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In this work, we revisit the theory of open quantum
systems from the perspective of fermionic baths.
Specifically, we concentrate on the dynamics of a

central spin half particle interacting with a spin bath.
We have calculated the exact reduced dynamics of
the central spin and constructed the Kraus operators
in relation to that. Further, the exact Lindblad type
canonical master equation corresponding to the re-
duced dynamics is constructed. We have also briefly
touched upon the aspect of non-Markovianity from
the backdrop of the reduced dynamics of the central
spin.
Quanta 2021; 10: 55–64.

1 Introduction

A fundamental problem in quantum physics, and one
which has transcended itself to accommodate an unprece-
dented number of interdisciplinary research domains, is
related to the subject of open quantum systems [1, 2]. In
the most general sense, these systems can be understood
as consisting of localized quantum systems under the in-
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fluence of much bigger quantum systems, which can be
considered as the environment. Incidentally, in the quan-
tum world, physical systems are unlikely to be isolated
from such environmental influences. Systems with poten-
tial for implementation of quantum information theoretic
and computational protocols like ion traps [3], quantum
dots [4], NMR qubits [5], polarized photons [6], Joseph-
son junction qubits [7], quantum walks [8–10] and many
others [11–15] are all exposed to one extent or other, to
their corresponding environments. It is thus imperative to
understand the characteristic traits of open system dynam-
ics for such quantum systems submerged in different types
of baths. For quantum systems interacting with Marko-
vian environments, their non-classicality eventually fades
over time, thus nullifying any quantum advantage which
can be exploited in some information theoretic proto-
col. Even in the field of quantum thermodynamics, the
characteristically quantum traits like entanglement [16] or
coherence [17,18] significantly enhances the performance
of quantum thermal devices [19]. Thus, it is imperative to
engineer baths in such a way so as to retain non-classical
features of the system for large durations.

Determination of global dynamics of the quantum sys-
tem and its environment [10] is essentially a many body
problem. For exact determination of the reduced dynam-
ics of the system, the total global dynamics of the system
plus environment must be unravelled, which is often not
possible in reality. The reason behind that is the fact
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that often in many body problems the evolution of micro-
scopic quantum systems in consideration, generally gets
extremely involved due to the interaction with the com-
plex environment. To deduce the local evolution of the
quantum system of interest, it is a general procedure to
consider the bath as a huge collection of harmonic oscilla-
tors or fermionic spin half entities [1,2] usually identified
as bath. These baths are categorized into two separate
universal classes of quantum environment [20]. In the har-
monic oscillator environmental model, the environment
is conceived as a collection of non-interacting harmonic
oscillators. Most prominent of such models are spin-
boson [21] and the Caldeira–Leggett model [11,12,22,23]
originating from a schematic put forward by Feynman and
Vernon [24]. These particular paradigms of open system
dynamics have been widely investigated in the backdrop
of many different physical phenomena under Markovian
approximation [1, 2, 25, 26]. On the contrary, the class
of fermionic bath models are still relatively less investi-
gated, in spite of the fact that such fermionic baths are of
pivotal interest in the quantum theory of magnetism [27],
quantum spin glasses [28], theory of conductors, Ising
spin chains [29] and superconductors [30]. Deducing the
reduced exact dynamics of a quantum system interacting
with a spin bath model is simultaneously of paramount
importance yet a difficult task. Indeed, in usual cases
the reduced dynamics cannot be derived exactly without
applying several approximation methods, both local and
nonlocal in time [1, 31–36].

In this work, we are going to review a method to derive
the exact reduced dynamics [37–40] of a spin half system
interacting with a special type of finite spin environment.
One of the most significant aspects of this particular for-
malism is that, it is amongst the very few cases where the
exact reduced dynamics can be derived without applying
any major approximation technique. We primarily focus
on the central spin system, where the homogeneous inter-
actions couple a central two-level system to a background
of a finite spin environment. It is the fermionic bath coun-
terpart of the famous spin-boson oscillator model. This
model adequately describes, e.g., the tunnelling dynamics
of nanoscopic and mesoscopic magnets and supercon-
ductors. Here we demonstrate how to average over (or
integrate out) spin bath modes, using Holstein–Primakoff
transformation [41, 42], to find the central spin dynam-
ics. The formal technique involves transformation of the
non-interacting bath spins into a bosonic representation,
which allows us to average out the bath modes. After
finding the reduced dynamics of the central spin by this
method, we will derive the Kraus operators and finally
the exact Lindblad [25] master equation for this model.

An important thing to mention in this context is the
environmental model of spin half particle we are consid-

ering in this work, is not ideally a bath in the true sense
of the word, since it consists of finite number of spin
particles. Though finite baths are not environments in the
true sense of the word, they have been used in literature
recently [43], due to their typical features. Even though
finite bath can show equilibrium phenomena like their
infinite counterpart, it also induces a dynamical evolution
of the bath state [43], which is typically considered to
be static, for the usual infinite bath systems. This spe-
cial feature, along with the absence of weak coupling
limit, makes the main content of the present work a very
interesting study.

2 The reduced dynamics of a spin
half particle for a central spin
model

In this section, we present the central spin model, where a
single spin half particle described as the system, interacts
centrally with a collection of non-interacting spin half
particles conceived as the fermionic environment.

We consider a spin half particle interacting uniformly
with a collection of non-interacting spin half particles.
The total Hamiltonian of this spin system and the spin
environment is given by

H = Hs + HB + HS B, (1)

where the system, environment and the interaction Hamil-
tonians are respectively given by

Hs =
ℏω0

2 σz0,

HB =
ℏω
2N

∑N
i=1 σzi,

HS B =
ℏ∆

2
√

N

∑N
i=1

(
σx0σxi + σy0σyi + σz0σzi

)
.

(2)

Here σi0 (i = x, y, z) are the Pauli matrices for the system
and σi j (i = x, y, z and j = 1, 2, ....N) are the same for
the N number of environment spins. Both the charecter-
istic bath and interaction frequencies has been rescaled
as ω/N and ∆/

√
N, respectively. Our goal is to represent

this total Hamiltonian in a simple enough form, so that
we can work with it to achieve an exact solution of the
corresponding dynamical equation for the system and the
environment. For that purpose, we are going to utilize
a method called the Holstein–Primakoff transformation,
which will allow us to write the total Hamiltonian in a
form similar to a distorted Rabi oscillation. In the follow-
ing we exercise this method on our system.

Let us use the total angular momentum operator for
the bath spins Jl =

∑N
i=1 σli (l = x, y, z,+,−). With the
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help of this, without altering the physics behind it, let us
transform the environment and interaction Hamiltonian
as

HB =
ℏω

2N
Jz, HS B =

ℏ∆

2
√

N

(
σx0Jx + σy0Jy + σz0Jz

)
.

(3)
Further using the ladder operators 2J+ = Jx + iJy, 2J− =
Jx − iJy and similarly σ+, σ− for the system spin, the
interaction Hamiltonian can be rewritten as

HS B =
ℏ∆
√

N

(
σ+0J− + σ−0J+ +

σz0Jz

2

)
.

We now use the Holstein–Primakoff transformation for
the total angular momentum of the environmental spin
operators

J+ =
√

Nb†
(
1 −

b†b
2N

)1/2

, J− =
√

N
(
1 −

b†b
2N

)1/2

b,

(4)
where b, b† are the bosonic annihilation and creation op-
erators respectively, with the property [b, b†] = 1. Using
these transformations, the Hamiltonians of equation (2)
can be rewritten as

HB = −
ℏω
2

(
1 − b†b

N

)
,

HS B = ℏ∆
[
σ+0

(
1 − b†b

2N

)1/2
b + σ−0b†

(
1 − b†b

2N

)1/2]
+ ℏ∆2 σz0

(
1 − b†b

N

)
.

(5)

Equipped with this transformed Hamiltonian, we are now
technically dealing with a single spin interacting with a
single oscillator mode, though the underlining physics
remains unchanged.

In the following, with the help of the previously
discussed transformation we now deduce the exact
reduced dynamics of the system spin half particle
after performing the total dynamical evolution for the
system and environment and then discarding the bath
degrees of freedom. In order to do that, we assume
the initial completely decoupled system-bath joint
state to be ρS B(0) = ρS ⊗ ρB, which basically makes
sure the complete positivity of the reduced dynamics.
Furthermore, we consider the initial bath state to be a
thermal state ρB = exp(−HB/KT )/Z, where K, T, Z are
respectively the Boltzmann constant, temperature of the
bath and the partition function. Let us further consider the
evolution of the joint system-bath state |ϕ(0)⟩ = |1⟩ ⊗ |x⟩,
under the previously discussed Hamiltonian, where |1⟩
is the excited state of the system and |x⟩ is an arbitrary
bath state. After the total evolution described by the
unitary U = exp(−iHt/ℏ), let the initial state evolved
into |ϕ(t)⟩ = η1(t)|1⟩|y1⟩ + η2(t)|0⟩|y2⟩. For the purpose of

solving the dynamics, let us further consider two opera-
tors M̂1(t) and M̂2(t) in the environment space such that,
M̂1(t)|x⟩ = η1(t)|y1⟩ and M̂2(t)|x⟩ = η2(t)|y2⟩. Now using
the Schrödinger equation corresponding to the total evolu-
tion d

dt |ϕ(t)⟩ = − i
ℏH|ϕ(t)⟩, we get the following equations

d
dt M̂1(t) = −i

(
ω0
2 −

ω−∆
2

(
1 − b†b

N

))
M̂1(t) − i∆

(
1 − b†b

2N

)1/2
bM̂2(t),

d
dt M̂2(t) = i

(
ω0
2 +

ω+∆
2

(
1 − b†b

N

))
M̂2(t) − i∆b†

(
1 − b†b

2N

)1/2
M̂1(t).

(6)

If we now further substitute M̂′1(t) = M̂1(t) and M̂′2(t) = b†M̂2(t), then we have

d
dt M̂′1(t) = −i

(
ω0
2 −

ω−∆
2

(
1 − n̂

N

))
M̂′1(t) − i∆

(
1 − n̂

2N

)1/2
(n̂ + 1)M̂′2(t),

d
dt M̂′2(t) = i

(
ω0
2 +

ω+∆
2

(
1 − n̂+1

N

))
M̂′2(t) − i∆

(
1 − n̂

2N

)1/2
M̂′1(t).

(7)

Here n̂ = b†b is the number operator. This equation (7) can now be solved and the solution will be a function of both
the number operator n̂ and time t. We can further consider the eigenstate |n⟩ of the number operator, so that we have
M̂′1(t)|n⟩ = M′1(n, t)|n⟩ and M̂′2(t)|n⟩ = M′2(n, t)|n⟩. Using this we can determine the evolution of the reduced state of
the qubit (|1⟩⟨1|),by tracing out the environment basis (|n⟩). Therefore the qubit excited state evolves under the given
dynamics as

Φ(|1⟩⟨1|) =
1
Z

N∑
n=0

(
|M′1(n, t)|2|1⟩⟨1| + (n + 1)|M′2(n, t)|2|0⟩⟨0|

)
exp

(
−
ℏω

2KT

( n
N
− 1

))
, (8)
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with
|M′21 (n, t)|2 = 1 − 4∆2(1 − n/2N)(n + 1)|M′22 (n, t)|2,

|M′22 (n, t)|2 = sin2(βt/2)
β2 ,

β2 =
(
ω0 −

ω
2N + ∆

(
1 − 2n+1

2N

))2
+ 4∆2(n + 1)

(
1 − n

2N

)
.

(9)

Similarly, let us consider |χ(0)⟩ = |0⟩⊗|x⟩ and |χ(t)⟩ = M̂3(t)|0⟩|y3⟩+M̂4(t)|1⟩|y4⟩. Let us consider the transformation
M̂3(t) = M̂′3(t) and M̂4(t) = bM̂′4(t). Now if we follow similar procedure as demonstrated above, we come to the
following characteristic equations

d
dt M̂′3(t) = i

(
ω0
2 +

ω+∆
2

(
1 − n̂

N

))
M̂′3(t) − i∆n̂

(
1 − n̂−1

2N

)
M̂′4(t),

d
dt M̂′4(t) = i

(
ω0
2 −

ω−∆
2

(
1 − n̂

N

))
M̂′4(t) − i∆n̂

(
1 − n̂−1

2N

)
M̂′3(t),

(10)

Solving equation (10) we get that

Φ(|0⟩⟨0|) =
1
Z

N∑
n=0

(
n|M′4(n, t)|2|1⟩⟨1| + |M′3(n, t)|2|0⟩⟨0|

)
exp

(
−
ℏω

2KT

( n
N
− 1

))
. (11)

with
|M3(n, t)|2 = sin2(β′t/2)

β′2
,

|M4(n, t)|2 = 1 − 4n∆2
(
1 − n−1

2N

)
|M1(n, t)|2,

β′2 =
(
ω0 −

ω
2N + ∆

(
1 − n

N

))2
+ 4∆2n

(
1 − n−1

2N

)
.

(12)

The off-diagonal components of the system density matrix can be calculated as

Φ(|1⟩⟨0|) = ζ(t)|1⟩⟨0|, (13)

with
ζ(t) = 1

Z
∑N

n=0 e−ωt/2N
(
cos(βt/2) − iϵ sin(βt/2)

β

) (
cos(β′t/2) + iϵ′ sin(β′t/2)

β′

)
exp

(
− ℏω2KT

(
n
N − 1

))
,

ϵ = 1
β

(
ω0 −

ω
2N + ∆

(
1 − 2n+1

2N

))
,

ϵ′ = 1
β′

(
ω0 −

ω
2N + ∆

(
1 − n

N

))
.

(14)

Therefore the reduced density matrix of the system qubit

ρ(t) =
(
ρ11(t) ρ12(t)
ρ∗12(t) ρ22(t)

)
(15)

is given as

ρ11(t) = (1 − α1(t))ρ11(0) + α2(t)ρ22(0),
ρ22(t) = 1 − ρ11(t),
ρ12(t) = ζ(t)ρ12(0),

(16)

with

α1(t) =
∑N

n=0 4∆2
(
1 − n

2N

)
(n + 1) sin2(βt/2)

β2 ,

α2(t) =
∑N

n=0 4n∆2
(
1 − n−1

2N

) sin2(β′t/2)
β′2

.

(17)

2.1 Operator sum representation

Another important aspect of open system dynamics is to
express a completely positive trace preserving evolution
in terms of Kraus operators or in another words, operator
sum representation, given as ρ(t) =

∑
i Ki(t)ρ(0)K†i (t).

The Kraus operators can be constructed from the eigen
spectrum of the Choi state corresponding to the dynamical
map. The Choi state of the dynamical map Φ(·) can be
derived by applying the map on one side of the maximally
entangled state |ψ⟩ as (I⊗Φ)|ψ⟩⟨ψ|, where I is the identity
matrix. For our particular case, this matrix is given by
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C(t) =


1−α1(t)

2 0 0 ζ(t)
2

0 α1(t)
2 0 0

0 0 α2(t)
2 0

ζ∗(t)
2 0 0 1−α2(t)

2

 . (18)

From the eigen spectrum of this Choi state, we can
calculate the Kraus operators as

K1(t) =
√
α2(t)

(
0 1
0 0

)
,

K2(t) =
√
α1(t)

(
0 0
1 0

)
,

K3(t) =
√
Γ1(t)

1+Λ2
1(t)

(
Λ1(t)eiθ(t) 0

0 1

)
,

K4(t) =
√
Γ2(t)

1+Λ2
2(t)

(
Λ2(t)eiθ(t) 0

0 1

)
,

(19)

where

Γ1,2 =
(
1 − α1(t)+α2(t)

2

)
± 1

2

√
(α1(t) − α2(t))2 + 4|ζ(t)|2,

Λ1,2 =

√
(α1(t)−α2(t))2+4|ζ(t)|2∓(α1(t)−α2(t))

2|ζ(t)| ,

θ(t) = arctan
[
ζI(t)/ζR(t)

]
,

(20)
where ζI(t), ζR(t) are the imaginary and real part of ζ(t)
respectively.

2.2 Canonical master equation

Now, our goal is to find the generator corresponding to the
completely positive trace preserving evolution. In other
words, here we are going to construct the canonical mas-
ter equation for the evolution we demonstrated previously.
Derivation of the exact master equation corresponding
to a given quantum dynamical map is considered to be
one of the most fundamental issues in the theory of open
quantum systems. This is because, the canonical or Lind-
blad type master equation of a quantum evolution, paves
the path for understanding various physical processes
like dissipation, absorption, dephasing and the decoher-
ing process in general. Moreover, theoretical and also
practical studies of quantum scale heat engines, refrig-
erators, diodes, transistors and other such devices has
gained paramount importance in recent times, since they
are paving the way for realization of quantum comput-
ers in the near future. In this context, construction of
Lindblad master equations for practically implementable
reservoir engineering models are of considerable interest

from the perspective of quantum thermodynamics, where
a very few number of quantum systems are coupled to
their respective heat baths in general. In those situations,
the canonical Lindblad type master equation in the spin
bath models can provide a novel path to explore the ther-
modynamics in hitherto unexplored strong coupling and
non-Markovian regions which presumably have far reach-
ing impacts to enhance the performance of many quantum
thermal devices.

In the following, we construct the exact Lindblad type
canonical master equation [37, 38] for the central spin
half particle interacting centrally with a collection of spin
half particles, starting from a completely positive trace
preserving map given in equation (16). The dynamical
map expressed in equation (16) is also notationally ex-
pressed as ρ(t) = Φ(ρ(0). Let us consider that the master
equation corresponding to this map is given by

d
dt
ρ(t) = L(ρ(t)) (21)

The above equation is characterized by the time depen-
dent generator L(·). We now consider the following
method to construct this Lindblad type master equa-
tion for the evolution of the central spin given by equa-
tion (16).

Let us consider an orthonormal basis set of Hermitian
operators {Gk}. By definition, they have the following
properties

Tr[GkGl] = δkl, G†k = Gk.

A dynamical map of the form ρ(t) = Φ(ρ(0)), can be
represented as

Φ(ρ(0)) =
∑
k,l

Tr[GkΦ(Gl)]Tr[Glρ(0)]Gk = [F(t)r(0)]GT ,

(22)
where F(t) is a matrix with elements Fkl(t) =

Tr[GkΦ(Gl)] and r(0) is a column vector with elements
rl = Tr[Glρ(0)]. By differentiating equation (22), we get

ρ̇(t) = [Ḟ(t)r(0)]GT . (23)

Similarly, let us construct a matrix L(t) with elements
Lkl(t) = Tr[GkL(Gl)] and a column vector r(t) with ele-
ments rl(t) = Tr[Glρ(t)]. Therefore, we can represent the
master equation (21) as

L(ρ(t)) =
∑
k,l

Tr[GkL(Gl)]Tr[Glρ(t)]Gk = [L(t)r(t)]GT .

(24)
Now comparing equation (23) and (24) and using the

identity F(t)r(0) = r(t), we get

L(t)F(t) = Ḟ(t) ⇒ L(t) = Ḟ(t)F(t)−1. (25)
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If the F(t) matrix for some given quantum evolution is invertible, then we can always find the corresponding L(t)
matrix and hence the exact master equation. For our specific situation, fortunately the corresponding F(t) matrix is
invertible and we find the exact expression of L(t), which is given in the following:

L(t) =



0 0 0 0

0 d
dt ln |ζ(t)| − d

dt ln
(
1 +

∣∣∣∣ ζR(t)
ζI (t)

∣∣∣∣2) 0

0 d
dt ln

(
1 +

∣∣∣∣ ζR(t)
ζI (t)

∣∣∣∣2) d
dt ln |ζ(t)| 0

α̇2(t) − α̇1(t) − α̇2(t)+α̇2(t)
1−(α1(t)+α2(t)) (α1(t) + α2(t)) 0 0 −

α̇2(t)+α̇2(t)
1−(α1(t)+α2(t))


.

(26)

Hereafter using this matrix (26), we get the following set
of differential equations for the elements of the density
matrix ρ(t).

ρ̇11(t) = −ρ̇22(t) = Lz0+Lzz
2 ρ11(t) + Lz0−Lzz

2 ρ22(t),
ρ̇12(t) = (Lxx + iLxy)ρ12(t),

(27)

where Lkl are the matrix elements of L(t) with k, l =
{0, x, y, z}. This set of equations is essentially the dynami-
cal master equation for the density matrix corresponding
to the evolution we considered. But, as we can clearly
see that it is not in the canonical Lindblad form. To un-
derstand the process of dissipation, absorption, dephasing
and other phenomena in an orderly fashion, one needs
to construct the Lindblad form of the master equation.
Therefore to obtain the desired form of the master equa-
tion, let us consider the following form

ρ̇(t) = L(ρ(t)) =
∑

k

Ak(t)ρ(t)Bk(t)†, (28)

where Ak(t) and Bk(t) are matrices represented as

Ak(t) =
∑

i

Giaik(t), Bk(t) =
∑

i

Gibik(t).

By virtue of this specific decomposition, the master equa-
tion (27) can be rewritten as

ρ̇(t) =
∑

i j

Ci j(t)Giρ(t)G j,

with Ci j(t) =
∑

k aik(t)b jk(t)∗. Doing some algebraic ma-
nipulation, we arrive at the following master equation of
the Lindblad form

ρ̇(t) =
i
ℏ

[ρ(t),H(t)]

+
∑

i j={x.y,z}

Ci j(t)
[
Giρ(t)G j −

1
2
{G jGi, ρ(t)}

]
, (29)

with

H(t) =
iℏ
2

(D(t)−D(t)†), D(t) =
C00(t)

8
I+

∑
i

Ci0(t)
2

Gi.

Here the curly braces stand for anti-commutator. There-
fore the canonical Lindblad form of the master equation
looks like

ρ̇(t) = i
ℏΩ(t)[ρ(t), σz] + γd(t)[σzρ(t)σz − ρ(t)]
+γ−(t)[σ−ρ(t)σ+ − 1

2 {σ+σ−, ρ(t)}]
+γ+(t)[σ+ρ(t)σ− − 1

2 {σ−σ+, ρ(t)}],
(30)

with

Ω(t) = −1
2

d
dt ln

(
1 +

∣∣∣∣ ζR(t)
ζI (t)

∣∣∣∣2) ,
γ−(t) =

[
d
dt
α1(t)−α2(t)

2 −
α1(t)−α2(t)+1 d

dt ln(1−α1(t)−α2(t))
2

]
,

γ+(t) = −
[

d
dt
α1(t)−α2(t)

2 −
α1(t)−α2(t)−1 d

dt ln(1−α1(t)−α2(t))
2

]
,

γd(t) = 1
4

d
dt

[
ln

(
1−α1(t)−α2(t)
|ζ(t)|2

)]
.

The first term in the right hand side of equation (30) in
the commutator corresponds to the unitary part, having
frequency Ω(t). The second, third and fourth terms are
chronologically the dephasing, dissipation and absorption
terms with rates γd(t), γ−(t), γ+(t), respectively.

3 Dynamics of non-Markovianity

Both the qualitative and quantitative analysis of quan-
tum non-Markovianity is of fundamental importance in
the theory of open quantum dynamics. Over the past
decade, there has been numerous proposals for quantifing
non-Markovianity based on CP divisibility [36, 44] and
non-Markovianity witness [10, 36, 39, 40, 44–56]. One
of the prominent non-Markovianity measures based on
the composition of the dynamical map was introduced
in [36], the so called RHP measure. In this method of
characterization, non-Markovianity is quantified as the
amount of deviation from divisibility of a dynamics.
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Figure 1: Dynamics of γ−(t) as a function of time t for differ-
ent values of interaction strength ∆. Model parameters were
ω0 = ω = 1, number of environmental spins N = 100 and tem-
perature T = 1. Legend: ∆ = 0.003 (red thick line), ∆ = 0.005
(green dashed line) and ∆ = 0.01 (blue dotted line).
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Figure 2: Dynamics of γ−(t) as a function of time t for different
values of temperature T . Model parameters were ω0 = ω = 1,
number of environmental spins N = 100 and interaction
strength ∆ = 0.01. Legend: T = 0.1 (red thick line), T = 1
(green dashed line) and T = 10 (blue dotted line).
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Figure 3: Dynamics of γ−(t) as a function of time t for different
values of N. Model parameters were ω0 = ω = 1, interaction
strength ∆ = 0.01 and temperature T = 1. Legend: N = 100
(red thick line), N = 200 (green dashed line) and N = 500
(blue dotted line).

A divisible quantum completely positive trace preserv-
ing dynamics ΦD(t2, t1) is considered as such a dynamical
map which can be divided into infinitely many completely
positive trace preserving maps like the following

ΦD(t2, t1) = ΦD(t2, t′) ◦ ΦD(t′, t′′)◦
... ◦ ΦD(t(n−1)′ , tn′) ◦ ΦD(tn′ , t1),

(31)

for all t1, t2 and t1 ≤ tn′ ≤ ... ≤ t′ ≤ t2. For a dynam-
ical map Φ(·), which does not follow this property, the
amount of indivisibility can be quantified as the shift from
complete positivity of some intermediate map Φ(t + τ, t).
This amount can be calculated from the Choi state as

N(t) = lim
τ→0+

||I ⊗ Φ(t + τ, t)|ψ⟩⟨ψ|||1 − 1
τ

,

where ||(·)||1 =
√

Tr(·)†(·) stands for the trace norm of
a matrix. Note that though we are dealing here with
qubit systems, the procedure is viable for any dimensional
quantum systems.

For quantum evolutions having Lindblad type gener-
ators, N(t) can only be a finite non-zero quantity when
one or more of the Lindblad coefficients are negative
at certain time t, i.e., the divisibility of a Lindblad dy-
namics breaks down, only if Lindblad coefficients are
negative. Therefore for simplicity, we can consider the
negativity of γ−(t), γ+(t) or γd(t) as a proper indicator of
non-Markovianity. In Figures 1, 2 and 3, we demonstrate
the time evolution of some of the Lindblad coefficients
for our specific dynamics, to understand how its non-
Markovian features change with variation of parameters
like interaction strength, number of environmental spins
and temperature of the finite environment.

Note that we have only considered the temporal dynam-
ics of γ−(t) for the sake of brevity. The other Lindblad
parameters will also show similar type of non-Markovian
behaviour. From the plots it is clear that the dynamics
in question is non-Markovian and this non-Markovianity
increases with increasing interaction strength, bath tem-
perature and also the number of bath spins. We can see
from the plots that, as we increase the number of bath
spins, interaction strengths, and temperature of the bath,
the non-Markovian fluctuation of information flow from
the system and the backflow of information from environ-
ment into the system also increases. This clearly indicates
that the bath parameters have major roles to play in the
non-Markovian behaviour of the system dynamics. Nev-
ertheless, we conclude that all non-Markovian environ-
mental interactions will follow the same sort of behaviour
as the case considered in this article. The phenomenon of
quantum non-Markovianity is still not fully resolved and
is a heavily researched area of study in quantum science.
The spin bath paradigm introduced in this work, has the
potential to deeply impact this field of study.
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4 Conclusion

In this work, we have revisited the open quantum dynam-
ical aspects of central spin system interacting with a spin
bath. The tools needed have been discussed. For the
model chosen, the exact reduced dynamics of the spin
is derived and the Kraus operators constructed from it.
Furthermore, we have also reviewed a specific technique
to construct Lindblad type canonical master equations
in detail. Using this method, we have constructed the
exact Lindblad type master equation for the central spin.
Moreover, we have also discussed some aspects of non-
Markovianity of the central spin. This review offers a
substantial material for both general techniques of the the-
ory of open quantum systems and the theory of fermionic
baths.
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