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Trace decreasing dynamical maps are as physi-
cal as trace preserving ones; however, they are
much less studied. Here we overview how the

quantum Sinkhorn theorem can be successfully ap-
plied to find a two-qubit entangled state which has the
strongest robustness against local noises and losses
of quantum information carriers. We solve a prac-
tically relevant problem of finding an optimal ini-
tial encoding to distribute entangled polarized qubits
through communication lines with polarization de-
pendent losses and extra depolarizing noise. The
longest entanglement lifetime is shown to be attain-
able with a state that is not maximally entangled.
Quanta 2021; 10: 15–21.

1 Introduction

General physical transformations of quantum states are
usually associated with quantum channels, i.e., com-
pletely positive trace preserving maps (see, e.g., [1–4]).
However, if we consider a generally nonprojective quan-
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tum measurement, then the induced state transformation
is a quantum operation, i.e., a completely positive and
trace nonincreasing map [5, 6].

A mathematical condition of complete positivity is
equivalent to a physical condition of positive semidef-
initeness for a composite-system density operator, pro-
vided the transformation has affected a part of the com-
posite system. The complete positivity condition is long
known to be equivalent to positive semidefiniteness of
the so-called Choi matrix [7] (see also [8, 9]); however,
the same matrix was introduced as a dynamical matrix
in an earlier publication by Sudarshan, Mathews, and
Rau [10], where they implicitly imposed the stronger con-
dition of complete positivity [10, Eq. (16)] instead of the
weaker condition of positivity [10, Eq. (12’)]. The trace
preservation condition takes the form of a matrix equal-
ity involving the dynamical matrix [10, Eq. (17)], so the
trace-nonincreasing condition takes the form of a matrix
inequality.

Note that a mapping from the space of measurement
outcomes to the set of quantum operations is known in
the literature as a quantum instrument [3, 5, 6]. Repeated
applications of the same quantum operation can be used
to simulate non-Hermitian quantum dynamics [11, 12],
whereas repeated applications of the same quantum in-
strument enable quantum state tomography [13]. Sequen-
tially intervening open system dynamics with quantum
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instruments as in an experiment in Ref. [14] makes it pos-
sible to fully learn a generally non-Markovian quantum
process [15].

On the other hand, a loss of quantum information car-
riers in a quantum communication line can be viewed as
a quantum operation Λ too. In this case, the detection
probability tr

[
Λ[%]

]
is the probability to successfully im-

plement a quantum operation Λ for a given input density
operator %. If the detection probability is the same for all
initial density operators %, then Λ is merely an attenuated
quantum channel, i.e., there exists 0 ≤ p ≤ 1 and a quan-
tum channel Φ such that Λ = pΦ. However, quantum
physics is much richer and there exist such biased quan-
tum operations Λ that tr

[
Λ[%]

]
, tr

[
Λ[%′]

]
for at least two

density operators % and %′ [16]. A prominent example of
the latter case is polarization dependent losses [16,17], for
which horizontally and vertically polarized photons have
different loss probabilities. That asymmetry significantly
affects the way one should encode quantum information
to reliably transmit quantum information through such a
lossy channel, namely, special codes with entangled states
are shown to perform better than codes with disentangled
states [16].

A one-parameter family of quantum operations
{Λ(t)}t≥0 represents a process of physical evolution in
time t ≥ 0. If %(0) is an initial density operator of the
system, then Λ(t)[%(0)] is a subnormalized density opera-
tor at time t. In a general physical process, the detection
probability tr

[
Λ(t)[%(0)]

]
does not have to decrease mono-

tonically as quantum information carriers can potentially
return to the communication line [18, 19]. Experimen-
talists usually postselect successful realizations (e.g., in
biphoton production [20]) and study dynamics of the con-
ditional output states

%̃(t) :=
Λ(t)[%(0)]

tr
[
Λ(t)[%(0)]

] . (1)

Note that the map %(0)→ %̃(t) in nonlinear, so focusing
solely on the dynamics of %̃(t) may lead to a misidentifi-
cation of non-Markovianity of Λ(t) [21].

We consider a physically relevant problem of two-qubit
entanglement distribution through lossy communication
lines [22, 23]. Let %12(0) be an initial density operator
and Λ(t) = Λ1(t) ⊗ Λ2(t), where Λi(t) is a qubit oper-
ation describing loss and noise accumulated in the i-th
communication line by time t. The goal of this paper is
to present a recipe on how one should prepare an initial
entangled state %12(0) so that %̃12(t) remains entangled
during the trace decreasing dynamics for the longest pos-
sible time. Entanglement represents a useful resource
for quantum communication and device-independent key
distribution [24], so its preservation is of high impor-
tance to applications. In this paper, we are interested in

the fundamental separation between entangled and dis-
entangled states and pay no attention to the “amount”
of entanglement. We do that because an arbitrary lit-
tle but nonzero two-qubit entanglement can potentially
be purified: many copies of poorly entangled states can
be transformed into a smaller number of almost maxi-
mally entangled two-qubit states [25]. In view of this, we
focus on the maximum permissible noise level, exceed-
ing which no entanglement-enabled protocol is feasible
and below which any entanglement-enabled protocol is
fundamentally possible. An entanglement lifetime (a dis-
entangling time, an entanglement sudden death time [26])
of an initial state %12(0) is defined as the minimal time τ
such that %̃12(t) is disentangled for all t ≥ τ. The maximal
possible entanglement lifetime

τ̃ = max
%12(0)

τ (2)

provides the fundamental restriction on the length of quan-
tum communications lines for entanglement distribution.

Our study follows a similar analysis made for trace
preserving maps [27, 28]; however, the trace decreasing
nature of Λ(t) modifies the result. If Λ(t) is biased, then
some states have higher detection probability than others,
which increases their contribution to Eq. (1). The optimal
state %opt

12 (0) makes allowance for that effect and is not
maximally entangled in general. A technique to solve
the optimization problem posed is based on the quantum
Sinkhorn theorem [29–32] that also finds applications in
the study of quantum channel capacity [33]. The quan-
tum Sinkhorn theorem relates strictly positive quantum
maps with unital ones and enables us to use the known re-
sults on entanglement robustness against unital quantum
noises [27, 28]. We implement that research programme
in Section 2.

In addition to a general result, in Section 3, we elab-
orate the case of polarization dependent losses accom-
panied by depolarization. This model of loss and noise
describes effects in some optical fibers and attracts in-
creasing attention in the literature [34, 35]. In this model,
each Λi(t) is defined by three parameters: the depolariza-
tion rate γ and the attenuation coefficients for horizontally
and vertically polarized photons, γH and γV . We develop
a technique on how to find the optimal state %opt

12 (0) and
the maximal entanglement lifetime provided the above
parameters are known for both lines Λ1(t) and Λ2(t).

2 Entanglement dynamics and
quantum Sinkhorn theorem

A bipartite density operator %12 on a finite dimensional
Hilbert spaceH1⊗H2 is called disentangled with respect
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to the bipartition 1|2 if it adopts a convex sum representa-
tion of the form [36, 37]

%12 =
∑

k

pk%
(k)
1 ⊗ %

(k)
2 , (3)

where {pk}k is a probability distribution and {%(k)
i }k is a

collection of density operators on Hi, i = 1, 2. A sub-
normalized density operator %12 with tr[%12] ≤ 1 is disen-
tangled if Eq. (3) represents a conic sum, i.e., pk ≥ 0 for
all k.

Let {|0〉, |1〉} be a standard qubit basis such that σx =

|0〉〈1| + |1〉〈0|, σy = −i|0〉〈1| + i|1〉〈0|, and σz = |0〉〈0| −
|1〉〈1| are the conventional Pauli operators. The maximally
entangled two-qubit state reads |ψ+〉〈ψ+|, where |ψ+〉 =

1√
2
(|00〉 + |11〉). Note that a reduced density operator of

either qubit from the maximally entangled two-qubit pair
is in the maximally mixed state 1

2 I, where I = |0〉〈0| +
|1〉〈1| is the identity operator.

Let us consider such qubit transformations for which
the maximally mixed state 1

2 I is a fixed point. A linear
qubit map Υ is called unital if Υ[I] = I. If Υ is a unital
quantum channel, then the von Neumann entropy of the
output state Υ[%] is not less than the von Neumann entropy
of the input state % for any density operator %.

Two-qubit entanglement dynamics in presence of iden-
tical local unital noises of the form Υ ⊗ Υ is studied in
Ref. [27]. The maximally entangled state |ψ+〉〈ψ+| is the
most robust against local unital noises in the sense that
Υ ⊗ Υ[%12] is disentangled for any density operator %12
whenever Υ ⊗ Υ[|ψ+〉〈ψ+|] is disentangled [27].

A generalization of that result for different unital local
noises of the form Υ⊗Υ′ is obtained in Ref. [28], where a
state with the ultimate entanglement robustness is shown
to be the maximally entangled state of the form

|ψΥ⊗Υ′〉 =
1
√

2
(|ϕ〉 ⊗ |χ〉 + |ϕ⊥〉 ⊗ |χ⊥〉) , (4)

with {|ϕ〉, |ϕ⊥〉} ({|χ〉, |χ⊥〉}) being orthogonal eigenvectors
of some traceless eigenoperator of Υ (Υ′).

If both Υ and Υ′ are diagonal in the basis of Pauli
operators σx, σy, σz, i.e.,

Υ[%] =
1
2

tr[%]I +
1
2

∑
k=x,y,z

λktr[σk%]σk, (5)

Υ′[%] =
1
2

tr[%]I +
1
2

∑
k=x,y,z

λ′ktr[σk%]σk, (6)

and additionally λx ≥ λy ≥ λz ≥ 0, λ′x ≥ λ′y ≥ λ′z ≥ 0,
then |ψΥ⊗Υ′〉 = |ψ+〉.

If parameters λk and λ′k in Eqs. (5) and (6) are functions
of time, then we deal with a local unital dynamics Υ(t) ⊗

Υ′(t) which preserves entanglement of the maximally
entangled state as long as [28]

λx(t)λ′x(t) + λy(t)λ′y(t) + λz(t)λ′z(t) > 1. (7)

A linear map Λ on operators in H is called strictly
positive if Λ[%] is positive definite for all nonzero positive
semidefinite operators %. Strictly positive maps belong to
the interior of the cone of positivity preserving maps [31]
and are also referred to as positivity improving ones [30].
If Λ is strictly positive, then by Proposition 2.32 in [32]
there exist positive definite operators A and B such that
the map

Υ = ΦA ◦ Λ ◦ ΦB (8)

is trace preserving and unital. Here, ΦX[%] = X%X† and
◦ denotes the map concatenation. If Λ is completely
positive and strictly positive, then Υ is a unital quan-
tum channel. The relation (8) is known as the quantum
Sinkhorn theorem originally discovered in Ref. [29], re-
discovered for positivity improving completely positive
maps in Ref. [30], and finally clarified in Refs. [31, 32].
One can express the operators A and B through A =

√
S

and B = (Λ†[S ])−1/2, where a positive definite operator
S is a fixed point of the map F[S ] = (Λ[(Λ†[S ])−1])−1,
where Λ† denotes a dual linear map with respect to Λ, i.e.,
tr
[
Λ†[X]Y

]
= tr

[
XΛ[Y]

]
for all X,Y . A methodology to

explicitly find operators A and B for trace preserving qubit
maps Λ is given in Ref. [28]; however, a methodology for
trace decreasing maps is still missing. In Section 3, we
partially fill this gap for a physically relevant scenario of
combined noise and loss.

The inverse relation to Eq. (8) reads

Λ = ΦA−1 ◦ Υ ◦ ΦB−1 (9)

and enables us to find the structure of the optimal state
%opt(0). Indeed, since the map ΦX has a single Kraus
operator X, the operator Λ ⊗ Λ′[%(0)] is entangled if and
only if (Υ ⊗ Υ′) ◦ (ΦB−1 ⊗ ΦB′−1)[%(0)] is entangled. On
the other hand, the most robust entangled state against
the noise Υ ⊗ Υ′ is |ψΥ⊗Υ′〉〈ψΥ⊗Υ′ | given by Eq. (4), so
(ΦB−1 ⊗ ΦB′−1)[%(0)] ∝ |ψΥ⊗Υ′〉〈ψΥ⊗Υ′ |. Inverting the map
ΦB−1 ⊗ ΦB′−1 , we get %opt(0) = |ψΛ⊗Λ′〉〈ψΛ⊗Λ′ |, where

|ψΛ⊗Λ′〉 =
B(̃τ) ⊗ B′(̃τ)|ψΥ⊗Υ′〉√

〈ψΥ⊗Υ′ |B†(̃τ)B(̃τ) ⊗ B′(̃τ)†B′(̃τ)|ψΥ⊗Υ′〉
(10)

and τ̃ is the maximal entanglement lifetime under noise
Υ(t)⊗Υ′(t) determined in [28, Proposition 1]. In the case
when both λx(t) ≥ λy(t) ≥ λz(t) ≥ 0 and λ′x(t) ≥ λ′y(t) ≥
λ′z(t) ≥ 0, one can substitute |ψ+〉 for |ψΥ⊗Υ′〉 and find the
maximal entanglement lifetime τ̃ as the smallest t > 0 for
which the inequality (7) is violated.
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3 Entanglement distribution in
presence of depolarization and
polarization dependent losses

The effect of polarization dependent losses is that the
states with different polarization are attenuated differ-
ently [16, 17, 34, 35]. Let the horizontally and vertically
polarized states be those that are the least and most at-
tenuated, or vice versa. By γH and γV denote the at-
tenuation rates for horizontally and vertically polarized
photons, respectively. Let (|H〉, |V〉) be a conventional
basis composed of the horizontally and vertically polar-
ized one-photon states. In what follows, we will identify
the basis (|H〉, |V〉) with the standard basis (|0〉, |1〉) used
in Section 2. Then the combined effect of polarization
dependent losses and depolarization with the rate γ on
a polarization qubit is described the following master

equation:

d%(t)
dt

= −
1
2

{
γH |H〉〈H| + γV |V〉〈V |, %(t)

}
+
γ

4

∑
k=x,y,z

(
σk%(t)σk − %(t)

)
, (11)

where {·, ·} stands for the anticommutator. Eq. (11) defines
the dynamical semigroup Λ(t) that is trace decreasing if
γH > 0 and γV > 0.

Let us consider a matrix representation (see, e.g., [6])
of the qubit map Λ(t), i.e., a 4 × 4 matrix M(t) whose
elements are defined through

Mi j(t) =
1
2

tr
[
σiΛ(t)[σ j]

]
, i, j = 0, x, y, z, (12)

where σ0 = I. Some tedious
yet straightforward algebra yields

M(t) =


a(t) 0 0 b(t)
0 c(t) 0 0
0 0 c(t) 0

b(t) 0 0 d(t)

 , (13)

a(t) = e−
1
2 (γ+γH+γV )t

cosh

√
γ2 + (γH − γV )2 t

2
+

γ√
γ2 + (γH − γV )2

sinh

√
γ2 + (γH − γV )2 t

2

 , (14)

b(t) = −
γH − γV√

γ2 + (γH − γV )2
e−

1
2 (γ+γH+γV )t sinh

√
γ2 + (γH − γV )2 t

2
, (15)

c(t) = e−
1
2 (2γ+γH+γV )t, (16)

d(t) = e−
1
2 (γ+γH+γV )t

cosh

√
γ2 + (γH − γV )2 t

2
−

γ√
γ2 + (γH − γV )2

sinh

√
γ2 + (γH − γV )2 t

2

 . (17)

To apply the quantum Sinkhorn theorem to a map Λ(t)
with the matrix representation (13) we need to find a fixed
point of the map F[S ], i.e., to solve a matrix equation

S =

(
Λ(t)

[(
Λ(t)†[S ]

)−1
])−1

. (18)

Note that in our case Λ(t)† = Λ(t). Due to the phase
covariance of Λ(t) [38], we seek the operator S in the
form of an ansatz S = I + sσz. If b(t) , 0, this results in
the following solution:

s(t) = −
a(t) + d(t) −

√
[a(t) + d(t)]2 − 4b2(t)
2b(t)

. (19)

Note that S = I + sσz is positive definite if a(t) + d(t) ≥
2|b(t)| , 0 which is automatically fulfilled for expres-
sions (14)–(17) if t > 0. Substituting A =

√
S and

B = (Λ(t)†[S ])−1/2 into Eq. (8), we get the corresponding
unital map Υ(t) that has the form (5) with parameters

λx(t) = λy(t) =
2c(t)

a(t) − d(t) +
√

[a(t) + d(t)]2 − 4b2(t)
,

(20)

λz(t) =
4[a(t)d(t) − b2(t)]{

a(t) − d(t) +
√

[a(t) + d(t)]2 − 4b2(t)
}2 . (21)

The obtained expressions satisfy the conditions λx(t) ≥
λy(t) ≥ λz(t) ≥ 0, so we can use simplified results at the
end of Section 2.
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Figure 1: Effect of local depolarization and polarization de-
pendent losses, Λ(t) ⊗ Λ(t) with γH = γ and γV = 5γ, on
two-qubit entanglement dynamics (negativity) for different ini-
tial states: the maximally entangled one (red dashed line) and
the optimal one (green solid line).

Given two communication lines Λ(t) and Λ′(t) with
parameters γH , γV , γ and γ′H , γ′V , γ′, respectively, the
maximal entanglement lifetime τ̃ is a solution of the equa-
tion

λx(̃τ)λ′x(̃τ) + λy(̃τ)λ′y(̃τ) + λz(̃τ)λ′z(̃τ) = 1. (22)

The optimal state %opt(0) = |ψΛ⊗Λ′〉〈ψΛ⊗Λ′ | is defined by
the normalized vector

|ψΛ⊗Λ′〉 ∝ B(̃τ) ⊗ B′(̃τ)(|HH〉 + |VV〉), (23)

where

B(̃τ) =
|H〉〈H|√

a(̃τ) + b(̃τ) + s(̃τ)[b(̃τ) + d(̃τ)]

+
|V〉〈V |√

a(̃τ) − b(̃τ) + s(̃τ)[b(̃τ) − d(̃τ)]
(24)

and B′(̃τ) is obtained from Eq. (24) by replacing a→ a′,
b→ b′, c→ c′, d → d′.

Despite the fact that the final expression for the optimal
state (23) is rather involved, it is analytically derived and
can be further explored. In Fig. 1 we depict the evolution
of the entanglement quantifier N called negativity [37,39]
for the maximally entangled initial state |ψ+〉〈ψ+| and the
optimal state (23). If % is a density operator of a bipartite
system, then N(%) = 1

2 (‖(Id⊗T )[%]‖1−1), where Id is the
identity transformation, T is the transposition in the stan-
dard basis, and ‖X‖1 = tr

√
X†X. A two qubit state % is

entangled if and only if N(%) > 0 [40]. Fig. 1 shows that
although the state Λ(t) ⊗ Λ′(t)[%opt(0)] exhibits less en-
tanglement in the beginning of evolution as compared to
Λ(t)⊗Λ′(t)[|ψ+〉〈ψ+|], the inverse relation takes place after
some time. Finally, after some time Λ(t)⊗Λ′(t)[|ψ+〉〈ψ+|]
becomes separable whereas Λ(t) ⊗ Λ′(t)[%opt(0)] remains

entangled. This phenomenon illustrates how a less entan-
gled optimal state outperforms the maximally entangled
state in long term.

4 Conclusions

Using a general technique of the quantum Sinkhorn theo-
rem and the previously known results for trace preserv-
ing quantum maps, we have studied the two-qubit entan-
glement lifetime under arbitrary trace decreasing local
operations (Section 2). An analytical treatment of the
quantum Sinkhorn theorem for a particular quantum map
Λ(t) is a challenge because Eq. (18) is rather difficult to
resolve. Nevertheless, we have managed to derive the ex-
plicit form of the Sinkhorn theorem for trace decreasing
qubit operations with the matrix representation (13). This
analytical result advances our understanding of the quan-
tum Sinkhorn theorem beyond the trace-preserving case
of phase-covariant qubit maps, which was the only non-
trivial class of maps with explicit analytical expressions
for Υ, A, and B [28, 33] known before this work.

We applied the proposed approach to the analysis of en-
tanglement dynamics of polarization-encoded two-qubit
states subjected to the combined effect of depolarization
and polarization dependent losses (Section 3). Our goal
was to find the longest entanglement lifetime τ̃ among all
possible initial states. The longest entanglement lifetime
determines a fundamental noise level exceeding which
no entanglement-enabled protocol can be implemented.
We expressed τ̃ as a solution of the analytically derived
Eq. (22). The optimal initial state (23)—that exhibits
the strongest robustness against depolarization and po-
larization dependent losses—is not maximally entangled
if γH , γV . The optimal state makes allowance for the
difference in attenuation coefficients (γH and γV ) and has
a higher contribution of those polarization component,
which decays more rapidly.
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