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Understanding better the dynamics and steady
states of systems strongly coupled to thermal
baths is a great theoretical challenge with

promising applications in several fields of quantum
technologies. Among several strategies to gain ac-
cess to the steady state, one consists in obtaining ap-
proximate expressions of the mean force Gibbs state,
the reduced state of the global system-bath thermal
state, largely credited to be the steady state. Here,
we present analytical expressions of corrective terms
to the ultrastrong coupling limit of the mean force
Gibbs state, which has been recently derived. We
find that the first order term precisely coincides with
the first order correction obtained from a dynamical
approach—master equation in the strong-decoherence
regime. This strengthens the identification of the re-
duced steady state with the mean force Gibbs state.
Additionally, we also compare our expressions with an-
other recent result obtained from a high temperature
expansion of the mean force Gibbs state. We observe
numerically a good agreement for ultra strong cou-
pling as well as for high temperatures. This confirms
the validity of all these results. In particular, we show
that, in term of coherences, all three results allow one
to sketch the transition from ultrastrong coupling to
weak coupling.
Quanta 2022; 11: 53–71.

1 Introduction

The dynamics of quantum systems strongly coupled to
thermal baths have recently received a lot of interest fu-
elled by hopes of understanding or even discovering new
phenomena in quantum transport [1–8], quantum thermo-
dynamics [9–15], quantum sensing [16–18], as well as
understanding better the underlying physics of some es-
sential biological functions [19–22]. In most of these ap-
plications, to know the steady state of the system strongly
coupled to the bath is often essential and sufficient. Such
steady states greatly depart from usual equilibrium steady
states [23–26]. While the properties of the most gen-
eral open quantum evolutions have been known for long
time thanks to the seminal paper by Sudarshan, Mathews
and Rau [27], their precise time evolutions and steady
states are still a challenge of the theory of open quantum
system [28].

To obtain some information about strongly coupled
steady states, several strategies have been developed, in-
cluding embedding techniques like reaction coordinate
[10, 23, 29, 30] and pseudo-mode [31–34], or numerical
techniques (Hierarchical Equation of Motion) [22,35,36].
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One alternative strategy consists in focusing directly on
the steady state without going through the description of
the whole dynamics. In this perspective, the global steady
state of the system and bath is expected to be the global
system-bath thermal state at the bath temperature [37–43].
The steady state of the system is then given by tracing
out the bath, which is often referred to as the mean force
Gibbs state [25, 43, 44]. Such partial trace is usually
very challenging, but can be done at least approximately
assuming for instance a weak coupling [24, 25, 40, 45].
Another interesting regime, and potentially containing
more novelty, is the ultrastrong coupling regime, when
the strength of the coupling is larger than the system’s
energy scale. However, only few papers considered such
situations. In [25], Cresser and Anders provide the ex-
plicit expression of the mean force Gibbs state in the limit
of infinite coupling. In particular, they show that it is close
to the form of the steady state obtained in [46, 47] using
arguments from eisenselection [48], although there are
also some slight differences. Despite being an interesting
result, it would be welcome to have also information on
how the transition from the weak coupling limit to the ul-
trastrong coupling limit happens, as well as on the steady
state in intermediate regimes which are experimentally
more accessible.

In this perspective, introducing a technique inspired
from the displaced oscillator picture [49,50] for diagonal-
ization of the quantum Rabi model as well as reminiscent
of the polaron transformation [51, 52], we recover the
infinite coupling limit of [25] and go beyond by provid-
ing first order corrections. In the regime of high bath
temperature or low bath frequency, we derive a very sim-
ple approximate expression. We compare our results
to two very recent derivations. The first one [44] was
obtained from a master equation in the so-called strong-
decoherence regime, a generalization of the ultra-strong
coupling regime, and actually coincides with the first or-
der expansion derived here. This confirms that a system
interacting with a thermal bath does converge, at least up
to first order, to the mean force Gibbs state even in the
ultra-strong coupling regime. The second recent deriva-
tion [53] consists in a high temperature expansion of the
mean force Gibbs state, a generalization of a derivation
introduced in [54]. The comparison with this result is es-
sentially numeric, and we find an overall good agreement
in the expected regime of validity.

Additionally, we show that the provided corrective
terms allow to sketch the transition from the ultrastrong
coupling limit to the weak coupling limit. Finally, we
provide some higher order corrections in Section 7.3.

2 Mean force Gibbs state

We consider the following total Hamiltonian

HS B = HS + HB + λHI , (1)

where HB :=
∑

k ωka†kak is the bath Hamiltonian com-
posed of the bosonic creation and annihilation operators
a†k and ak, λ is a dimensionless parameter representing
the strength of the system-bath coupling, HI := AB is the
system-bath coupling term, and B :=

∑
k gk(ak +a†k) is the

usual coupling bath operator. As in the quantum Brown-
ian motion [28], there is an extra term λ2QA2 appearing
during the derivation of the solution which corresponds
to the renormalization of the system’s energies due to the
interaction with the bath. This is also taken into account
explicitly in [25]. The quantity Q, the “re-organization
energy” [25,55], is defined as Q :=

∫ ∞
0 dωJ(ω)/ω, where

J(ω) is the bath spectral density, J(ω) =
∑

k g
2
kδ(ω − ωk).

Such extra term is often added initially, “by hand”, so
that it cancels out later on during the calculation when the
renormalization takes place. Following this procedure,
we add the extra term λ2QA2 so that the total Hamiltonian
is now

HS B := HS + λ
2QA2 + λAB + HB. (2)

Note the difference of notation between the “natural”
HamiltonianHS B (1) and the renormalized Hamiltonian
HS B (2). As a matter of completeness, we also mention
in Section 7.5 the derivation starting from the “natural”
Hamiltonian (1), which leads to renormalized final ener-
gies (or pseudo-energies). This shows in particular that
both derivations are equivalent, as expected, but that the
renormalization has to take place at some stage, either
initially or finally.

As mentioned in the introduction, the global steady
state of the system and bath is expected to be the global
thermal state (assuming [HS , A] , 0) [37–43]

ρth
S B := Z−1

S Be−βHS B , (3)

where ZS B := TrS B
(
e−βHS B

)
is the partition function.

Then, the corresponding reduced steady state is

ρss
S := Z−1

S BTrB[e−βHS B], (4)

which is called mean force Gibbs state [25, 43, 44]. We
are going to approximate this state in the regime of ultra-
strong coupling, when λ becomes larger than the energy
scale of HS .

3 General derivation

We first split HS B in two, HS on one hand, and λ2QA2 +

λAB + HB on the other hand, and take it out of the expo-
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nential using the usual identities [56]. It leads to

e−βHS B = e−β(HB+λAB+λ2QA2)e−T
∫ β

0 duH̃S (u), (5)

with T representing the “β-ordering operator”, acting on
inverse temperatures in the same way as the usual time
ordering operator acts on exponential time integrals, and

H̃S (u) := eu(HB+λAB+λ2QA2)HS e−u(HB+λAB+λ2QA2). (6)

Now, by noticing that HB + λAB + λ2QA2 =∑
k ωkDkb†kbkD

†

k , whereDk := e−
λgk
ωk

(b†k−bk)A is a displace-
ment operator by an “amount” λgkA/ωk acting on the
mode k, we can re-write HB+λAB+λ2QA2 as a “mixture
of displaced baths”. To see that, we denote by al and
|al⟩ the eigenvalues (assumed to be non-degenerate for
simplicity) and corresponding eigenvectors of the observ-

able A, and byDk,l := e−
λgk
ωk

(b†k−bk)al the displacement op-
erator by the quantity λgkal/ωk acting only on the mode k.
Then, we have

HB + λAB + λ2QA2 =
∑

k

ωkDkb†kbkD
†

k

=
∑

k

ωk

∑
l

|al⟩⟨al|Dkb†kbkD
†

k

=
∑

k

ωk

∑
l

|al⟩⟨al|Dk,lb
†

kbkD
†

k,l

=
∑

l

|al⟩⟨al|HB,l, (7)

where we defined the “displaced bath” HB,l :=∑
k ωkDk,lb

†

kbkD
†

k,l = HB + λalB + λ2a2
l Q, reminiscent

of the displaced oscillator picture [49,50]. From there we
obtain,

eu(HB+λAB+λ2QA2) = eu
∑

l |al⟩⟨al |HB,l

=
∑

l

|al⟩⟨al|euHB,l , (8)

so that

H̃S (u) =
∑
l,l′
|al⟩⟨al|euHB,l HS |al′⟩⟨al′ |e−uHB,l′

= Hpop
S + H̃coh

S (u), (9)

where Hpop
S :=

∑
l hl|al⟩⟨al| and H̃coh

S (u) :=∑
l,l′ hl,l′ |al⟩⟨al′ |euHB,le−uHB,l′ , defining hl := ⟨al|HS |al⟩,

and hl,l′ := ⟨al|HS |al′⟩.

Taking out Hpop
S from the exponential e−T

∫ β
0 duH̃S (u),

we obtain,

e−T
∫ β

0 duH̃S (u) = e−βH
pop
S e−T

∫ β
0 du

≈

Hcoh
S (u), (10)

with

≈

Hcoh
S (u) := euHpop

S H̃coh
S (u)e−uHpop

S

=
∑
l,l′

hl,l′euωl,l′ |al⟩⟨al′ |euHB,le−uHB,l′ , (11)

defining ωl,l′ := hl − hl′ . Combining the identities (5), (8)
and (10), we arrive at

ρth
S B = Z−1

S B

∑
l

|al⟩⟨al|e−βHB,le−βH
pop
S e−T

∫ β
0 du

≈

Hcoh
S (u)

= Z−1
S B

∑
l

e−βhl |al⟩⟨al|e−βHB,le−T
∫ β

0 du
≈

Hcoh
S (u).

(12)

This leads to the following expression for the mean force
Gibbs state,

ρss
S = Z−1

S B

∑
l

e−βhl |al⟩⟨al|TrB

[
e−βHB,le−T

∫ β
0 du

≈

Hcoh
S (u)

]
.

(13)

The toughest part is, as expected,

TrB

[
e−βHB,le−T

∫ β
0 du

≈

Hcoh
S (u)

]
=

∞∑
n=0

(−1)n
∫ β

0
du1

∫ u1

0
du2...

∫ un−1

0
dunTrB

[
e−βHB,l

≈

Hcoh
S (u1)

≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
.

(14)

In the following, when we mention “first order term” or
“higher order terms”, we refer to the terms appearing in
the above expansion (13). So far, we made no approxima-
tion, making (13) an exact expression. Since this problem
is not exactly solvable, we have to make some approxi-
mations in order to reach an explicit form. Before that,

let us see how one can recover the infinite coupling limit.

3.1 Recovering the infinite coupling limit

From expression (13), it might not be obvious how one
recovers the infinite coupling limit. It actually comes
from the terms

≈

Hcoh
S (u) which contain overlaps between
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displaced baths, euHB,le−uHB,l′ . The coupling strength be-
tween S and each mode of the bath is given by λgk. Thus,
when λ goes to infinity, the displaced baths HB,l and HB,l′

tend to be displaced infinitely far apart from each other
(for l , l′). Consequently, the overlap and the expec-
tation value TrB[e−βHB,leuHB,l′ e−uHB,l′′ ] tends to zero for
increasing coupling strength.

Extending this reasoning to higher order terms, we see
that all terms TrB

[
e−βHB,l

≈

Hcoh
S (u1)

≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
contain multiple overlaps of different displaced baths, and
therefore tends to zero as the coupling strength increases.
In Section 7.3, we show numerically (for a two-level
systems) that the higher order terms tend to zero as the
coupling strength increases. Thus, in the infinite coupling
limit, only the first term of the sum in (13) is different
from zero. It leads to

ρss,∞
S = Z−1

S B

∑
l

e−βhl |al⟩⟨al|TrB
[
e−βHB,l

]
= (Zss

S )−1
∑

l

e−βhl |al⟩⟨al|, (15)

where Zss
S := ZS B

ZB
and TrB

[
e−βHB,l

]
= TrB

[
e−βHB

]
:= ZB is

the partition function of the uncoupled bath. Note that
since ρss,∞

S is a normalized state, we also have the identity
Zss

S =
∑

l e−βhl . The above expression (15) is exactly equal
to the one derived in [25], and recently shown to coincide
with the steady state in the ultrastrong coupling limit [44].

3.2 First approximation

As seen in the previous section, the term
≈

Hcoh
S (u)

contains overlaps of displaced baths, so that terms
TrB

[
e−βHB,l

≈

Hcoh
S (u1)

≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
of increasing or-

der contain overlaps of increasing order and are therefore
significantly smaller than terms of lower orders (for large
coupling strength). With this assumption, we are going
to retain only the first and second term,

ρss
S ≃ Z−1

S B

∑
l

e−βhl |al⟩⟨al|

{
TrB

[
e−βHB,l

]
−TrB

[
e−βHB,l

∫ β

0
du

≈

Hcoh
S (u)

] }
. (16)

The first term gives TrB
[
e−βHB,l

]
= ZB, as already seen in

the previous section. The second term gives,

TrB

[
e−βHB,l

∫ β

0
du

≈

Hcoh
S (u)

]
=

∑
l′,l′′

hl′,l′′ |al′⟩⟨al′′ |

×

∫ β

0
dueuωl′ ,l′′TrB

[
e−βHB,leuHB,l′ e−uHB,l′′

]
. (17)

Since, when injected in (16), this expression will be mul-
tiplied by |al⟩⟨al| on the left-hand side, one only needs to

compute∑
l′,l

hl,l′ |al⟩⟨al′ |

∫ β

0
dueuωl,l′TrB

[
e−βHB,leuHB,le−uHB,l′

]
,

(18)

where the index l and l′ were made equal. After some
manipulations, we can obtain the following expression for
TrB

[
e−βHB,leuHB,le−uHB,l′

]
(details provided in Section 7.1),

TrB
[
e−βHB,leuHB,le−uHB,l′

]
= ZBe

−λ2a2
l′ ,l

∫ ∞
0

J(ω)
ω2 (euω−1)

(
1− 1−e−uω

1−e−ωβ

)
, (19)

where al′,l := al′ − al. We finally obtain, up to second
order,

ρss
S =

∑
l

pss
l |al⟩⟨al| −

∑
l,l′;l,l′

pss
l hl,l′ fl,l′(β)|al⟩⟨al′ |,

(20)

with pss
l := e−βhl/Zss

S and

fl,l′(β) =
∫ β

0
dueuωl,l′ e

−λ2a2
l′ ,l

∫ ∞
0 dω J(ω)

ω2 (euω−1)
(
1− 1−e−ωu

1−e−ωβ

)
.

(21)

Note that we have the following identity (see Section 7.2)
pss

l fl,l′(β) = pss
l′ fl′,l(β), implying ⟨al|ρ

ss
S |al′⟩

∗ = ⟨al′ |ρ
ss
S |al⟩,

as it should be.
Additionally, f+,−(β) tends to zero when λ goes to in-

finity, so that we recover the infinite coupling limit (15).
One can also see that the first order corrections affect
only the coherences (in the eigenbasis of A). These ob-
servations coincide with the ones in [44]. Finally, the
expression obtained starting from the natural Hamilto-
nian (1) instead of the renormalized one (2) are the same
as (20) and (21) but substituting the pseudo-energies hl

by the renormalized ones hl − λ
2a2

l Q (see Section 7.5).

3.3 Approximate expression of fl,l′(β)

Depending on the bath spectral density, it might not
be possible to obtain an exact analytical expression of
fl,l′(β), so that some approximations would have to be
made. However, assuming the bath temperature is high,
or equivalently that the dominant frequencies in the bath
are low, we can obtain an approximate expression of
fl,l′(β) witout even specifying the form of the spectral
density. More precisely, we assume that J(ω) vanishes
for ω ≥ ωc, where ωc ≤ β

−1. Then, for ω ∈ [0; β−1], the
factor (euω − 1)

(
1 − 1−e−uω

1−e−ωβ

)
can be approximated by

euω − 1
ω2

(
1 −

1 − e−uω

1 − e−ωβ

)
=

u
ω

(
1 −

u
β

)
+ O(ωβ), (22)
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which is actually a very good approximation as soon as
ωβ ≤ 1. With that we obtain

e
−λ2a2

l′ ,l

∫ ∞
0 dω J(ω)

ω2 (euω−1)
(
1− 1−e−ωu

1−e−ωβ

)
≃ e−λ

2a2
l′ ,lu

(
1− u
β

)
Q
,

(23)

and

fl,l′(β) ≃
∫ β

0
dueuωl,l′ e−λ

2a2
l′ ,lu

(
1− u
β

)
Q

=
1
λ|al′,l|

√
β

Q

{
DF

 1
2λ|al′,l|

√
β

Q
(λ2a2

l′,lQ − ωl,l′)


+eβωl,l′DF
 1
2λ|al′,l|

√
β

Q
(λ2a2

l′,lQ + ωl,l′)
 },
(24)

where DF(x) := e−x2 ∫ x
0 du eu2

is sometimes referred to
as the Dawson function.

The above expression can be further simplified as fol-
lows. The strong coupling regime can be characterized by
a re-organization energy λ2Q comparable to, or larger
than, the energy scale of the system [25, 26]. Thus,
in the strong coupling regime one can expect to have
λ2Q ≫ maxl |hl|, implying

1
2λ|al′,l|

√
β

Q
(λ2a2

l′,lQ ± ωl,l′) ∼
1

2λ|al′,l|

√
β

Q
λ2a2

l′,lQ

∼

√
βλ2Q. (25)

Finally, since DF(x) = 1
2x + O(x−3) for x ≫ 1 (the ap-

proximation is actually very good for x ≥ 3), we can find
the following simple approximate expression for fl,l′(β)
asuming λ2Q ≫ β−1,

fl,l′(β) =
1 + eωl,l′β

λ2a2
l′,lQ

+
ωl,l′(1 − eωl,l′β)
λ4a4

l′,lQ
2
+ O[(λ2Qβ)−3].

(26)

4 Example: spin-boson model

As illustration of our results, we consider the versatile
and famous spin-boson model [57] characterised by the
following total Hamiltonian

HS B =
ϵ

2
σz +

∆

2
σx + λσzB + HB, (27)

where σx and σz are the Pauli matrices. The spin Hamil-
tonian HS can be re-written as

HS =
ϵ

2
σz +

∆

2
σx =

ωS

2
(
|e⟩⟨e| − |g⟩⟨g|

)
, (28)

with ωS :=
√
ϵ2 + ∆2,

|e⟩ :=
(ωS + ϵ)|+⟩ + ∆|−⟩
√

2ωS (ωS + ϵ)
,

|g⟩ :=
−∆|+⟩ + (ωS + ϵ)|−⟩
√

2ωS (ωS + ϵ)
, (29)

and |±⟩ denotes the eigenstates of σz. Since coupling
observable A is equal to σz, we have al=± = ±1, al,l′ =

a+,− = −a−,+ = 2, hl=± = ±ϵ/2, hl,l′ = h+,− = h−,+ = ∆/2,
and ωl,l′ = hl − hl′ = ω+− = −ω−+ = ϵ. Additionally,
since σ2

z = I, the renormalized Hamiltonian is equal to

HS B =
ϵ

2
σz +

∆

2
σx + λσzB + HB + λ

2Q, (30)

which simply corresponds to redefining the origin of the
spin energy. This can also be verified from the renormal-
ized pseudo-energies defined in Section 7.5, which are
given by hl=± := hl=± − a2

l λ
2Q = ±ϵ/2 − λ2Q. Thus,

for the spin-boson model, the energy renormalization in-
duced by the interaction with the bath has no impact on
the reduced steady state.

Applying expression (20), we obtain

ρss
S =

1
e−βϵ/2 + eβϵ/2

[
e−βϵ/2|+⟩⟨+| + eβϵ/2|−⟩⟨−|

−
∆

2
e−βϵ/2 f+,−(β)|+⟩⟨−| −

∆

2
eβϵ/2 f−,+(β)|−⟩⟨+|

]
,

(31)

with

f+,−(β) =
∫ β

0
dueϵue

−4λ2
∫ ∞

0 dω J(ω)
ω2 (euω−1)

(
1− 1−e−ωu

1−eωβ

)
,

f−,+(β) =
∫ β

0
due−ϵue

−4λ2
∫ ∞

0 dω J(ω)
ω2 (euω−1)

(
1− 1−e−ωu

1−eωβ

)
.

(32)

4.1 High temperature approximation

Without specifying explicitly the bath spectral density, if
we consider that J(ω) vanishes for frequencies smaller
than β−1, then the approximation (24) of Section 3.3 ap-
plies, and we have,

f+,−(β) =
1

2λ

√
β

Q

{
DF

 1
4λ

√
β

Q
(4λ2Q − ϵ)


+eϵβDF

 1
4λ

√
β

Q
(4λ2Q + ϵ)

 }. (33)

Assuming furthermore λ2Q ≫ ϵ and λ2Qβ ≫ 1, charac-
teristics of the ultrastrong coupling regime, we can use
expression (26), leading to

f+,−(β) =
1 + eϵβ

4λ2Q
+
ϵ(1 − eϵβ)
16λ4Q2 + O[(λ2Qβ)−3]. (34)
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5 Comparison with previous results

In a recent paper [44], Trushechkin obtains corrections
to the ultrastrong coupling limit by deriving and
solving a strong-decoherence regime master equation
(generalization of the ultra-strong coupling regime).
Additionally, a high temperature expansion of the mean
force Gibbs state was recently derived in [53]. In this
section, we compare our result with the aforementioned
ones. We start by briefly introducing them.

Trushechkin. In [44], the author derives the first order
correction to the steady state in the ultra strong coupling
limit, which actually coincides with the general expres-
sions (20) and (21) (see details in Section 7.6). As a
technical note, the results in [44] are actually valid when
the bath spectral density satisfies limω→+∞

J(ω)
ω2 > 0, and

the equivalence of the first order correction in [44] with
(20) and (21) is guaranteed only within this condition
on the bath spectral density (satisfied by usual spectral
densities).

As a sanity check for the numerical simulations below,
we compare, for the spin-boson model, our approximate
expression (33) of f+,−(β) with the high temperature ap-
proximation in [44] based on an over-damped spectral
density, also sometimes called Lorentz–Drude spectral
density,

J(ω) =
2Q
π

ωcω

ω2
c + ω2

, (35)

where Q is precisely the re-organization energy as-
sociated with the over-damped spectral density, and
ωc represents the cutoff frequency. Note that the
dimensionless factor λ is not explicitly present in [44],
but one can make it appear by multiplying the bath
spectral density by λ2. Then, the reorganisation energy
becomes λ2Q. Additionally, the steady state populations
obtained in [44] correspond to the one obtained for
infinite coupling limit [25], as we also derived in (15)
and (20).

Timofeev & Trushechkin. The derivation in [53], a gener-
alization to arbitrary system-bath coupling of [54], con-
sists in expressing the mean force Gibbs state through
approximating the Hamiltonian of mean force. In other
words, ρss

S = Z−1
S BTrB[e−βHS B] is expressed in the form

Z−1
MFe−βHMF , and an approximated expression of HMF ,

the Hamiltonian of mean force, is provided to second
order in β in the following form [53]

HMF = Hdiag
S − ΛA2 +

∑
n,m

Jnme−βΛ(an−am)2/6|n⟩⟨m|

+O(β4), (36)

where Λ is the re-organization energy, A =
∑

n an|n⟩⟨n| is
the system operator coupling with the bath, as previously,

Hdiag
S =

∑
n⟨n|HS |n⟩|n⟩⟨n|, and Jnm := ⟨n|HS |m⟩. Re-

expressed using the notations used throughout our paper,
we have

HMF =
∑

l

hl|al⟩⟨al| − λ
2QA2

+
∑
l,l′

hl,l′e−βλ
2Q(al−a′l )

2/6|al⟩⟨al′ |. (37)

The term −λ2QA2 corresponds to the renormalization of
the system’s energies, which has to be performed initially
as we did above, or finally, as shown in Section 7. The
partition function is given by ZMF = TrB[e−βHMF ].

Applying the above expression to the spin-boson
model, we obtain

HMF =
ϵ

2
σz − λ

2Q +
∆

2
e−2βλ2Q/3σx

=
ϵ

2
σz +

∆

2
e−2βλ2Q/3σx, (38)

where we dropped the renormalization term in the second
line since in this situation it only corresponds to redefining
the origin of the energies. Thus, the expression of the
mean force Gibbs state derived in [53] and applied to the
present spin-boson model is

ρMF = Z−1
MF

[
e−ω

′
S β/2|e′⟩⟨e′| + eω

′
S β/2|g′⟩⟨g′|

]
, (39)

with ω′S :=
√
ϵ2 + ∆′2, ∆′ := e−2βλ2Q/3∆, |e′⟩ :=

(ω′S+ϵ)|+⟩+∆
′ |−⟩

√
2ω′S (ω′S+ϵ)

, |g′⟩ :=
−∆′ |+⟩+(ω′S+ϵ)|−⟩√

2ω′S (ω′S+ϵ)
, and ZMF =

e−ω
′
S β/2 + eω

′
S β/2. This expression has the merit of tending

to the right limit when λ→ 0, namely ρMF → Z−1e−βHS ,
the usual thermal equilibrium state. This is not the case
of the expression (31), which is expected since it is meant
to be valid in the opposite regime, when λ2Qβ ≫ 1. In
the eigenbasis of σz, the expression of ρMF becomes

ρMF =
1
2

(
1 −

ϵ

ω′S
tanhω′S β/2

)
|+⟩⟨+|

+
1
2

(
1 +

ϵ

ω′S
tanhω′S β/2

)
|−⟩⟨−|

−
∆′

2ω′S
tanhω′S β/2

(
|+⟩⟨−| + |−⟩⟨+|

)
. (40)

A brief analytical comparison between (40) and (31) is
provided in Section 7.4.

In Fig. 1, we have plotted in semi-log scale the coherences
of the mean force Gibbs state (a) css := ⟨+|ρss

S |−⟩ in the
eigenbasis of A, and (b) css

e,g := ⟨e|ρss
S |g⟩ in the eigenbasis

of HS , in function of the coupling strength λ2Q in unit
of ϵ, for ∆ = 1.5ϵ, ωc = 2ϵ and ϵβ = 0.1. The orange
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Figure 1: Plots in the semi-log scale of the mean force Gibbs
state coherences (a) css := ⟨+|ρss

S |−⟩ in the eigenbasis of A,
and (b) css

e,g := ⟨e|ρss
S |g⟩ in the eigenbasis of HS , in function of

the coupling strength λ2Q in unit of ϵ, for ∆ = 1.5ϵ, ωc = 2ϵ
and ϵβ = 0.1. The orange thick solid curve corresponds to
(31) using the high temperature approximation (33) of f+,−(β),
while the gray thin dashed line corresponds to the further
simplified expression (34) of f+,−(β). The purple thick dashed
line is the mean force Gibbs state coherences given by the high
temperature expression derived in [44]. The black thin line is
the mean force Gibbs state coherences given by (40).

thick solid curve corresponds to (31) using the high tem-
perature approximation (33) of f+,−(β), while the gray
thin dashed line corresponds to the further simplified ex-
pression (34) of f+,−(β). The purple thick dashed line
is the mean force Gibbs state coherences given by the
high temperature expression derived in [44]. The black
thin line is the mean force Gibbs state coherences given
by (40).

As expected, on can see an excellent agreement be-
tween (33) (orange curve) and the expression given in
[44] (purple dashed line). The very slight discrepancy
appearing at intermediate coupling strength comes from a
slight difference in the derivation of high temperature ap-
proximation between (22)-(23) and eqs. (56)-(57) of [44]
(high temperature approximation before time integration
of the bath correlation function). However, there is a sig-
nificant discrepancy with (40) (black line) at intermediary
and strong coupling strength. Beyond that, it appears
from (a) that for increasing coupling strength, the mean

(a)

0.1 0.5 1 5 10
ϵβ

-0.01

-0.02

css

(b) 0.1 0.5 1 5 10
ϵβ

0.1

0.2

0.3

0.4

csseg

Figure 2: Plots in the semi-log scale of the mean force Gibbs
state coherences (a) css := ⟨+|ρss

S |−⟩ in the eigenbasis of A, and
(b) css

e,g := ⟨e|ρss
S |g⟩ in the eigenbasis of HS , in function of the

inverse temperature ϵβ, for ∆ = 1.5ϵ, ωc = 1ϵ and λ2Q = 10ϵ.
The orange thick solid curve corresponds to (31) using the high
temperature approximation (33) of f+,−(β), while the gray thin
dashed line (almost indistinguishable from the orange curve)
corresponds to the further simplified expression (34) of f+,−(β).
The purple thick dashed line is the mean force Gibbs state
coherences given by the high temperature expression derived
in [44]. The black thin line is the mean force Gibbs state
coherences given by (40).

force Gibbs state tends to a diagonal state in the eigenba-
sis of A, as expected from the ultrastrong coupling limit
(15) and [25, 46, 47]. Conversely, for decreasing coupling
strength, one can see in (b) the emergence of a progres-
sive transition to a diagonal state in the eigenbasis of HS ,
as expected from the weak coupling limit.

In Fig. 2, we have plotted in the semi-log scale of the
mean force Gibbs state coherences (a) css := ⟨+|ρss

S |−⟩

in the eigenbasis of A, and (b) css
e,g := ⟨e|ρss

S |g⟩ in the
eigenbasis of HS , in function of the inverse temperature
ϵβ, for ∆ = 1.5ϵ, ωc = 1ϵ and λ2Q = 10ϵ. The colour
convention is the same as in the previous figure Fig. 1.
Again, as expected, we observe a very good agreement
between (33) (orange curve) and the expression given
in [44] (purple dashed line). We also observe a signifi-
cant discrepancy with (40) (black line) out side the high
temperature regime.
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Figure 3: Plots of the mean force Gibbs state excited population
(a) pss

+ := ⟨+|ρss
S |+⟩ in the eigenbasis of A, and (b) pss

e :=
⟨e|ρss

S |e⟩ in the eigenbasis of HS , in function of the coupling
strength λ2Q in unit of ϵ, for ∆ = 1.5ϵ and ϵβ = 0.5. The
orange thick solid curve corresponds to the mean force Gibbs
state excited population obtained in (33), [44], and [25,46,47]
(all coinciding). The black thin curve corresponds to the excited
population given by (40). The blue dotted curve corresponds
to the thermal population in the vanishing coupling limit, pth

e =

e−ωS β/(1 + e−ωS β).

In Figs. 3 and 4, we have plotted the mean force Gibbs
state excited population (a) pss

+ := ⟨+|ρss
S |+⟩ in the eigen-

basis of A, and (b) pss
e := ⟨e|ρss

S |e⟩ in the eigenbasis of
HS . As for the coherence, Fig. 3 is in function of the
coupling strength λ2Q in unit of ϵ, for ∆ = 1.5ϵ and
ϵβ = 0.5, while in Fig. 4, the plots are in function of the
inverse temperature ϵβ in a semi-log scale, for ∆ = 1.5ϵ
and λ2Q = 5ϵ. For both figures, the orange thick solid
curve corresponds to the excited populations of the mean
force Gibbs state obtained in (33), [44], and [25, 46, 47]
(all coinciding), while the black thin curve corresponds
to the excited population given by (40). Finally, the blue
dotted curve corresponds to the thermal population in the
vanishing coupling limit, pth

e = e−ωS β/(1 + e−ωS β).
We can draw conclusions similar to Figs. 1 and 2,

namely that both predictions coincide very well at high
temperature as well as for ultra strong coupling. However,
some discrepancies emerge for intermediate and large
coupling strength as well as for large β.

(a) 0.1 0.5 1 5 10
ϵβ

0.1

0.2

0.3

0.4

0.5
pss+

(b) 0.1 0.5 1 5 10
ϵβ
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0.2

0.3

0.4

psse

Figure 4: Plots of the mean force Gibbs state excited pop-
ulation (a) pss

+ := ⟨+|ρss
S |+⟩ in the eigenbasis of A, and (b)

pss
e := ⟨e|ρss

S |e⟩ in the eigenbasis of HS , in function of the in-
verse temperature ϵβ in a semi-log scale, for ∆ = 1.5ϵ and
λ2Q = 10ϵ. The orange thick solid curve corresponds to
the mean force Gibbs state excited population obtained in
(33), [44], and [25, 46, 47] (all coinciding). The black thin
curve corresponds to the excited population given by (40). The
blue dotted curve corresponds to the thermal population in the
vanishing coupling limit, pth

e = e−ωS β/(1 + e−ωS β).

6 Conclusion

We have obtained a perturbative expansion (13) and (14)
of the mean force Gibbs state in the ultra strong coupling
regime, using a technique inspired from the displaced
oscillator picture [49,50] and polaron transformation. The
zero order term confirms the result of [25, 44]. Analytical
expression of the first order term is derived, (20) and (21),
and is found to coincide with the first order correction
derived in [44] (within the mild validity condition of [44],
see Section 7.6 for more detail). This increases the range
of the known situations in which the steady state of a
system interacting with a thermal bath does converge
to the mean force Gibbs state. This convergence was
recently shown for weak coupling up to the first order
[24, 40, 45], for the ultra strong coupling regime up to
the zeroth order [25], and is now confirmed in the ultra-
strong coupling regime up to the first order, thanks to the
complementary results in [44].
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In the high temperature regime, a simple and explicit
general expression is derived (24) for the first order cor-
rections. This expression is numerically compared for
the spin-boson model with the result of [53] obtained
by high temperature expansion of the mean force Gibbs
state. For sanity check, a comparison of (24) with the
high temperature approximation of [44] is also made, and
the very good agreement in all regimes of parameters is
confirmed. Very good agreement is also observed at ultra
strong coupling as well as high temperatures between our
result and the one from [53]. This strengthens the validity
of all three approaches. Thanks to them, we are able to
draft the transition from the ultra-strong coupling regime
to the weak coupling regime, Fig. 1b.

However, going further, significant discrepancies
emerge between our result and [53] at moderate coupling
strength and moderate temperatures. For those values
of parameters, further analysis with higher orders are
needed in order to confirm which result is the more accu-
rate, as well as to reconstruct accurately the full transition
weak-to-ultra-strong coupling and provide a good approx-
imation of the steady state in all regimes. This does not
seem out-of-reach according to the preliminary results on
higher order terms obtained in Section 7.3. Additionally,
benchmarking the results with other techniques like re-
action coordinate or pseudo-modes would be interesting
and instructive.

7 Appendix

7.1 Details of the computation of
TrB

[
e−βHB,leuHB,le−uHB,l′

]
In order to compute TrB

[
e−βHB,leuHB,le−uHB,l′

]
, one can

first rearrange it in the following way,

TrB
[
e−βHB,leuHB,le−uHB,l′

]
= TrB

[
e−(β−u)HB,le−uHB,l′

]
= TrB

[
⊗
k

(
Dk,le−(β−u)b†kbkD

†

k,l

)
e−uHB,l′

]
= TrB

[
e−(β−u)HBe−u

∑
k ωkD

†

k,lDk,l′b
†

kbkD
†

k,l′Dk,l
]

= TrB

[
e−(β−u)HBe−u(HB+λal′ ,lB+λ2a2

l′ ,lQ)
]
, (41)

where al′,l := al′ − al. “Taking out” of the second expo-
nential the Hamiltonian HB, we obtain,

TrB

[
e−(β−u)HBe−u(HB+λal′ ,lB+λ2a2

l′ ,lQ)
]

= e−u(λ2a2
l′ ,lQ)TrB

[
e−βHBe−λal′ ,lT

∫ u
0 dsB̃(s)

]
, (42)

with B̃(s) := esHB Be−sHB =
∑

k gk(esωk b†k + e−sωk bk). The

time ordered operator e−λal′ ,lT
∫ u

0 dsB̃(s) can be split in two

as follows,

e−λal′ ,lT
∫ u

0 dsB̃(s) = e−λ
2a2

l′ ,l f (u)eλal′ ,lB(−u)e−λal′ ,lB
†(u), (43)

with f (u) := −uQ +
∑

k
g2

k
ω2

k
(euωk − 1), B(−u) :=∑

k
gk
ωk

(e−uωk − 1)bk, and B†(u) :=
∑

k
gk
ωk

(euωk − 1)b†k .
The above decomposition can be demonstrated as fol-
lows. We denote the left-hand side of (43) as L(u) :=
e−λal′ ,lT

∫ u
0 dsB̃(s) and the right-hand side by R(u) :=

e−λ
2a2

l′ ,l f (u)eλal′ ,lB(−u)e−λal′ ,lB
†(u). By definition of the time

ordering operator, or alternatively by taking the time
derivative with respect to u, the left-hand side of (43)
satisfies the differential equation

∂

∂u
L(u) = −λal′,lB̃(u)L(u). (44)

Now, by taking the time derivative with respect to u of
the right-hand side of (43), one obtains the following
differential equation

∂

∂u
R(u) =

[
−λ2a2

l′,l
∂

∂u
f (u) + λal′,l

∂

∂u
B(−u)

]
R(u)

−λal′,lR(u)
∂

∂u
B†(u). (45)

Using the expressions of f (u), B(u), and B†(u), we ob-
tain,

∂

∂u
f (u) = −Q +

∑
k

g2
k

ωk
euωk ,

∂

∂u
B(−u) = −

∑
k

gke−uωk bk,

∂

∂u
B†(u) =

∑
k

gkeuωk b†k . (46)

Then, with the help of the identity

R(u)
∂

∂u
B†(u) =

 ∂∂uB†(u) + λal′,l

∑
k

g2
k

ωk
(1 − euωk )

 R(u),

(47)
and the discrete version of the re-organization energy

Q =
∑

k
g2

k
ωk
≡

∫ ∞
0 dω J(ω)

ω , we arrive at

∂

∂u
R(u) = −λal′,l

∑
k

gk
(
euωk b†k + e−uωk bk

) R(u),

(48)

which is exactly the same differential equation as (44).
Since the initial conditions are the same, namely R(0) =
L(0) = I, we conclude that R(u) = L(u) for all times u.
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A simple way to conclude the computation of the trace (42) is using the normal order representation of the
operators. Using the following formula [58, p. 116]

eαa†a =

∞∑
n=0

(eα − 1)n

n!
(a†)nan, (49)

where α is a c-number and a†, a are bosonic operators, we obtain,

TrB

[
e−(β−u)HBe−u(HB+λal′ ,lB+λ2a2

l′ ,lQ)
]

= e−u(λ2a2
l′ ,lQ)e−λ

2a2
l′ ,l f (u)TrB

e−λal′ ,lB
†(u)

⊗k

∞∑
n=0

(e−βωk − 1)n

n!
(b†k)nbn

k

 eλal′ ,lB(−u)

 (50)

= e
−λ2a2

l′ ,l
∑

k
g2k
ω2

k
(euωk−1) ∏

k

∫
C

d2αk

π
e−λal′ ,l

gk
ωk

(euωk−1)α∗k
∞∑

n=0

(e−βωk − 1)n

n!
|αk|

2neλal′ ,l
gk
ωk

(e−uωk−1)αk

 (51)

= e
−λ2a2

l′ ,l
∑

k
g2k
ω2

k
(euωk−1) ∏

k

(∫
C

d2αk

π
e−λal′ ,l

gk
ωk

(euωk−1)α∗k e(e−βωk−1)|αk |
2
eλal′ ,l

gk
ωk

(e−uωk−1)αk

)

= e
−λ2a2

l′ ,l
∑

k
g2k
ω2

k
(euωk−1) ∏

k

(∫
R2

dxkdyk
π

e−λal′ ,l
gk
ωk

(euωk−1)(xk−iyk)+(e−βωk−1)(x2
k+y

2
k )+λal′ ,l

gk
ωk

(e−uωk−1)(xk+iyk)
)

= e
−λ2a2

l′ ,l
∑

k
g2k
ω2

k
(euωk−1) ∏

k

(∫
R2

dxkdyk
π

e(e−βωk−1)(x2
k+y

2
k )+λal′ ,l

gk
ωk

(e−uωk−euωk )xk+iλal′ ,l
gk
ωk

(e−uωk+euωk−2)yk
)

= e
−λ2a2

l′ ,l
∑

k
g2k
ω2

k
(euωk−1) ∏

k

(
1

1 − e−ωkβ

)
e
−λ2a2

l′ ,l
∑

k
g2k
ω2

k

2−euωk−e−uωk

1−e−ωkβ

= ZBe
−λ2a2

l′ ,l
∑

k
g2k
ω2

k
(euωk−1)

(
1− 1−e−uωk

1−e−ωkβ

)

= ZBe
−λ2a2

l′ ,l

∫ ∞
0

J(ω)
ω2 (euω−1)

(
1− 1−e−uω

1−e−ωβ

)
, (52)

where ZB := Πk
(

1
1−e−ωkβ

)
= TrB

(
e−βHB

)
. In line (51), we used the property of the coherent states |αk⟩ which form an

over-complete basis of the Hilbert space of the k-mode, so that the trace of any operator Ok acting in that Hilbert

space can be computed as Trk(Ok) =
∫
R2

dα2
k
π ⟨αk|Ok|αk⟩. Additionally, we expressed in the last lines the complex

variable αk explicitly in term of its real and imaginary part αk = xk + iyk.

7.2 Important property of fl,l′(β)

By applying the change of variable v = β − u, one can re-write fl,l′(β) in the form

fl,l′(β) =
∫ β

0
dueuωl,l′ e−λ

2a2
l′ ,l

∫ ∞
0 dω J(ω)

ω2
eωβ/2+e−ωβ/2−eω(u−β/2)−e−ω(u−β/2)

eωβ/2−e−ωβ/2

= eβωl,l′

∫ β

0
dve−vωl,l′ e−λ

2a2
l′ ,l

∫ ∞
0 dω J(ω)

ω2
eωβ/2+e−ωβ/2−eω(v−β/2)−e−ω(v−β/2)

eωβ/2−e−ωβ/2 . (53)

Then, one can easily verify that pss
l fl,l′(β) = pss

l′ fl′,l(β). This implies in particular that ⟨al|ρ
ss
S |al′⟩

∗ = ⟨al′ |ρ
ss
S |al⟩, as

required by the Hermicity of ρss
S .

7.3 Higher order terms

As explained in Section 3, we consider only the first two terms of the infinite sum in Eq. (14). In Section 3.1, we
gave an intuitive argument to justify that the second term as well as all following terms in Eq. (14) converge to zero
when the coupling strength increases. We now come back to this point an provide a more rigorous argument.
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For simplicity, we focus here on the spin-boson model used in Section 4, while this could be easily extended to
arbitrary systems. . Combining Eqs. (13) and (14), we start re-writing the exact expression of ρss

S as

ρss
S = (Z ss

S )−1

e−βh+ ∞∑
n=0

T+,n + e−βh−
∞∑

n=0

T−,n

 , (54)

with h± = ⟨±|HS |±⟩ = ±ϵ/2, and where

T±,n := (−1)n
∫ β

0
du1

∫ u1

0
du2...

∫ un−1

0
dun|±⟩⟨±|TrB

[
Z−1

B e−βHB,±
≈

Hcoh
S (u1)

≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
, (55)

with HB,± := HB ± λB + λ2Q, T±,0 = |±⟩⟨±| and

Z ss
S :=

ZS B

ZB
= e−βϵ/2

∞∑
n=0

⟨+|T+,n|+⟩ + eβϵ/2
∞∑

n=0

⟨−|T−,n|−⟩. (56)

We then work on the integrand

t±,n := |±⟩⟨±|TrB
[
e−βHB,±

≈

Hcoh
S (u1)

≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
. (57)

Starting with t+,n, we have

t+,n = |+⟩⟨+|TrB
[
Z−1

B e−βHB,+
≈

Hcoh
S (u1)

≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
= Z−1

B |+⟩⟨+|TrB

[
e−βHB,+

(
h+,−eu1ω+,− |+⟩⟨−|eu1HB,+e−u1HB,− + h−,+eu1ω−,+ |−⟩⟨+|eu1HB,−e−u1HB,+

)
×
≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
= Z−1

B h+,−eu1ω+,− |+⟩⟨−|TrB

[
e−(β−u1)HB,+e−u1HB,−

≈

Hcoh
S (u2)...

≈

Hcoh
S (un)

]
= Z−1

B h+,−eu1ω+,− |+⟩⟨−|TrB

[
e−(β−u1)HB,+e−u1HB,−

×
(
h+,−eu2ω+,− |+⟩⟨−|eu2HB,+e−u2HB,− + h−,+eu2ω−,+ |−⟩⟨+|eu2HB,−e−u2HB,+

) ≈

Hcoh
S (u3)...

≈

Hcoh
S (un)

]
= Z−1

B h+,−h−,+eu1ω+,−eu2ω−,+ |+⟩⟨+|TrB

[
e−(β−u1)HB,+e−(u1−u2)HB,−e−u2HB,+

≈

Hcoh
S (u3)...

≈

Hcoh
S (un)

]
= Z−1

B

(
∆

2

)n

eϵ(u1−u2+...−(−1)nun)

×TrB

[
e−(β−u1)HB,+e−(u1−u2)HB,− ...e−(un−1−un)HB,(−1)n−1 e−unHB,(−1)n

]
|+⟩⟨(−1)n|, (58)

since h+,− = h−,+ = ∆/2 and ω+,− = −ω−,+ = ϵ. Reproducing the decomposition used in Eq.(42) and (43), we obtain

e−αiHB,± = e−λ
2 f̄ (αi)e−αiHBe±λB(−αi)e∓λB

†(αi) (59)

with f̄ (αi) :=
∑

k
g2

k
ω2

k
(eαiωk − 1) and αi = ui − ui+1. The aim is now to re-write

e−(β−u1)HB,+e−(u1−u2)HB,− ...e−(un−1−un)HB,(−1)n−1 e−unHB,(−1)n (60)

in normal order so that we can compute the trace. To have a better understanding of how we will proceed, we first
consider the simpler situation where n = 1. We have, using (59) twice,

e−(β−u1)HB,+e−u1HB,− = e−λ
2 f̄ (β−u1)e−λ

2 f̄ (u1)e−(β−u1)HBeλB(−β+u1)e−λB
†(β−u1)e−u1HBe−λB(−u1)eλB

†(u1). (61)
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Using the properties

eχkbk e−αiωkb†kbk = e−αiωkb†kbk eχke−αiωk bk

eχkb†k e−αiωkb†kbk = e−αiωkb†kbk eχkeαiωk b†k (62)

for arbitrary coefficient χk, we have

e−(β−u1)HB,+e−u1HB,− = e−λ
2 f̄ (β−u1)e−λ

2 f̄ (u1)e−βHBeλ
∑

k
gk
ωk

e−u1ωk (e−(β−u1)ωk−1)bk e−λ
∑

k
gk
ωk

eu1ωk (e(β−u1)ωk−1)b†k e−λB(−u1)eλB
†(u1).

(63)
We finally use the identity

eχkb†k eξkbk = e−χkξk eξkbk eχkb†k , (64)

to obtain,

e−(β−u1)HB,+e−u1HB,− = e−λ
2 f̄ (β−u1)e−λ

2 f̄ (u1)e
−λ2 ∑

k
g2k
ω2

k
eu1ωk (e(β−u1)ωk−1)(e−u1ωk−1)

e−βHB

×eλ
∑

k
gk
ωk

[e−u1ωk (e−(β−u1)ωk−1)−(e−u1ωk−1)]bk e−λ
∑

k
gk
ωk

[eu1ωk (e(β−u1)ωk−1)−(eu1ωk−1)]b†k . (65)

The above expression is not yet in normal order, but once injected in the trace, one can use the permutation property
as in the previous section to obtain an expression in normal order, exactly of the same form as in (50), the only
difference being the coefficients in front of the annihilation and creation operators bk and b†k . We then proceed to the
computation of the trace exactly in the same way as in the previous section. We obtain something of the form,

TrB

[
e−(β−u1)HB,+e−u1HB,−

]
= ZBe−λ

2Ψ+,−(β,u1), (66)

where Ψ+,−(β, u1) is a real function.
If now we consider the term n = 2, we can use the above form for e−(β−u1)HB,+e−(u1−u2)HB,− , and then split e−u2HB,+

using (59). We obtain an expression of the same form as (61), and thus one can repeat the above steps to reach an
expression of the later form (66), namely,

TrB

[
e−(β−u1)HB,+e−(u1−u2)HB,−e−u2HB,+

]
= ZBe−λ

2Ψ+,−,+(β,u1,u2). (67)

We can repeat the same procedure for any n, obtaining

TrB

[
e−(β−u1)HB,+e−(u1−u2)HB,− ...e−(un−1−un)HB,(−1)n−1 e−unHB,(−1)n

]
= ZBe−λ

2Ψ+,−,+,...,(−1)n (β,u1,u2,...un), (68)

where Ψ+,−,+,...,(−1)n(β, u1, u2, ...un) is a real function.
Having this result in mind, one can obtain a more direct form of Ψ+,−,+,...,(−1)n(β, u1, u2, ...un) simply by computing

∂2

∂λ2 TrB

[
e−(β−u1)HB,+e−(u1−u2)HB,− ...e−(un−1−un)HB,(−1)n−1 e−unHB,(−1)n

]
|λ=0
. (69)

After computing this second derivative and evaluating it in λ = 0, followed by some simple algebraic manipulations,
we arrived at

Ψ+,−,+,...,(−1)n(β, u1, u2, ...un) = −
1
2
∂2

∂λ2 TrB

[
Z−1

B e−(β−u1)HB,+e−(u1−u2)HB,− ...e−(un−1−un)HB,(−1)n−1 e−unHB,(−1)n

]
|λ=0

=
∑

0≤i≤ j≤n

(−1)i+ jMi, j, (70)

with

Mi,i =
∑

k

g2
k

ω2
k

(nωk + 1)
(
e−uiωk − e−ui+1ωk

) (
e−(β−ui)ωk − eui+1ωk

)
, (71)
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and

Mi, j =
i< j

∑
k

g2
k

ω2
k

[ (
e−uiωk − e−ui+1ωk

) (
eu jωk − eu j+1ωk

)
(nωk + 1) +

(
euiωk − eui+1ωk

) (
e−u jωk − e−u j+1ωk

)
nωk

]
, (72)

with the convention u0 := β, and un+1 = 0. One can verify that for n = 1 we recover the expression of the previous
section. We finally obtain for t+,n,

t+,n =

(
∆

2

)n

eϵ(u1−u2+...−(−1)nun)e−λ
2 ∑

0≤i≤ j≤n(−1)i+ j Mi, j |+⟩⟨(−1)n|. (73)

Repeating a similar derivation we obtain for t−,n,

t−,n =
(
∆

2

)n

e−ϵ(u1−u2+...−(−1)nun)e−λ
2 ∑

0≤i≤ j≤n(−1)i+ j Mi, j |+⟩⟨(−1)n|, (74)

(only ϵ is changed to −ϵ).

Although we now have an explicit expression of tl,n,
the nested integrals over the ui appearing in (55) are still
challenging in general. Thus, as in the main text, we
proceed by looking at the high temperature regime, char-
acterized by βωc ≪ 1, where ωc stands for the cut-off
frequency of the bath spectral density. Consequently, we
can expand all exponential functions appearing in the co-
efficients Mi, j (since all ui are smaller than β). We obtain
the following simple expressions

Mi,i =
Q
β

(ui − ui+1)(β − ui + ui+1)

Mi, j =
i< j
−2

Q
β

(ui − ui+1)(u j − u j+1) (75)

Using the above expressions, one can see easily that for
n = 1, we have

∑
0≤i≤ j≤1(−1)i+ jMi, j = 4 Q

β u1(β − u1), re-
covering a result from the main text. For n = 2, one
obtains

∑
0≤i≤ j≤2(−1)i+ jMi, j = 4 Q

β (u1 − u2)(β − u1 + u2).
More generally, one can show by iteration that for arbi-
trary n,∑

0≤i≤ j≤n

(−1)i+ jMi, j = 4
Q
β

(u1 − u2 + u3 − ...un)

×(β − u1 + u2 − u3 + ...un).

(76)

Finally, we obtain

T±,n =
(−∆)n

2n

∫ β

0

∫ u1

0
...

∫ un−1

0
du1du2...dun

e±ϵ(u1−u2+...un)e−4λ2Qβ u1−u2+...un
β

(
1− u1−u2+...un

β

)
×|±⟩⟨±(−1)n|

=
(−β∆)n

2n

∫ 1

0

∫ u1

0
...

∫ un−1

0
du1du2...dun

eβ(±ϵ−4λ2Q)(u1−u2+...un)e4λ2Qβ(u1−u2+...un)2
|±⟩⟨±(−1)n|.

(77)

Additionally, we can show that for n impair, T+,n =
eϵβT−,n, which guarantees the Hermicity of ρss

S . Note
that this relation does not hold for n pair, which does not
affect the Hermicity of ρss

S since corrections of even order
affect only the populations.

Beyond that, since (u1 − u2 + ...un) ∈ [0; 1], we have
the following simple upper bound,

|T±,n| ≤
(
β∆

2

)n ∫ 1

0

∫ u1

0
...

∫ un−1

0
du1du2...dun

×e±ϵβ(u1−u2+...un)

(78)

implying

|T+,n| ≤
1
n!

(
β∆

2

)n

eϵβ (79)

and

|T−,n| ≤
1
n!

(
β∆

2

)n

(80)

which ensures that the higher order corrections |T±,n| van-
ish quickly as n increases. Additionally, for a fixed n,
we can show numerically that |T±,n| goes to zero as λ
increases (see plots in Fig. 5), confirming that for large λ,
only the first few orders are enough to obtain a good
approximation of ρss

S .

7.4 Further analytical comparison between
Eq. (33) and the result from Timofeev &
Trushechkin

Here we provide some brief analytical comparison be-
tween our results and the one obtained in [53]. As de-
tailed in Section 5, the result from [53] applied to the
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Figure 5: (a) Plots of T+,n/(−β∆/2)n in function of λ2Q in unit of ϵ, for ϵβ = 2, and n = 1 (yellow dots), n = 2 (orange dots),
n = 3 (red dots), n = 4 (purple dots), n = 5 (black dots). (b) Zoom in of the plot of T+,5/(−β∆/2)5.

spin-boson model gives (40) in the basis of σz, {|+⟩, |−⟩}.
In the regime where ω′S β ≪ 1, we obtain

ρMF =
1
2

(
1 −
ϵβ

2

)
|+⟩⟨+|

+
1
2

(
1 +
ϵβ

2

)
|−⟩⟨−|

−
∆β

4
e−2βλ2Q/3

(
|+⟩⟨−| + |−⟩⟨+|

)
. (81)

For comparison, if we take the limit βλ2Q ≪ 1 (and
ϵ2β/λ2Q ≪ 1) in the expression (33) of f+,−(β), we ob-
tain, using DF(x) = x + O(x3) for x ≪ 1,

ρss
S =

1
e−ϵβ/2 + eϵβ/2

(
e−ϵβ/2|+⟩⟨+| + eϵβ/2|−⟩⟨−|

)
−
∆β

4

(
1 +

ϵ2β

8λ2Q

)
σx. (82)

Both expressions are equivalent when applying βλ2β ≪ 1
to (81). However, in the opposite limit, when βλ2Q ≫ 1,
the expression (33) becomes

ρss
S =

1
e−ϵβ/2 + eϵβ/2

(
e−ϵβ/2|+⟩⟨+| + eϵβ/2|−⟩⟨−|

)
−
∆

8λ2Q
σx. (83)

This is significantly different from (40). While in the
above expression the coherences vanish as 1/λ2Q, they
vanish exponentially in (40) and (81).

7.5 Without initial renormalization

As commented above, one can choose to perform the
same derivation starting from the “natural” Hamiltonian

HS B = HS + HB + λAB, (84)

instead of the renormalized one HS B defined in the main
text. Proceeding as previously, we have

e−βHS B = e−β(HB+λAB)e−T
∫ β

0 duH̃S (u), (85)

with
H̃S (u) := eu(HB+λAB)HS e−u(HB+λAB). (86)

We now have

HB + λAB =
∑

k

ωkDkb†kbkD
†

k − λ
2QA2

=
∑

l

|al⟩⟨al|HB,l, (87)

withHB,l := HB,l − λ
2a2

l Q = HB + λalB, leading to

eu(HB+λAB) = eu
∑

l |al⟩⟨al |HB,l

=
∑

l

|al⟩⟨al|euHB,l . (88)

Then,

H̃S (u) =
∑
l,l′
|al⟩⟨al|euHB,l HS |al′⟩⟨al′ |e−uHB,l′

= Hpop
S + H̃coh

S (u), (89)

where Hpop
S = Hpop

S =
∑

l hl|al⟩⟨al| and H̃coh
S (u) :=∑

l,l′ hl,l′ |al⟩⟨al′ |eu(HB,l−λ
2a2

l Q)e−u(HB,l′−λ
2a2

l′Q) =∑
l,l′ hl,l′ |al⟩⟨al′ |euHB,le−uHB,l′ . Again, similarly as previ-

ously, we obtain,

e−T
∫ β

0 duH̃S (u) = e−βH
pop
S e−T

∫ β
0 du

≈

Hcoh
S (u), (90)

with
≈

Hcoh
S (u) := euHpop

S H̃coh
S (u)e−uHpop

S

=
∑
l,l′

hl,l′euωl,l′ |al⟩⟨al′ |euHB,le−uHB,l′ ,(91)

arriving at

ρth
S B = Z−1

S B

∑
l

e−βhl |al⟩⟨al|e−βHB,le−T
∫ β

0 du
≈

Hcoh
S (u).

(92)
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Finally, the main change is that we are led to
compute TrB

[
e−βHB,l

]
for the zeroth order, and

TrB
[
e−βHB,leuHB,le−uHB,l′

]
for the second order, instead of

TrB
[
e−βHB,leuHB,le−uHB,l′

]
. We have,

TrB
[
e−βHB,leuHB,le−uHB,l′

]
= TrB

[
e−β(HB,l−λ

2a2
l Q)eu(HB,l−λ

2a2
l Q)e−u(HB,l′−λ

2a2
l′Q)

]
= TrB

[
e−(β−u)HBe−u(HB+λal′ ,lB+λ2a2

l′ ,lQ)
]

×eλ
2Q[βa2

l +u(a2
l′−a2

l )]. (93)

With that, we obtain

ρss
S =

∑
l

pss
l |al⟩⟨al| −

∑
l,l′;l,l′

pss
l hl,l′fl,l′(β)|al⟩⟨al′ |,

(94)

where pss
l := e−β(hl−a2

l λ
2Q)/Zss

S = e−βhl/Zss
S is the renor-

malized population, with hl := hl − a2
l λ

2Q the renormal-
ized “pseudo-energies” (diagonal elements of HS in the
eigenbasis of A),Zss :=

∑
l e−βhl , and

fl,l′(β) :=
∫ β

0
du

×euω̄l,l′ e−λ
2a2

l′ ,l

∫ ∞
0 dω J(ω)

ω2
eωβ/2+e−ωβ/2−eω(u−β/2)−e−ω(u−β/2)

eωβ/2−e−ωβ/2 ,

(95)

with ω̄l,l′ := hl − hl′ . Additionally, one can also verify
the identity pss

l fl,l′(β) = pss
l′ fl′,l(β).

Conclusion. If we do not renormalize the Hamiltonian
initially, the expressions are un-changed up to the sub-
stitution of hl by hl. The renormalization has to happen,
either initially, either finally. Note however that hl,l′ is
not changed. One must be aware of these differences
of choice especially when defining the strong coupling
regime.

7.5.1 Approximation of fl,l′(β)

Similarly as for fl,l′(β), when the bath spectral density is
such that J(ω) vanishes for ω ≥ ωc, where ωc ≤ β

−1, we
have

fl,l′(β) ≃
∫ β

0
dueuω̄l,l′ e−λ

2a2
l′ ,lu

(
1− u
β

)
Q

=
1
λ|al′,l|

√
β

Q

{
DF

 1
2λ|al′,l|

√
β

Q
(λ2a2

l′,lQ − ω̄l,l′)


+eβω̄l,l′DF
 1
2λ|al′,l|

√
β

Q
(λ2a2

l′,lQ + ω̄l,l′)
 }.
(96)

Note that λ2a2
l′,lQ − ω̄l,l′ = 2λ2Qal(al − al′) − ωl,l′ and

λ2a2
l′,lQ + ω̄l,l′ = 2λ2Qal′(al′ − al) + ωl,l′ . Thus, in

the strong coupling regime when λ2Q ≫ maxl |hl| and
λ2Qβ ≫ 1, it is still legitimate to approximate the func-
tion DF(x) by 1/2x, which gives,

fl,l′(β) =
1

2λ2Qal,l′

(
1
al
−

eω̄l,l′β

al′

)
+
ωl,l′

4λ4Q2a2
l,l′

 1
a2

l

−
eω̄l,l′β

a2
l′

 + O[(λ2Q/ωl,l′)−3].

(97)

7.6 Identity of first orders

Here, we compare our general first order result, Eqs. (20)
and (21), with the general first order expression for the
steady state coherences obtained in Eq. (56) of [44]. This
expression was obtained through projection operator tech-
niques [28, 59, 60], by choosing the operator P project-
ing the system’s state onto the diagonal subspace (in the
eigenbasis of the unperturbed Hamiltonian). Thus, the
non-diagonal elements can be obtained by establishing
and solving the dynamics associated with the complemen-
tary operator 1−P (section IV.A. of [44]). The steady state
coherences are then deduced by taking the time to infinity.
One should keep in mind that the master equation derived
in the strong-decoherence limit in [44] is valid when the
bath spectral density is such that limω→+∞

J(ω)
ω is non-

zero (and possibly infinite). This condition, satisfied by
usual spectral densities, guarantees that the unperturbed
dynamics in [44] leads to full decoherence, which is the
starting point of the projection technique used therein.

To make the comparison easier, we re-write in the
following the results of [44] using the notations we have
been using here. Additionally, in order to simplify the
presentation, we consider a simple coupling of the form
VI = λAB instead of the general one VI =

∑
α AαBα

considered in [44]. With that, in the eigenbasis {|al⟩}l of
A, the result of [44] takes the form

ρss,ME
l,l′ := ⟨al|ρ

ss,ME
S |al′⟩

= hl,l′
[
ipss

l

∫ ∞

0
dτe−λ

2a2
l′ ,l[G

∗(τ)−iτQ]e−iω̄l,l′τ

−ipss
l′

∫ ∞

0
dτe−λ

2a2
l,l′ [G(τ)+iτQ]e−iω̄l,l′τ

]
(98)

with pss
l := e−β(hl−a2

l λ
2Q)/Zss

S = e−βhl/Zss
S is the renormal-

ized population introduced in Section 7.5, with hl :=
hl − a2

l λ
2Q the renormalized “pseudo-energies”, and

Zss :=
∑

l e−βhl . Additionally, we defined G(τ) :=∫ τ
0 ds1

∫ s1

0 ds2cB(s2), and

cB(s) = TrB[eiHBsBe−iHBsBρth
B ]. (99)
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The superscript “ME” refers to the master equation nature
of the derivation [44].

Our result can be expressed as (using the results of the
derivation with no initial renormalization of the Hamilto-
nian, detailed in Section 7.5, since it is the choice made
in [44]),

ρss
l,l′ := ⟨al|ρ

ss
S |al′⟩

= −hl,l′pss
l

∫ β

0
due−λ

2a2
l,l′ [G(−iu)+uQ]euω̄l,l′

= −hl,l′pss
l′

∫ β

0
due−λ

2a2
l′ ,l[G(−iu)+uQ]euω̄l′ ,l , (100)

where we used in the second line the identity pss
l fl,l′(β) =

pss
l′ fl′,l(β), shown in Section 7.2. Now, let us consider the

integral of the function e−λ
2a2

l′ ,l[G(−iu)+uQ]euω̄l′ ,l extended
to the complex plan along the contour C defined as
u : 0→ β→ β+ ix→ ix→ 0, where x is a positive num-
ber that later will be taken to infinity. Since it is a closed
contour, the integral is equal to zero (as long as G(u) is an
analytic function). Additionally, when the bath spectral
density satisfies limω→+∞

J(ω)
ω2 > 0, the real part of the

function G(x) tends to +∞ as x increases. The condition
limω→+∞

J(ω)
ω2 > 0 is precisely the condition of validity of

the results in [44]. This is not a coincidence. The validity
of the master equation in [44] relies on the full decoher-
ence of the unperturbed dynamics, which is guaranteed as
long as G(x) tends to +∞ as x increases, which itself re-
sults in the condition limω→+∞

J(ω)
ω2 > 0 on the bath spec-

tral density. Then, the integral of e−λ
2a2

l′ ,l[G(−iu)+uQ]euω̄l′ ,l

tends to zero on the segment β + ix → ix for x → +∞.
As a result, we have

ρss
l,l′ = hl,l′pss

l′ lim
x→+∞

∫ β+ix

β
due−λ

2a2
l′ ,l[G(−iu)+uQ]euω̄l′ ,l

+hl,l′pss
l′ lim

x→+∞

∫ 0

+ix
due−λ

2a2
l′ ,l[G(−iu)+uQ]euω̄l′ ,l

= ihl,l′pss
l′

∫ +∞

0
dτe−λ

2a2
l′ ,l[G(τ−iβ)+(iτ+β)Q]e(iτ+β)ω̄l′ ,l

−ihl,l′pss
l′

∫ +∞

0
dτe−λ

2a2
l′ ,l[G(τ)+iτQ]eiτω̄l′ ,l

= ihl,l′pss
l

∫ +∞

0
dτe−λ

2a2
l′ ,l[G

∗(τ)−iτQ]e−iτω̄l,l′

−ihl,l′pss
l′

∫ +∞

0
dτe−λ

2a2
l′ ,l[G(τ)+iτQ]e−iτω̄l,l′

(101)

which is precisely equal to the expression (98) of ρss,ME
l,l′ .

Note that in the last line we used the identities pss
l′ e
βω̄l′ ,l =

pss
l and G(τ − iβ) + (iτ + β)Q = G∗(τ) − iτQ (as well

as ωl′,l = −ωl,l′). This concludes the proof that the

expression derived in this paper coincides with the ex-
pression obtained in [44], although they have been ob-
tained from very different methods and starting point.
The equivalence of the expressions is guaranteed as
soon as the results in [44] are valid (namely, as soon
as limω→+∞

J(ω)
ω2 > 0). As reminded in the main text, this

is an important step forward since it proves that the mean
force Gibbs state is indeed the actual steady state (at least
up the first order) even when the system interacts strongly
with the thermal bath.
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[55] V. May, O. Kühn. Charge and Energy Transfer Dy-
namics in Molecular Systems. 3rd Edition. Wiley-
VCH, Weinheim, Germany, 2011. doi:10.1002/
9783527633791.

[56] R. P. Feynman. An operator calculus having applica-
tions in quantum electrodynamics. Physical Review
1951; 84(1):108–128. doi:10.1103/PhysRev.

84.108.

[57] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.
Fisher, A. Garg, W. Zwerger. Dynamics of the dissi-
pative two-state system. Reviews of Modern Physics
1987; 59(1):1–85. doi:10.1103/RevModPhys.
59.1.

[58] W. H. Louisell. Radiation and Noise in Quantum
Electronics. McGraw Hill, New York, 1964.

[59] S. Nakajima. On quantum theory of transport phe-
nomena: steady diffusion. Progress of Theoretical
Physics 1958; 20(6):948–959. doi:10.1143/ptp.
20.948.

[60] R. Zwanzig. Ensemble method in the theory of ir-
reversibility. Journal of Chemical Physics 1960;
33(5):1338–1341. doi:10.1063/1.1731409.

Quanta | DOI: 10.12743/quanta.v11i1.167 November 2022 | Volume 11 | Issue 1 | Page 71

http://doi.org/10.1103/PhysRevA.106.042209
http://doi.org/10.1103/PhysRevA.106.042209
http://doi.org/10.1103/PhysRevE.86.061132
http://doi.org/10.1103/PhysRevE.86.061132
http://arxiv.org/abs/2010.09201
http://doi.org/10.1103/PhysRevResearch.1.033018
http://doi.org/10.1103/PhysRevResearch.1.033018
http://doi.org/10.1103/RevModPhys.75.715
http://doi.org/10.1103/RevModPhys.75.715
http://doi.org/10.1103/PhysRevB.72.195410
http://doi.org/10.1103/PhysRevB.72.195410
http://doi.org/10.1103/PhysRevA.104.033712
http://doi.org/10.1103/PhysRevA.104.033712
http://doi.org/10.1063/1.4722336
http://doi.org/10.1063/1.3652227
http://doi.org/10.1142/s0217751x22430217
http://doi.org/10.1142/s0217751x22430217
http://doi.org/10.1063/1.5141519
http://doi.org/10.1063/1.5141519
http://doi.org/10.1002/9783527633791
http://doi.org/10.1002/9783527633791
http://doi.org/10.1103/PhysRev.84.108
http://doi.org/10.1103/PhysRev.84.108
http://doi.org/10.1103/RevModPhys.59.1
http://doi.org/10.1103/RevModPhys.59.1
http://doi.org/10.1143/ptp.20.948
http://doi.org/10.1143/ptp.20.948
http://doi.org/10.1063/1.1731409
http://dx.doi.org/10.12743/quanta.v11i1.167

	Introduction
	Mean force Gibbs state
	General derivation
	Recovering the infinite coupling limit
	First approximation
	Approximate expression of fl,l'(beta)

	Example: spin-boson model
	High temperature approximation

	Comparison with previous results
	Conclusion
	Appendix
	Details of the computation of TrB[e-betaHB,l euHB,le-uHB,l']
	Important property of fl,l'(beta)
	Higher order terms
	Further analytical comparison between Eq.(33) and the result from Timofeev & Trushechkin
	Without initial renormalization
	Approximation of fl,l'(beta)

	Identity of first orders


