA, ρ ∈ S(H) we obtain

(I ◦ H(α,A))(x,y)(ρ) = Ix ◦ (H(α,A))y(ρ)

= (H(α,A))y (Ix(ρ))

= tr
[
Ix(ρ)Ay

]
αy = tr

[
ρ
(
I∗x(Ay)

)]
αy

Notice that B(x,y) = I
∗
x(Ay) is an observable because

I∗x(Ay) ∈ E(H) and∑
x,y

B(x,y) =
∑
x,y

I∗x(Ay)

=
∑

x

I∗x

∑
y

Ay


=
∑

x

I ∗x(I) = I(Ω)∗(I) = I

(iii) For all x ∈ ΩA, y ∈ ΩI, ρ ∈ S(H) we obtain

(H(α,A) ◦ I)(x,y)(ρ) = (H(α,A))x ◦ Iy(ρ)

= Iy
[
(H(α,A))x(ρ)

]
= tr (ρAx)Iy(αx)

= tr
[
ρtr
(
Iy(αx)

)
Ax
]
Iy(αx)∼

Notice that B(x,y) = tr
[
Iy(αx)

]
Ax is an observable be-

cause tr
[
Iy(αx)

]
Ax ∈ E(H) and∑

x,y

B(x,y) =
∑
x,y

tr
[
Iy(αx)

]
Ax

=
∑

x

tr

∑
y

Iy(x)

 Ax

=
∑

x

tr
[
I(αx)

]
Ax

=
∑

x

Ax = I

(iv) Applying (ii) we obtain for all x ∈ ΩB, y ∈ ΩA,
ρ ∈ S(H) that

(H(β,B) ◦ H(α,A))(x,y)(ρ) = tr
[
ρ(H∗(β,B))xAy

]
αy

= tr
[
ρtr (βxAy)Bx

]
αy

= tr (βxAy)tr (ρBx)αy

= tr
[
ρtr (βxAy)Bx

]
αy

Notice that C(x,y) = tr (βxAy)Bx is an observable because
tr (βxAy)Bx ∈ E(H) and

∑
x,y

C(x,y) =
∑
x,y

tr (βxAy)Bx =
∑

x

tr

βx

∑
y

Ay

 Bx

=
∑

x

tr (βxI)Bx =
∑

x

Bx = I
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(v) For all y ∈ ΩB, applying (i) we obtain(
B | H(α,A) | A

)
y = H

∗

(α,A)(By) =
∑

x

tr (αxBy)Ax □

If A = {Ax : x ∈ ΩA} is a finite observable, we define
the corresponding Lüders instrument [3, 4, 9] with out-
come space ΩA by

LA
x (ρ) = A

1
2
x ρA

1
2
x

for all x ∈ ΩA. We then have for all ∆ ⊆ ΩA that

LA(∆) =
∑{

A
1
2
x ρA

1
2
x : x ∈ ∆

}
We now generalize Theorem 5 to instruments.

Theorem 19. Let A, B ∈ Ob(H), J ∈ In(H) be finite.

(i) (LA)∗x(a) = A
1
2
x aA

1
2
x and (LA)∧ = A so LA measures A.

(ii) (LA ◦ J)∧(x,y) = A
1
2
x ĴyA

1
2
x for all x ∈ ΩA, y ∈ ΩJ .

(iii) (J ◦ LA)∧(y,x) = J
∗
y (Ax) for all x ∈ ΩX , y ∈ ΩJ .

(iv) (J | LA)∧y =
∑

x∈ΩA

A
1
2
x ĴyA

1
2
x .

(v) (LA | J)∧x = J
∗(Ax).

(vi)
(
A
[
LA
]

B
)
(x,y)
= A

1
2
x ByA

1
2
x .

(vii)
(
B | LA | A

)
y
=
∑

x∈ΩA

A
1
2
x ByA

1
2
x .

Proof. (i) For all x ∈ ΩA, a ∈ E(H), ρ ∈ S(H) we have

tr
[
ρ(LA)∗x(a)

]
= tr
[
LA

x (ρ)a
]

= tr (A
1
2
x ρA

1
2
x a)

= tr
[
ρA

1
2
x aA

1
2
x

]
Hence, (LA)∗x(a) = A

1
2
x aA

1
2
x . Moreover,

(LA)∧x = (LA
x )∗(I) = A

1
2
x IA

1
2
x = Ax

Therefore, (LA)∧ = A so LA measures A.
(ii) By Theorem 5(iii) we obtain

(LA ◦ J)∧(x,y) = (LA)∗x( Ĵy) = A
1
2 ĴyA

1
2
x

(iii) Applying Theorem 5 we have the following

(J ◦ LA)∧(y,x) = J
∗
y ( L̂A

x ) = J∗y (Ax)

(iv) (J | LA)∧y = (L
A
)∗( Ĵy) =

∑
x∈ΩA

A
1
2
x ĴyA

1
2
x

(v) (LA | J)∧x = Ĵ
∗(LA)∧x =

∑
y∈ΩJ

J∗y (Ax).

(vi)
(
A
[
LA
]

B
)
(x,y)
= (LA

x )∗(By) = A
1
2
x ByA

1
2
x .

(vii) (B | LA | A)y =
(
A
[
LA
]

B
)

(ΩA × {y}) =∑
x∈ΩA

A
1
2
x ByA

1
2
x . □

Corollary 20. Let A, B ∈ O(H), J ∈ In(H) be finite and
let ∆ ⊆ ΩA, Γ ⊆ ΩB. Then the following statements hold.
(i) (LA)∗(∆)(a) =

∑
x∈∆

(Ax□a).

(ii) (LA ◦ J)∧(∆ × Γ) =
∑
x∈∆

[
Ax□Ĵ(Γ)

]
.

(iii) (J ◦ LA)∧(Γ × ∆) = J∗(Γ) [A(∆)].

(iv) (J | LA)∧(Γ) =
∑

x∈ΩA

(Ax□Ĵ(Γ))

(v) (LA | J)∧(∆) = J ∗ [A(∆)].
(vi)
(
A
[
LA
]

B
)

(∆ × Γ) =
∑
x∈∆

[Ax□B(Γ)].

(vii) (B | LA | A)(Γ) =
∑

x∈ΩA

[Ax□B(Γ)].

We close by stating that a Lüders instrument is repeat-
able if and only if it is sharp [2].
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