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Irevisit Jordan’s derivation of Einstein’s formula
for energy fluctuations in the black body in ther-
mal equilibrium. This formula is usually taken to

represent the unification of the wave and the particle
aspects of the electromagnetic field since the fluctu-
ations can be shown to be the sum of wave-like and
particle-like contributions. However, in Jordan’s treat-
ment there is no mention of the Planck distribution
and all averages are performed with respect to pure
number states of radiation (mixed states had not yet
been discovered!). The chief reason why Jordan does
reproduce Einstein’s result despite not using thermal
states of radiation is that he focuses on fluctuations in
a small (compared to the whole) volume of the black
body. The state of radiation in a small volume is highly
entangled to the rest of the black body which leads to
the correct fluctuations even though the overall state
might, in fact, be assumed to be pure (i.e. at zero
temperature). I present a simple derivation of the fluc-
tuations formula as an instance of mixed states being
reductions of higher level pure states, a representation
that is affectionately known as “Church of the Higher
Hilbert Space”. According to this view of mixed states,
temperature is nothing but the amount of entangle-
ment between the system and its environment.
Quanta 2022; 11: 1–4.

The purpose of this brief note is to put Jordan’s deriva-
tion of Einstein’s fluctuation formula into the modern
quantum information setting. I will emphasize the role
entanglement plays in this derivation even though the
derivation took place ten years before Schödinger intro-
duced the concept of entanglement and called it the char-
acteristic trait of quantum physics. Although Jordan’s
work is usually taken as the first step towards quantum
field theory and second quantization (which it was), I
will argue that it also hints at the representation of mixed
states we call Church of the Higher Hilbert Space as well
as the modern approach to thermodynamics known as the
“eigenstate thermalisation hypothesis” (ETH). I will not
pretend to be historically accurate. My account is simply
physics-oriented.

We will first present a derivation of the energy fluctua-
tions in the black body in thermal equilibrium (this is how
one would do it now, but Einstein did not have access
to most of this machinery). Black body is mathemati-
cally described as a collection of independent harmonic
oscillators each representing a different mode of radiation.
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Because the modes are independent, in order to calculate
the energy fluctuations, it is enough to do so for just one
mode (which we will take to be synonymous with its
frequency). In that case

∆2
ω := (ℏω)2

[
⟨(a†a)2⟩ − ⟨a†a⟩2

]
(1)

which is straightforward to compute as it is basically the
energy of the mode times the dispersion in the number
of quanta present in that mode. One remembers that the
average is performed with respect to the state

ρω =
1

eβH − 1
(2)

where H = ℏωa†a (we omit the zero point energy). Then

n̄ω := ⟨a†a⟩ =
1

eβℏω − 1
(3)

while (after a short calculation one finds that)

⟨(a†a)2⟩ = 2n̄2
ω + n̄ω . (4)

Therefore, the fluctuations can now be written in a simple
way as

∆2 ∝ n̄2 + n̄ (5)

where we have omitted the subscript ω for simplicity.
If we need the total fluctuations, we just need to per-
form the summation over all the relevant modes. Einstein,
who derived this formula first (albeit without creation and
annihilation operators or mixed states as this was well
before the advent of the quantum mechanics proper [1,2]),
noted that the first term in the dispersion comes from the
wave-like nature of the electromagnetic field compris-
ing the black body while the second term comes from its
particle-like tendencies. The fact that the fluctuations sim-
ply just add up led Einstein to (misleadingly) conclude
that the waves and particles behave independently within
the black body. This later became part of the so called
wave-particle duality paradigm that featured strongly in
Bohr’s philosophy of quantum physics based on comple-
mentarity of the two descriptions.

Shortly after Heisenberg wrote his groundbreaking pa-
per on matrix mechanics, he, together with Born and
Jordan, wrote a paper expanding on the basic rules of
quantization [3]. The last chapter of that paper, known as
‘Dreimännerarbeit’ (in German: the work of three men), is
however exclusively due to Jordan [4]. In that chapter Jor-
dan revisits Einstein’s formula and derives it completely
from the wave picture, albeit with a twist. The waves Jor-
dan considers are collections of harmonic oscillators, but
whose x and p components behave like matrices (just as
Heisenberg had stipulated in his first paper). It is because
the x’s and the p’s of these Harmonic oscillators do not

commute that we obtain the second term of Einstein’s
formula. Otherwise, we would only have the first term
which is a reflection of the wave-like nature of the clas-
sical electromagnetic field [5]. In the modern language
we would say that because the electric and the magnetic
field components obey the standard commutation rela-
tions, the quantum electromagnetic energy fluctuations
are different to their classical counterpart. This was com-
pletely clear to Jordan who emphasized that the result is
a consequence of the quantum kinematics (i.e. the fact
that x and p are operators and not just numbers) and not
quantum dynamics (which was assumed to be the same as
classical). Jordan considered his derivation—the details
of which we will discuss more extensively below—his
most important contribution to physics. However, it was
viewed with suspicion by a number of his contemporaries
(including Born and Heisenberg!) [6]. One problem was
the divergence of the zero point energy (which Jordan
introduced into quantum physics too) if summed up over
all modes. This turns out to be irrelevant. Above we ob-
tained the correct result by looking only at one frequency
(and so there are no divergences), which is why we could
even omit the zero point contribution without any loss
(Jordan restricts himself to a narrow band of frequencies
to the same effect). The second problem with Jordan’s
derivation, however, was that it was done with respect
to number states of radiation (mixed states had not been
invented for another two years). So, why did he claim to
recover Einstein’s expression?

This is the part that I would like to focus on. Obviously
Jordan knew that the energy fluctuations in an energy
eigenstate are identically zero (by definition). But, if the
total energy does not fluctuate, this means that the local
energy (confined to a subvolume of the total volume) will
have to fluctuate. This observation goes to the heart of Jor-
dan’s contribution. In order to illustrate this phenomenon
of local fluctuations when global ones are absent, let us
look at a simple example where we have a single mode
with N quanta exactly. Assuming that it is divided into
two spatial modes the state can be written as:

|Ψ⟩ =

N∑
n=0

cn|n,N − n⟩ . (6)

It is clear that the total number of quanta in |Ψ⟩ is always
N = n+(N−n) although each of the two spatial modes has
an indeterminate number of quanta. Now we assume that
the amplitudes have the form

√
e−an/Z where Z =

∑
e−an

and a > 0 is some constant. In this case, the reduced states
of each spatial mode approximate the thermal state (since
their probabilities conform to the Boltzmann formula)
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with the density matrix given by

ρ =

N∑
n=0

|cn|
2|n⟩⟨n| (7)

which, for large N, converges onto the thermal state. It is
therefore clear that the number dispersion will be

∆2 =

∑
n

|cn|
2n

2 + ∑
n

|cn|
2n

 = n̄2 + n̄ (8)

which is exactly Einstein’s formula. Therefore, when
two spatial modes (volumes) are entangled in an overall
number state N, then each of them individually fluctuates
in the number of particles (and hence in energy) and
the resulting fluctuation has a similar form to the thermal
black body state (I say “similar” because if the amplitudes
are different, the coefficients in the dispersion pertaining
to the linear and quadratic terms may change). This is not
surprising since, when we trace out one of the modes, the
other one ends up in a mixed state. This is an instance
of the general result known as the Church of the higher
Hilbert space, namely the fact that any mixed state in
quantum physics could be viewed arising from a pure
state of a larger system. In quantum statistical mechanics,
one would think of the extension as the environment,
which, by entangling itself to the system, makes the state
of the system mixed.

The number fluctuations in this mixed state will always
have both the linear as well as the quadratic term, i.e.
particles and waves. If we want to attribute a (local)
temperature to this mixed state, then this temperature will
be a function of the amount of entanglement between the
two spatial modes [7] (i.e. inversely proportional to the
constant a if we choose the amplitudes as above).

I mention in passing that one can use the difference
between the sum of the local dispersions of the two modes
and the global dispersion as a measure of entanglement
for pure bipartite states (see e.g. [8] for quantification

of entanglement). Only for product states, which are
by definition not entangled, will this difference vanish.
Otherwise it will always be positive and its value will
depend on how entangled the modes are.

The above argument contains the most important ele-
ments of Jordan’s derivation, and, I will now present a
more detailed calculation, but in the same simple spirit.
It will allow us to reproduce the factor of 2 exactly but
for a very general (pure) state of bosons. The bunching
property of bosons (in this case photons) will be seen to
be responsible for that fact that ⟨(a†)2a2⟩ = 2(n̄)2 (and not
just = (n̄)2), which was the crucial intermediate step lead-
ing to Jordan’s version of Einstein’s formula. So, let us
(together with Jordan) assume that the overall state of the

system is just a product of number states each pertaining
to one frequency:

|Ψ⟩ ∝
∏

p

a†(p)n(p)|0⟩ . (9)

In this state n(p) is the number of photons in the mode p
(which we can think of either as the frequency, or as the
momentum in which case it is related to the frequency via
pc = ℏω). This state is clearly the overall energy (or mo-
mentum) eigenstate and we would now like to calculate
the fluctuations of energy in a very small volume in space
(we will actually compute this at a single point). The
relevant quantity is the bosonic pair correlation function
defined as

⟨Ψ|ψ†(x)ψ†(y)ψ(x)ψ(y)|Ψ⟩ , (10)

where ψ(x) =
∑

p eipxap is the boson annihilation
operator at the point x. In other words, we are computing
the correlations between two spatial points x and y given
that the overall state is |Ψ⟩. This is just the “infinitesimal”
version of the calculation we did above with two spatial
modes in eq. (6). In the Fourier basis, we need to evaluate:

⟨Ψ|a†(p)a†(q)a(q′)a(p′)|Ψ⟩ ≈
√

n(p)n(q)n(p′)n(q′)
[
δ(p − q)δ(p′ − q′) + δ(p − q′)δ(p′ − q)

]
(11)

which clearly contains the direct (p→ q and p′ → q′) as
well as the bosonic exchange (p → q′ and p′ → q) con-
tributions. The final result is the well known expression

⟨Ψ|ψ†(x)ψ†(y)ψ(x)ψ(y)|Ψ⟩ = n2 +

∣∣∣∣∣∫ eip(x−y)n(p) dp
∣∣∣∣∣2 ,

(12)
where n is the number density of photons (uniform

in space for the state we are using). As x → y, the
above expression gives us the term that appears in the
fluctuations (equal to 2n2) and is a clear indication of
the bosonic bunching effect: the probability for bosons
to occupy the same mode increases with the number of
bosons. The dispersion in the state |Ψ⟩ is now simple
to calculate as we have all the relevant terms. It is
straightforward to confirm that it has the Einsteinian
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form discussed before. We can always integrate this
expression to obtain fluctuations in a small finite volume
(rather than at a point x) but this will not change any of
our conclusions.

Just from the fact that he could recover Einstein’s
result, Jordan saw the crucial evidence for the intuition
that the field has to be quantized by upgrading its relevant
components into matrices. The field dynamics (basically
the simple harmonic motion obeyed by each mode) did
not need to be changed. Also, realizing that when this
is done one obtains the bosonic statistics was a great
insight of Jordan’s, leading many people to think of him
as the father of the quantum field theory proper. Above
we saw that the reason for the factor 2 in the formula
⟨(a†a)2⟩ = 2n̄2 + n̄ is actually what is now referred to as
the bosonic bunching effect. Our initial calculation using
a single mode in a thermal state concealed this fact since
we need at least two frequencies to have the exchange
interference effect.

Magically, Jordan was not aware of the phenomenon
of entanglement, or the notion of mixed states (he
worked in the Heisenberg picture which completely
marginalizes states) or indeed the descriptions of fields
in terms of creation and annihilation of particles. But
the fact that he reproduced Einstein’s earlier results
means that Jordan inadvertently discovered the notion of
“mixedness without mixedness” (or “temperature without
temperature” [7]). His derivation simply embodies the
fact that a mixed partial state of a subsystem must arise
from an overall pure state. This is why Jordan was also
the forerunner of the Church of the Higher Hilbert Space
perspective that is so ubiquitous in quantum information.
Of course, the phenomenon of entanglement, while easier
to appreciate in the Schrödinger picture, can also be
phrased in the Heisenberg picture. It then simply reflects
correlations between certain observables that exceed
anything allowed by the laws of classical physics.

Finally, I would like to mention that, because Jordan
worked in the Heisenberg picture, his operators (repre-
senting x and p and thus the energy as well as its fluctu-
ations) all evolved in time. He therefore had to perform
time averages before averaging with respect to number
states (which would not have added anything crucial to
our discussion above). This is akin to the ETH approach
to thermodynamics where one relies on the observation
that “the individual energy eigenstates behave in many
ways like a statistical ensemble” which is underpinned by
the ergodic hypothesis (that time and ensemble averages
coincide) [9]. Jordan’s work can thus also be seen as the
first contribution to the field of ETH.
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