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Asatisfactory resolution of the persistent quan-
tum measurement problem remains stubbornly
unresolved in spite of an overabundance of ef-

forts of many prominent scientists over the decades.
Among others, one key element is considered yet to
be resolved. It comprises of where the probabilities
of the measurement outcome stem from. This article
attempts to provide a plausible answer to this enigma,
thus eventually making progress toward a cogent solu-
tion of the longstanding measurement problem.
Quanta 2021; 10: 65–74.

1 Introduction

The quantum measurement problem is considered as one
of the important unresolved problems in physics although
its origin goes back to the very inception of quantum me-
chanics nearly a century ago. In spite of an abundance
of ideas that have been pursued throughout the decades
resulting in countless articles, absence of a satisfactory
explanation of the processes involved in the quantum to
classical transition, also known as quantum measurement
problem, has tenaciously persisted as a frustrating fea-
ture of quantum physics. This is very possibly because
it involves the most distinctive characteristics of super-
position of states in the quantum arena. A quantum state
that has not yet been measured is in a superposition of
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two or more possible states of definite eigenvalue, the su-
perposition differing qualitatively from any one of those
states. There is no apparent manifestation of superposi-
tion in our familiar daily classical world, where tangible
measurements of the quantum states are accomplished. In
fact when we try to extrapolate the quantum superposition
to classical domain in its entirety, we end up with such
absurdity as the existence of a simultaneously dead and
alive Schrödinger’s cat.

Yet it is an undeniable fact that the simultaneous ex-
istence of both the microscopic quantum world and the
macroscopic classical world is essential for reality in a
rather inseparably intertwined manner. For example, we
humans are large and as such belong to the macroscopic
classical world. However, everyone of us consists of
about 7 × 1027 atoms [1] each containing additional el-
ementary particles, all of which are in the microscopic
quantum domain. Thus, we and everything else around us
inevitably belong simultaneously both to the microscopic
quantum as well as the macroscopic classical domain of
the universe without ever paying much attention to this
momentous reality. Indubitably the quantum realm does
not exist somewhere out there. It is an essential part of
our very existence. This inevitable transition from the
quantum to classical domain taking place every moment
of our life represents the basic premise of the quantum
measurement problem. Significantly in recent times, ex-
perimental evidences conspicuously demonstrate that the
distinctive phenomenon like quantum superposition just
does not entirely disappear but inevitably get masked
by interactions with the plethora of particles manifestly
operational in the classical domain.
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In a recent experiment, using a rather sophisticated pro-
cedure, coherent superposition has been demonstrated in
a macroscopic object containing an estimated ten trillion
atoms. For this purpose, the investigators [2] used a 40
micron long mechanical resonator, just large enough to
be visible with the naked eye. The resonator with a reso-
nant frequency of 6.175 GHz to its first excited phonon
state was cooled to a temperature of merely 25 mK over
absolute zero and put in a very high vacuum to minimize
environmental effects. Under these circumstances, the
resonator was confirmed to be in its ground state. Then
a signal from a coupled qubit possessing the resonance
frequency of 6.175 GHz was injected into the resonator
thereby transferring the superposition feature of the qubit
to the macroscopic object. Superposition of the ground
and the first excited phonon state of the macroscopic res-
onator lasted for the resonator relaxation time of 6.1 ns.

The above demonstration provides strong evidence that
quantum mechanics and its attendant aspect of superposi-
tion applies to macroscopic objects and can be revealed
under appropriate circumstances provided that it was suf-
ficiently decoupled from its environment. Can it apply to
Schrödinger’s cat? The answer in principle should be yes.
But to prove it, the cat will surely perish for other reasons!
Because in order to conduct the experiment, it would be
necessary to remove all sources of environmental distur-
bances exposing the cat to exceptionally low temperatures
and high vacuum that would stop the metabolic processes
for its survival. Further examples of coherence of super-
position in large quantum objects have been presented by
Bhaumik [3].

More recently, the quantum phenomena essentially aris-
ing from quantum fluctuations and superposition has been
demonstrated in an as large an object as a man size 40
kg mirror in a gravitational detector [4]. The authors suc-
cinctly conclude, “It is remarkable that quantum vacuum
fluctuations can influence the motion of these macro-
scopic, human-scale objects, and that the effect is mea-
sured.”

These experiments strongly point toward the fact that
the quantum effects of the microscopic world is indeed
present in the macroscopic domain but substantially
veiled in their existence by the effects of some processes
for the disappearance of the distinct quantum characteris-
tics and the appearance of the classical world where we
deal with an innumerable number of particles. Although
substantial progress has been made, exactly how this is ac-
complished still comprises a subject of an overabundance
of investigations with some intense debates. However,
one particular aspect that is common to all these inves-
tigations is the scarcity of comprehension about where
do the probabilities, rather than a certainty, in quantum
measurement come from.

So far, only some ad hoc propositions such as Born’s
rule [5] have allowed the physicists to predict experimen-
tal results with uncanny accuracy of better than a part
in trillion [6]. But the basic cause of this essential rule
has remained shrouded in a veil of mystery. One of the
prominent investigators in this field, Wojciech Zurek has
attempted to provide a derivation of the Born rule per-
haps to make his program comprehensive [7]. But it has
faced a stiff resistance from some foremost investigators
including one of the giants of physics of our time, Nobel
laureate Steven Weinberg.

In his classic textbook, Lectures on Quantum Mechan-
ics, Weinberg states [8, p. 92], “There seems to be a wide
spread impression that decoherence solves all obstacles to
the class of interpretations of quantum mechanics, which
take seriously the dynamical assumptions of quantum
mechanics as applied to everything, including measure-
ment.” Weinberg goes on to characterize his objection by
asserting that the problem with derivation of the Born’s
rule by Zurek “is clearly circular, because it relies on
the formula for expectation values as matrix elements
of operators, which is itself derived from the Born rule.”
In [8, p. 26] he questions, “If physical states, including
observers and their instruments, evolve deterministically,
where do the probabilities come from? Again in his recent
book [9, p. 131], Weinberg questions, “So if we regard
the whole process of measurement as being governed by
the equations of quantum mechanics, and these equations
are perfectly deterministic, how do probabilities get into
quantum mechanics?”

Maximilian Schlosshauer and Arthur Fine remark [10],
“Certainly Zurek’s approach improves our understanding
of the probabilistic character of quantum theory over that
sort of proposal by at least one quantum leap.” However,
they also criticize Zurek’s derivation of the Born’s rule of
circularity, stating: “We cannot derive probabilities from
a theory that does not already contain some probabilistic
concept; at some stage, we need to “put probabilities in
to get probabilities out.””

In this article, we present a plausible solution of the
mysterious appearance of probabilities from some basic
aspects of the well-established Quantum Field Theory
(QFT) of the Standard Model of particle physics. Our
argument relies on some characteristics of the universal
quantum fields that appear to predetermine the values of
the complex coefficients involved in the inherent superpo-
sition of eigenstates before measurement. Thus, it seems
the century old mystery of quantum to classical transition
could get a necessary boost from some recently revealed
fundamental properties of the universe through the advent
of QFT.
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2 Significant characteristics of
quantum fields

The ultimate ingredient of reality, uncovered by science so
far, consists of fields, which are distinctively non-material
in nature. Some perception of a field can be gained from
our daily experience with the classical field of gravity
that pervades us. The field that we do experience is stable
everywhere in our vicinity but varies from place to place
around its origin, the Earth. However, the ultimate realty
of quantum fields also pervade all space including the
one in which we exist, although we have no perception
of them what so ever. Unlike the stable classical fields,
however, the quantum fields are distinctly different in that
they are incessantly teeming with intrinsic, spontaneous,
and totally random activity all taking place locally in all
space time elements, from the infinitesimal to the infinite
everywhere in this unimaginably vast universe. Even
though, we do not perceive its lively reality, indisputable
evidence of its existence can be found everywhere in
nature with the help of appropriate equipment. An outline
of the salient features of the universal quantum fields are
summarized below:

• Quantum fields are the primary ingredients of reality,
from which all else is formed, fills all space and time.

• Every fragment, each spacetime element of the uni-
verse, has the same basic properties as every other
fragment.

• “The deeper properties of the quantum field theory
[. . .] arise from the need to introduce infinitely many
degrees of freedom, and the possibility that all these
degrees of freedom are excited as quantum mechani-
cal fluctuations.” [11, pp. 338-339].

• Thus the quantum fields are indeed alive with eter-
nal, incessant, innately spontaneous, totally unpre-
dictable activity of the quantum fields locally at each
space time element even in perfect vacuum at abso-
lute zero temperature.

• “Loosely speaking, energy can be borrowed to make
evanescent virtual particles. Each pair passes away
soon after it comes into being, but new pairs are
constantly boiling up, to establish an equilibrium
distribution.” [11, p. 404]

• One of the most notable aspects of the liveliness of
the quantum fields is the fact that the expectation
value or the average value of the quantum fields
has remained immutable almost since the beginning
of time in spite of its unique spontaneous random
activities up to infinite dynamism.

Any reasonable concept of physical reality should then
owe its eventual origin to the fundamental reality of quan-
tum fields and their characteristic attributes. Of particular
interest to us is to explore how the incessant, innately
spontaneous and totally unpredictable activity of the pri-
mary reality of quantum fields comprising the overabun-
dance of quantum fluctuations could foster the probabilis-
tic nature of quantum states. All fundamental particles are
inseparably intertwined in their existence with the quan-
tum fields. Effects of the quantum fluctuations appear to
have been generally underestimated even though matter
would not have certain exceptional properties like the
anomalous g factor [12] and the Lamb shift [13] without
them.

3 Wave function of an electron

The elementary particles like electrons, one of the initial
products of material formation from the abstract but phys-
ical quantum fields, are quanta of the fields. However in
reality, the physical electron state is actually a superposi-
tion of states produced by the interactions with the other
fields of the standard model. But then the most significant
question is, for a nonrelativistic single electron, what are
these states that are superposed and how do they owe
their existence to the interactions with the other fields?
Are these really typical quantum states or just irregular
disturbances in the field?

In order to give a physical depiction of the disturbances
of the fields and quantum fluctuations, quoting from Frank
Wilczek [14, p. 89]: “Here the electromagnetic field gets
modified by its interaction with a spontaneous fluctuation
in the electron field—or, in other words, by its interaction
with a virtual electron-positron pair. [. . .] The virtual pair
is a consequence of spontaneous activity in the electron
field. [...] They lead to complicated, small but very spe-
cific modifications of the force you would calculate from
Maxwell’s equations. Those modifications have been
observed, precisely, in accurate experiments.” Empha-
sizing Wilczek’s critical observation again that in spite
of the precipitous transitory characteristics of the virtual
particles, there is an equilibrium distribution [11, p. 404].

Paraphrasing for further clarification, it turns out that
the innately spontaneous activity of the electron field
disturbs the electromagnetic field around them, and so
electrons spend some of their time as a combination of
two disturbances, one in in the electron field and one in
the electromagnetic field. The disturbance in the electron
field is not an electron particle, and the disturbance in
the photon field is not a photon particle. However, the
combination of the two is just such as to be a nice ripple,
with a well-defined energy and momentum, and with an
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electron’s mass. This continues on and on, with a ripple
in any field disturbing, to a greater or lesser degree, all
of the fields with which it directly or even indirectly has
an interaction. So we ascertain that particles are just not
simple objects, and although we often naively describe
them as simple ripples in a single field, that is far from
true. Only in a universe with no spontaneous activities—
with no interactions among particles at all—are particles
merely ripple in a single field!

Would not it then be cogent to pronounce that the
“states” being superposed here are the irregular distur-
bances of the fields originating from the incessant, in-
nately spontaneous, and totally unpredictable quantum
fluctuations? In fact we know quite explicitly what the
states are out of which the physical electron is built, at
least order by order in perturbation theory. The irregular
disturbances of the fields indeed correspond to virtual par-
ticles. In particular, their respective energy-momentum
does not correspond to the physical mass of a particle.
One says that these particles are off-shell. However, in
the process, the total energy-momentum is exactly con-
served at all times. Because of the self-interaction of the
quantum fields, such an energy-momentum eigenstate of
the field can be expressed as a specific Lorentz covariant
superposition of field shapes of the electron field along
with all the other quantum fields of the Standard Model
of particle physics.

It is particularly important to emphasize again that the
quantum fluctuations are transitory but new ones are con-
stantly boiling up to establish an equilibrium distribution
so stable that their contribution to the screening of the
bare charge provided the measured charge of the electron
to be stable up to nine decimal places [15] (noteworthy,
the elementary charge is no longer a measurable quanti-
tity because it is exactly defined since 20 May 2019 by
the International System of Units [16]) and the electron
g-factor results in a measurement accuracy of better than
a part in a trillion [6].

The Lorentz covariant superposition of fluctuations of
all the quantum fields in the one-particle quantum state
can be conveniently depicted leading to a well behaved
smooth wave packet. A fairly rigorous underpinning of
the wave packet function for a single particle QFT state
in position space for a scalar quantum field has been
provided by Robert Klauber [17]. Since particles of all
quantum field are invariably an admixture of contribu-
tions from essentially all the fields of the Standard Model,
the wave packet function of a single particle of a scalar
quantum field can be considered to be qualitatively repre-
sentative of those of the spinor and vector quantum fields
as well.

Following Klauber, the wave function ψ(x), for an elec-
tron in one dimension, can then be given by the Fourier

( )xψ

x

Figure 1: Plot of Gaussian wave packet function of an electron
portrayed in equation (1) in position space. The amplitudes
represent genuine reality as they correspond to the contribu-
tions from various quantum fields, the verified ultimate reality
uncovered by science so far.

integral

ψ(x) =
1
√

2π

∫ +∞
−∞

ψ̃(k)eıkxdk (1)

where ψ̃(k) is a function that quantifies the amount of
each wave number component k = 2π/λ that gets added
to the combination.

From Fourier analysis, we also know that the spatial
wave function ψ(x) and the wave number function ψ̃(k)
are a Fourier transform pair. Therefore, we can find the
wave number function through the Fourier transform of
ψ(x) as

ψ̃(k) =
1
√

2π

∫ +∞
−∞

ψ(x)e−ıkxdx (2)

Thus the Fourier transform relationship between ψ(x)
and ψ̃(k), where x and k are known as conjugate variables,
can help us determine the frequency or the wave number
content of any spatial wave function. A plot of the wave
function ψ(x) in equation (1) gives us the familiar wave
function of a quantum particle like electron (Fig. 1).

A few unique aspects of this depiction should be noted:

• First of all, the entire wave function as a whole rep-
resents all the requisite properties of the single elec-
tron. Therefore, in measurement, the entire wave
packet should be acquired holistically or nothing at
all. Experimental results demonstrate [18] that the
entire extended wave packet can be reduced to the
position of measurement instantaneously quite possi-
bly because of the entanglement of the wave packet
with the wave function of the quantum vacuum.

• The plot (Fig. 1) is a superposition of amplitudes as a
function of position x. But what do these amplitudes
represent? As we have repeatedly emphasized, these
amplitudes arise from a mixture of different quantum
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fields even for a single quantum of the electron field.
Consequently, they have nothing in common except
energy, since the attributes of energy is the same
irrespective of which quantum field they belong to.
We are aware that these amplitudes do not constitute
charge distribution of an electron as originally pro-
posed by Schrödinger and shown to be incorrect by
Born from his electron scattering experiments. But
then what could these amplitudes mean?

4 Probability amplitudes

Following Einstein’s intuition, it would be cogent to con-
sider that in measurement, a quantum particle would have
the highest probability of being found where the intensity
or the energy density of the quantum particle is the high-
est inside the wave packet. Energy density of a wave is
given by the square of its amplitude. Therefore, to get
the probability density, we have to take the square of the
amplitude of the wave function, which usually involves
a complex quantity. Consequently, the absolute square
amplitude |ψ(x)|2 = ψ∗(x)ψ(x), which is the probability
density function p(x), should represent the probability
density for finding a particle in position space. Thus

p(x) = |ψ(x)|2 (3)

Since the total probability is 1, the integral∫ +∞
−∞

ψ∗(x)ψ(x)dx = 1 (4)

Max Born did something similar in formulating his
famous Born’s rule. Quoting Born from his Nobel Lec-
ture [19]: “Again an idea of Einstein’s gave me the lead.
He had tried to make the duality of particles—light quanta
or photons—and waves comprehensible by interpreting
the square of the optical wave amplitudes as probabil-
ity density for the occurrence of photons. This concept
could at once be carried over to the ψ-function: |ψ(x)|2

ought to represent the probability density for electrons
(or other particles).” Since then it is known as the Born’s
rule. However, Born could not have realized at his time
that the wave function of the electron is derived from
real quantum fields and therefore actually is real and so
are the energy density amplitudes that can be described
as probability amplitude, which consequently are real as
well. It appears to be an erudite guess from Born’s part,
especially judging from the fact that the single particle
wave function was considered a fictitious mathematical
construct at the time and the square of the wave function
was added after submission of the original manuscript
in 1926 [5] without any mention of energy density or

intensity involved with wave functions. It is hard to imag-
ine a fictitious mathematical construct having any energy
density or intensity!

By now it should be evident that a quantum particle
wave packet function is indeed real and far from being
fictitious. Also Born’s rule can be reasonably derived
following Einstein’s intuition and does not need to be a
mere postulate. The fact that the position of the electron
is given by a probability instead of certainty should not
be surprising either. It is inevitable since the wave packet
function is real. The Fourier transform correlations be-
tween conjugate variable pairs of any real wave packet
have powerful consequences since these variables obey
the uncertainty relation

∆x∆k ≥
1
2

(5)

where ∆x and∆k relate to the standard deviations σx and
σk of the wave packet. This is a completely general prop-
erty of a wave packet with a reality of its own and is in
fact inherent in the properties of all wave-like systems.
It becomes important in quantum mechanics because of
the real wave nature of particles having the relationship
p = ℏk, where p is the momentum of the particle. Sub-
stituting this in the general uncertainty relationship of a
wave packet, the intrinsic uncertainty relation in quantum
mechanics becomes

∆x∆p ≥
1
2
ℏ (6)

It is thus evident that a particular fixed value of the posi-
tion x is not compatible with other measurable quantities
like momentum.

However, it is critically important to note that
whichever position x turns up in the measurement pro-
cess, its probability amplitude is predetermined from the
complex interactions of the various quantum fields and
encoded in the wave packet function. Again emphasizing
from our earlier rather elaborate discussions, it should
be aptly highlighted that the wave function is real and
the computable value of the complex amplitudes ψ(x) in
the wave packet function is preordained from the indis-
pensable interactions of the various quantum fields and
their quantum fluctuations involved in the formation of
the electron wave packet function.

For clarification, the wave number k in the argument
of the wave function for a massive particle like electron
obeys the relativistic relation p = ℏk. Therefore, for
electrons k in the exponent should be replaced by p/ℏ.

5 Probability in Hilbert space

It is of immense interest to emphasize again that the am-
plitudes in the wave packet of a particle resulting from
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the contributions of the diverse quantum fields are already
predetermined. Hence the probability distribution of a
quantum observable is already preordained before as well
as after the unitary evolution of the Schrödinger equa-
tion. Can this comprehension be cogently extended to the
observables in the customary Hilbert space formalism?

In Hilbert space, use of Dirac’s abstract algebraic
model of bras and kets, from the bracket notation for
the inner product, proved to be of great computational
value. However, there were serious difficulties in finding
a mathematical justification for using them in observables
that have continuous spectrum as in the wave packet func-
tion of an electron we have been exploring so far. These
difficulties were circumvented by the advent of the rigged
Hilbert space (RHS) in 1960s [20–22]. The RHS is nei-
ther an extension nor an interpretation of the physical
principles of Quantum Mechanics, but is simply a mathe-
matical tool to extract and process the information con-
tained in observables that have both continuous as well
as discrete spectrum. Therefore, in spite of not using the
Dirac’s bras and kets for the single particle, the inferences
derived for the single particle wave packet can still be
reasonably extended to the Hilbert space formalism. Ob-
servables with discrete spectrum and a finite number of
eigenvectors (e.g., spin) do not need the RHS. For such
observables, the Hilbert space is sufficient [22].

The Hilbert space is a square integrable, complex, lin-
ear, abstract space of vectors possessing a positive defi-
nite inner product assured to be a number. The states of
a quantum mechanical system are vectors in a multidi-
mensional Hilbert space containing an orthonormal basis
set of eigenfunctions. The observables are Hermitian op-
erators on that space, and measurements are orthogonal
projections. The quantum wave functions, for example,
the solutions of the Schrödinger equation describing phys-
ical states in wave mechanics are considered as the set of
components ψ(x) of the abstract vector Ψ, the state vec-
tor. However, the state vector does not depend upon any
particular choice of coordinates. The same state vector
can be described in terms of the wave function in position
or momentum state or written as an expansion in wave
functions ψn of definite energy

|Ψ⟩ =
∑

n

ψn|En⟩ (7)

suggesting that every linear combination of vectors in a
Hilbert space is again a vector in the Hilbert space. In
general, the energy eigenstates |En⟩ may not commute
with the position eigenstates |x⟩. The normalized square
moduli |ψn|

2 of the energy complex coefficients are then
interpreted as the probability for the system to be in the
energy state |En⟩ analogous to the single particle wave
function where |ψ(x)|2 is interpreted as the probability

density for the particle to be at |x⟩.
It is worthy to note that the coefficients ψn(t) change

during unitary time evolution but the probability for mea-
suring outcome in a given energy eigenstate does not. The
solution of the time-dependent Schrödinger equation is
given by [23]:

|Ψ(t)⟩ =
∑

n

ψn(0)e−ı
En
ℏ t|En⟩ (8)

where En is the eigenvalue of the corresponding energy
eigenvector |En⟩. From (8), it is seen that for measure-
ments in the energy basis the time dependence of ψn(t)
during unitary evolution drops out of the square modulus
of the wave vector for computing the probability

|ψn(0)|2 e−ı
En
ℏ te+ı

En
ℏ t = |ψn(0)|2 e0 = 1 × |ψn(0)|2 (9)

and the effective coefficient of superposition remains un-
changed. Measurement in any non-commuting basis,
however, leads to quantum interference effects of the
e−ı

En
ℏ t terms [24, pp. 120-123].

Thus, it seems plausible that the gist of the ideas re-
garding the eventual origin of the probabilities from the
incessant spontaneous activities of the ultimate reality of
the quantum fields can be extended to the Hilbert space
formalism. After all, Born’s rule was first derived histor-
ically for the single quantum particle and subsequently
extended to the Hilbert space.

5.1 Projective measurement

Every vector in the Hilbert space, can be expressed in
Dirac’s notation as a linear combination (7) of the energy
basis vectors |En⟩ with complex coefficients ψn. Multi-
plying both sides of (7) by ⟨Em| gives

⟨Em|Ψ⟩ =
∑

n

ψn⟨Em|En⟩ (10)

Since

⟨Em|En⟩ = δmn =

1 if m = n
0 if m , n

(11)

it follows that
ψn = ⟨En|Ψ⟩ (12)

which is the transition amplitude of state |Ψ⟩ to state
|En⟩. The energy basis vectors are then superposition of
quantum states with complex coefficients if viewed in a
different non-commuting basis.

Inserting (12) into (7) gives

|Ψ⟩ =
∑

n

|En⟩⟨En|Ψ⟩ (13)
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Further defining a projection operator P̂n = |En⟩⟨En| trans-
forms (13) into

|Ψ⟩ =
∑

n

P̂n|Ψ⟩ (14)

leading to
∑

n P̂n = Î signifying that the sum of all the
projection operators is unity.

The outer product |ψ⟩⟨ψ| is called the projection op-
erator since it projects an input ket vector |ϕ⟩ into a ray
defined by the ket |ψ⟩ as follows

|ψ⟩⟨ψ| |ϕ⟩ = |ψ⟩⟨ψ|ϕ⟩ (15)

with a probability |⟨ψ|ϕ⟩|2, as the inner product between
two state vectors is a complex number recognized as the
probability amplitude.

This is usually known as projective measurement and
we should notice that it is important for the measurement
of a mixed state consisting of an ensemble of pure states
in a density matrix.

5.2 Operator valued observables

In a quantum system, what can be measured in an experi-
ment are the eigenvalues of various observable physical
quantities like position, momentum, energy, etc. These
observables are represented by linear, self-adjoint Hermi-
tian operators acting on Hilbert space.

Each eigenstate of an observable corresponds to eigen-
vectors |ψi⟩ of the operator Â, and the associated eigen-
value λi corresponds to the value of the observable in that
eigenstate

Â|ψi⟩ = λi|ψi⟩ (16)

For a Hermitian operator Â , the quantum states asso-
ciated with different eigenvalues are orthogonal to one
another

⟨ψi|ψ j⟩ = δi j (17)

The possible results of a measurement are the eigen-
values of the operator, which explains the choice of self-
adjoint operators for all the eigenvalues to be real. The
probability distribution of an observable in a given state
can be found by computing the spectral decomposition of
the corresponding operator. For a Hermitian operator Â
on an n-dimensional Hilbert space, this can be expressed
in terms of its eigenvalues following (16) as

Â =
∑

i

λi|ψi⟩⟨ψi| (18)

If the observable Â, with eigenstates {|ψi⟩} and spec-
trum {λi} is measured on a system described by the state
vector |Ψ⟩, the probability for the measurement to yield
the value λi is given by

p (λi) = |⟨ψi|Ψ⟩|
2 (19)

This again is the famous Born’s rule and we can see that
it can be derived by extending the concepts discussed in
the case of the single particle. After the measurement
the system is in the eigenstate |ψi⟩ corresponding to the
eigenvalue λi found in the measurement, which is called
the reduction of state.

Recalling the discussions of the probability amplitudes
in the one particle wave function, the probability ampli-
tudes of the quantum states involved in superposition in
Hilbert space has likewise been predetermined very pos-
sibly again because of the characteristic ceaseless activity
and mutual interactions of the quantum fields. A quantum
state in superposition generally has non-zero values for
all states in superposition [9]. This is why we assert that
the energy of the states is not on the mass shell. Again,
this could be possible because of the interactions of the
quantum states in superposition with the ceaseless quan-
tum fluctuations just as in the case for the superposed
components making up the composition of the structure
of the non relativistic single electron.

It is of paramount importance to reemphasize that mat-
ter and particularly the elementary particles comprising
them would not have some behavior in the absence of the
special characteristics of the quantum fields listed earlier.
These distinct activities are well recognized in the Lamb
shift, anomalous electron g-factor, etc. Quantum superpo-
sition with definite complex amplitudes can therefore be
also an example of such behavior.

5.3 Stern–Gerlach experiment

The Stern–Gerlach experiment is the most striking illus-
tration of the experimental implementation of quantum
measurements. It is as simple as it is persuasive. The
following Stern–Gerlach experiment carried out using
neutrons, each having a spin 1

2 , reinforces the fact that the
probabilities of the eigenstates in superposition is present
from the beginning, very likely because of the incessant
activities of the quantum fields. The results of a series
of Stern–Gerlach setups in tandem [25] show that the
precise probabilities in superposition are indeed restored
repeatedly following each projective measurement. After
examining the results of these simple experiments, it is
hard not be convinced about our assertion that the coef-
ficients of probabilities are preexistent in superposition
of states and their effect in the measurement of proba-
bility do not change during the unitary evolution of the
superposed system.

For the purpose of presentation clarity, we will as-
sume that before entering the first Stern–Gerlach magnet
(Fig. 2), the direction of the neutron spin magnetic mo-
ment is in a definite superposed state of two states referred
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Figure 2: Serial Stern–Gerlach experiment in which neutrons are fired from a source into the non-homogeneous magnetic fields
of three sequential Stern–Gerlach magnets oriented along the z-axis, the x-axis and the z-axis, respectively.

to as spin-up and spin-down

|Ψ0⟩ = α| ↑z⟩ + β| ↓z⟩ (20)

with unknown complex coefficients α and β that are con-
strained by |α|2 = |β|2 = 1

2 .
The superposed state (20) reduces (or collapses) as

soon as the neutron enters the magnets of the analyzer to
just one spin-z direction by immediate momentum and
energy transfer with the magnet, rather than by subse-
quent determination at the screen [26]. After exiting the
magnet aligned in the z direction, the trajectory of the
neutron spin that can take only two equal but opposite
values, will be deflected in either the z+ or z− directions.
If we denote these states by | ↑z⟩ and | ↓z⟩ respectively,
we could say that the initial state performs one out of two
equally probable quantum jumps|Ψ0⟩ → | ↑z⟩ with p = 1

2

|Ψ0⟩ → | ↓z⟩ with p = 1
2

(21)

When the beam of neutrons hits a detector screen, two
spatially separated spots will appear corresponding to the
two distinct trajectories. Each of the two spots would
show equal number of neutrons following |α|2 = |β|2 = 1

2 .
If we now choose to send only the | ↑z⟩ state through sec-
ond Stern–Gerlach magnet aligned in the z direction, all

the neutrons will be found, consistent with its preparation,
in the upper region only.

However, if the state | ↑z⟩ =
1√
2

(| ↑x⟩ + | ↓x⟩) faces
Stern–Gerlach magnet aligned along the noncommuting
orthogonal x-axis, any previous information about | ↑z⟩

will be completely destroyed and the direction of the spin
magnetic moment will no longer be in an eigenstate of σ̂z

due to occurrence of one out of two equally probable
quantum jumps| ↑z⟩ → | ↑x⟩ with p = 1

2

| ↑z⟩ → | ↓x⟩ with p = 1
2

(22)

Therefore, if only the z+ neutrons are passed through a
second Stern–Gerlach magnet, which measures the neu-
tron’s x-spins, the neutrons are deflected either right or
left, labeled x+ and x−, and the number of neutrons with
| ↑x⟩ and | ↓x⟩ spin is split even as expected.

Subsequently, if we pass only the | ↑x⟩ neutrons
through a third Stern–Gerlach magnet oriented along
the orthogonal z-direction, we observe that their previ-
ous z-spin value has been reset, and they are again split
evenly between z+ and z−. This is despite the fact that
we selected only the z+ neutrons from the first Stern–
Gerlach magnet. When the second one is measured, it
resets the state of the first one. Thus, there is another clear
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indication that the complex coefficients of superposition
are predetermined, again very possibly by the quantum
fluctuations. We can hence infer that the ceaseless quan-
tum fluctuations as well as the mutual interactions of the
quantum fields preordain the probability of detection of a
quantum state.

In a recent investigation [27], by performing an inge-
nious experiment involving superposition of three eigen-
states of a state vector given by

|Ψ⟩ = α0|0⟩ + α1|1⟩ + α2|2⟩ (23)

it was strikingly demonstrated that the complex coeffi-
cient α0 governing the probability of the particular quan-
tum state |0⟩ in a superposition of three states can be
measured without affecting the superposition of the two
other remaining states in superposition. This further rein-
forces the fact that the coefficients of superposition that
determines the probability outcome of measurement are
predetermined.

6 Conclusion

History of the development of quantum mechanics is re-
plete with a notable trend. Because of the sheer novelty
of the subject so remarkably different from the estab-
lished classical physics, the pioneers of the development
of quantum physics utilized a procedure quite frequently
with notable success. Due to a thorough lack of experi-
ence with the precepts of the newly emerging subject of
quantum mechanics, an empirical model was fashioned
first to accommodate the observed information. The expe-
riential model was then amended to accommodate a more
realistic version from a deeper understanding gained from
subsequent revelations. This successful procedure started
almost from the beginning with the proposal of a quantum
by Max Planck.

Out of sheer frustration of not being able to match
the characteristics of blackbody radiation to his equation,
Planck introduced the indivisible radiation quantum be-
lieving it was just a necessary mathematical oddity with-
out having any reality whatsoever. Five years later, Ein-
stein persuasively demonstrated the reality of the quantum
from the results of photo-electric effect. Citing another
example, Neils Bohr crafted the first atomic model with
discrete electron orbits merely to fit the observed spectral
data. With the proposal and subsequent verification of
matter wave, Schrödinger demonstrated Bohr’s discrete
atomic orbits to be real standing wave patterns of matter
wave and the list continues.

A similar situation presented itself with the fabrication
of the wave packet function to accommodate the observed
wave particle duality. It has essentially been considered

to be a rather fictitious mathematical construct giving
the probability density amplitude following Max Born’s
educated guess. From our current deeper understanding
based on contemporary knowledge of the primary real-
ity of the quantum fields and their incessant, innately
spontaneous, totally unpredictable activities identified
as quantum fluctuations, we now realize that the wave
packet function for a single nonrelativistic electron is
in fact real. The wave function represents among oth-
ers, real energy density amplitudes of the electron and
consequently the probability density amplitude following
Einstein’s intuition. Since the amplitudes of the wave
function in position space are computable, the probability
of the electron at a particular position is predetermined as
a distinct result of the specific activities of the quantum
fields. This phenomenon can be cogently extended to the
superposition of quantum states in Hilbert space.

We, therefore believe that a plausible answer has now
been provided to the question, where do the probabilities
in the measurement come from, thus removing one of
the hurdles in resolving the century old measurement
problem.
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