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Aprocedure allowing to construct rigorously dis-
crete as well as continuum deterministic evolu-
tion equations from stochastic evolution equa-

tions is developed using Dirac’s bra–ket notation. This
procedure is an extension of an approach previously
used by the author coined Discrete Stochastic Evolu-
tion Equations. Definitions and examples of discrete
as well as continuum one-dimensional lattices are de-
veloped in detail in order to show the basic tools that
allow to construct Schrödinger-like equations. Exten-
sion to multi-dimensional lattices are studied in order
to provide a wider exposition and the one-dimensional
cases are derived as special cases, as expected. Some
variants of the procedure allow the construction of
other evolution equations. Also, using a limiting proce-
dure, it is possible to derive the Schrödinger equation
from the Schrödinger-like equations. Another possi-
ble approach is given in the appendix.
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1 Introduction

In this paper, a deterministic quantum mechanical evolu-
tion equation is derived from a set of stochastic quantum
mechanical evolution equations using Dirac’s bra–ket
notation, which can be considered an extension of an ap-
proach coined Discrete Stochastic Evolution Equations
(DSEE) [1]. Some illustrative examples that show the ver-
satility of this approach can be found in [1–9]. Within this
context, discrete as well as continuum Schrödinger-like
equations will be obtained without the use of distribu-
tions like Dirac’s delta. This goal is achieved using an
appropriate split of the discrete as well as the continuum
Hamiltonian, allowing a complete rigorous derivation of
the usual equation proposed or obtained in the literature,
e.g. [9–11]. Lot of work was done and is being done on
the subject of Quantum Stochastic Processes, see for ex-
ample the classical books [12, 13] or more recently from
a more mathematical grounds, e.g. [14–17]. Appropri-
ate expansions in a finite centered differences series as
well as in a Taylor series for the discrete and continuum
evolution equation, respectively, allows to complete the
basic tools used for deriving distribution-free equations
in a straightforward way. The possibility of obtaining de-
terministic evolution equations from stochastic evolution
equations is based on the assumption that the Hamiltonian
and the wave functions are statistically independent. This
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means that the averages over realization of products of
the Hamiltonian with the wave functions factorizes. One
more assumption that allows the obtention of discrete as
well as continuum Schrödinger-like equations is that the
Hamiltonian can be split in a sum of two terms, as will
be seen in all the examples given below. An explanation
about the use of Schrödinger-like equations instead of
Schrödinger equation is in order. It is well known (see
e.g. [11, §16]) that the Hamiltonian allowing to obtain a
deterministic one-dimensional Schrödinger equation is
expressed in terms of distributions like

H(x, x′) = −
ℏ

2m
δ′′(x − x′) + V(x)δ(x − x′)

=

(
−
ℏ

2m
d2

dx2 + V(x)
)
δ(x − x′),

where x and x′ are two points, δ′′(x − x′) is the second
derivative of the delta function δ(x − x′), V(x) is the po-
tential, m is the mass of the particle, and ℏ is the reduced
Plank constant. On the other hand, as Schrödinger-like
equation will be referred to any equation with the same
form of the Schrödinger equation when the Hamiltonian
and the wave function are expanded in a Taylor series up
to an appropriate order in △x′ = x′ − x, as we will see be-
low. The question that will be answered is: Is it possible
to find a Hamiltonian, independent of distributions, that
after introducing it in the general evolution equations

dψi(t)
dt
= −

ı

ℏ

∑
i′

Hi,i′(t)ψi′(t), ∀i, i′ ∈ Λ1,

or

∂ψ(x, t)
∂t

= −
ı

ℏ

∫
H(x, x′, t)ψ(x′, t)dx′, ∀x, x′ ∈ ℜ,

generates a discrete or continuum Schrödinger-like equa-
tion, respectively? Note that the Hamiltonian can also
be time dependent as it will be seen below. The answer
is yes for both discrete as well as continuum cases. The
Schrödinger equation can be obtained using a limiting
procedure. To this end a discrete as well as continuum
Taylor series expansion (e.g. [18]) like

H(x, x′, t) = H(x, x + ∆x′, t) = lim
h→0+

∞∑
m=0

∆m
h H(x, x, t)

hm
∆x′m

m!
,

ψ(x′, t) = ψ(x + ∆x′, t) = lim
h→0+

∞∑
n=0

∆n
hψ(x, t)

hn
∆x′n

n!
,

given the discrete case with h finite

Hi,i′(t) = Hi,i+∆i′(t) =
∞∑

m=0

∆mHi,i(t)
∆im

∆i′m

m!
,

ψi′(t) = ψi+∆i′(t) =
∞∑

n=0

∆nψi(t)
∆in

∆i′n

n!
,

or the continuum case when h → 0+, given the usual
Taylor series expansion

H(x, x′, t) = H(x, x + ∆x′, t) =
∞∑

m=0

∂mH(x, x, t)
∂xm

∆x′m

m!
,

ψ(x′, t) = ψ(x + ∆x′, t) =
∞∑

n=0

∂nψ(x, t)
∂xn

∆x′n

n!
.

The paper is organized as follows. In Section 2, the
simplest case is considered and the basic definitions of
a stochastic one-dimensional discrete evolution equation
of a ket is used in order to find a discrete deterministic
evolution equation for the wave function and the corre-
sponding discrete Schrödinger-like equations. This ap-
proach allows to prove that the usual proposed evolution
equations can be obtained rigorously from first princi-
ples. In Section 3, the basic definitions of a stochastic
one-dimensional evolution equation of a ket is used in
order to find a continuum deterministic evolution equa-
tion for the wave function and the corresponding contin-
uum Schrödinger-like equation. In Section 4, the exten-
sion to d-dimensional lattices is considered and a con-
tinuum Schrödinger-like equation is obtained. The one-
dimensional case is obtained as a special case, as expected.
In Section 5, some additional illustrative examples are
considered in order to provide a better understanding
of the procedures. In Section 6, it is proved that the
Schrödinger equation can be obtained as a limiting case
of Schrödinger-like equations. In Section 7, conclusions,
some generalizations, and perspectives are given. Finally,
another possible approach is given in the Appendix.

2 The discrete one-dimensional
lattice

Beginning, for the sake of simplicity in the presenta-
tion, with the simplest stochastic evolution of a one-
dimensional ket, namely

| ψ(r)(t + ∆t)⟩ = U(r)(t + ∆t, t) | ψ(r)(t)⟩

=

(
1 −

ı

ℏ
H′(r)(t)∆t + O(∆t2)

)
| ψ(r)(t)⟩

= | ψ(r)(t)⟩ −
ı

ℏ
H′(r)(t)∆t | ψ(r)(t)⟩, (1)

where (r) indicates that the evolution refers to a particular
realization and a “discrete” Taylor series expansion of
U(r)(t + ∆t, t) up to O(∆t) and U(r)(t, t) = 1, was used.
In this way, an evolution equation similar to the one
for the dynamical variables given in [9] is obtained for
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the corresponding ket | ψ(r)(t)⟩. The so called “weights”
in [9], in this case, are ∆U(r)(t,t)

∆t ∆t = − ı
ℏH′(r)(t)∆t, where

ı =
√
−1, ℏ is the reduced Plank constant and H′(r)(t) is

the “primed Hamiltonian” which will be the Hamiltonian
when ∆t → 0. As usual, if the evolution equations for
the probability amplitudes are required, the following
operations must be done on both sides of Eq. (1): 1) mul-
tiplying by a bra ⟨i|, 2) summing −⟨i | ψ(r)(t)⟩ , 3) dividing
by ∆t , and 4) letting ∆t → 0. After these steps are com-
pleted, dU(r)(t,t)

dt = − ı
ℏH(r)(t) and the following evolution

equation is obtained

dψ(r)
i (t)
dt

= ⟨i| −
ı

ℏ
H(r)(t) | ψ(r)(t)⟩

= −
ı

ℏ
⟨i|H(r)(t)

∑
i′
| i′⟩⟨i′ | ψ(r)(t)⟩

= −
ı

ℏ

∑
i′
⟨i|H(r)(t) | i′⟩⟨i′ | ψ(r)(t)⟩

= −
ı

ℏ

∑
i′

H(r)
i,i′(t)ψ

′(r)
i (t), ∀i, i′ ∈ Λ1, (2)

where Λ1 is the set of sites of the lattice with periodic
boundary conditions, and

dψ(r)
i (t)
dt

= lim
∆t→0

ψ(r)
i (t + ∆t) − ψ(r)

i (t)
∆t

,

| ψ(r)(t)⟩ =
∑

i′
| i′⟩⟨i′ | ψ(r)(t)⟩,

H(r)
i,i′(t) = ⟨i|H(r)(t) | i′⟩,

ψ(r)
i (t) = ⟨i | ψ(r)(t)⟩,

ψ(r)
i′ (t) = ⟨i′ | ψ(r)(t)⟩,

was used. Note that it was used i, i′ as integer number
but these discrete sites are particular cases of a1i and
a1i′ corresponding to the coordinates of the lattice sites,
which are equal only if the spacing of the lattice a1 is one.
It must be emphasized that sometimes in the literature
[9, 11] the notation used is ⟨i | ψ(r)(t)⟩ = C(r)

i (t) instead
of ψ(r)

i (t), but here we prefer to use the more common
notation. If a deterministic evolution equation is required,
an average over realization on both sides of Eq. (2) is
needed. The final result is

dψi(t)
dt

= −
ı

ℏ

∑
i′

Hi,i′(t)ψi′(t), ∀i, i′ ∈ Λ1, (3)

where,

ψi(t) = ψ(r)
i (t),

Hi,i′(t) = H(r)
i,i′(t),

Hi,i′(t)ψi′(t) = H(r)
i,i′(t)ψ

(r)
i′ (t) = H(r)

i,i′(t) ψ(r)
i′ (t). (4)

It is easy to see that a factorization was assumed, which
means that H(r)

i,i′(t) and ψ(r)
i′ (t) are statistically indepen-

dent. In other words, a “discrete” deterministic evolu-
tion equation as the one given in Eq. (3) can only be
obtained if the stochastic Hamiltonian and the probabil-
ity amplitudes are statistically independent. One way
different to the ones considered in [9, 11], where a dis-
crete Schrödinger-like equation is obtained, is by making
i′ = i+△i′ with △i′ = i′ − i, and letting to split the Hamil-
tonian as Hi,i′(t) = (H1)i,i′ + (H0)ii

ψi(t)
ψi′ (t)

, where (H1)i,i′ and
(H0)ii are both time independent. Using these definitions,
Eq. (3) becomes

dψi(t)
dt

= −
ı

ℏ

∑
i′

(H1)i,i′ψi′(t) +
∑

i′
(H0)i,iψi(t)


= −

ı

ℏ
(S 1 + S 0) , (5)

where

S 1 =
∑

i′
(H1)i,i′ψi′(t) =

∑
i′

(H1)i,i+△i′ψi+△i′(t)

≈
∑

i′
(H1)i,i

(
ψi(t) +

△ψi(t)
△i

(
△i′

)
+

1
2
△2ψi(t)
△i2

(
△i′

)2
+ · · ·

)
,

= (H1)i,i

∑
i′

(
ψi(t) +

△ψi(t)
△i

(
△i′

)
+

1
2
△2ψi(t)
△i2

(
△i′

)2
+ · · ·

)
= (H1)i,i

(
ψi(t)s0 +

△ψi(t)
△i

s1 +
1
2
△2ψi(t)
△i2

s2

)
,

S 0 =
∑

i′
(H0)i,iψi(t) = (H0)i,iψi(t)

∑
i′

(1) = (H0)i,iψi(t)s0. (6)

In S 1 it was used

(H1)i,i+△i′ = (H1)i,i + 0(△i′),

ψi+△i′(t) = ψi(t) +
△ψi(t)
△i

(
△i′

)
+

1
2
△2ψi(t)
△i2

(
△i′

)2
+ O((△i′)3),

where, the finite central (or centered) differences used
are △i = a1, △i2 = a2

1, △ψi(t) = ψi+ 1
2
(t) − ψi− 1

2
(t), and

△2ψi(t) = △ (△ψi(t)) = ψi−1(t) − 2ψi(t) + ψi+1(t).
The summations s0, s1, and s2 are

s0 =
∑

j

(1) =

N1 times︷      ︸︸      ︷
1 + · · · + 1 = N1 ≈ 2N′1,

s1 =
∑

j

(△ j) =
(
−N′1 + · · · + 0 + · · · + N′1

)
= 0,

s2 =
∑

j

(△ j)2 =
(
−N′1

)2
+ · · · + (0)2 + · · · +

(
N′1

)2

=
2
3

(
N′1

)3
+

(
N′1

)2
+

1
3

(
N′1

)
≈

2
3

(
N′1

)3
, (7)

where, if the number of lattice sites N1 is odd and N1 ≫ 1,
then N′1 =

N1−1
2 ≈

N1
2 . Note that in Eq. (5), using this ap-

proximation, the time derivative of ψi(t) depends only on
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the nearest neighbor values like a continuum Schrödinger-
like equation where only second order partial derivative
with respect to the spatial coordinate appears in the evolu-
tion equation, as will be shown below. Using the results
of Eqs. (6) and (7) in Eq. (5), it is easy to find

dψi(t)
dt

= −
ı

ℏ

s2
(H1)i,i

2a2
1

[
ψi−1(t) − 2ψi(t) + ψi+1(t)

]
−
ı

ℏ
s0

[
(H0)i,i + (H1)ii

]
ψi(t)

= −
ı

ℏ
s2

(H1)i,i

2a2
1

[
ψi−1(t) + ψi+1(t)

]
−
ı

ℏ
(△H)i,iψi(t), ∀i ∈ Λ1, (8)

where (△H)i,i = s0[(H0)i,i+(H1)i,i]−2 (H1)i,i

2a2
1

s2 = (H0)i,is0+

(H1)i,i

(
s0 −

s2
a2

1

)
. Note that this discrete evolution equation

is the same to the one proposed in [11], if (H1)i,i = −
2a2

1A
s2

and (H0)i,i =
2a2

1As0+s2E0−2As2

s0 s2
. These values are obtained

after equating each of the coefficients with the ones given
in [11] and solving the set of linear equations

(H0)i,is0 + (H1)i,i

s0 −
s2

a2
1

 = E0,

s2
(H1)i,i

2a2
1

= −A,

for (H1)i,i and (H0)i,i.
The meaning of the coefficients in [11] are: E0 is a

constant that allows to choose the zero of the energy, A is
a constant independent of t, and b = a1 is the spacing of
the lattice. Of course, here Eq. (8) was derived from first
principles.

3 The continuum one-dimensional
lattice

The way of obtaining a continuum Schrödinger-like equa-
tion is to transform Eqs. (2) and (3) making the transfor-
mations

ψ(r)
i (t) → ψ(r)(x, t) = ⟨x | ψ(r)(t)⟩,

ψ(r)
i′ (t) → ψ(r)(x′, t) = ⟨x′ | ψ(r)(t)⟩,

H(r)
i,i′(t) → H(r)(x, x′, t) = ⟨x | H(r)(t) | x′⟩,

where the discrete indices i and i′ where replaced by
the continuous variables x and x′, respectively. After
transforming the summation into an integral like

−
ı

ℏ

∑
i′

H(r)
i,i′(t)ψ

(r)
i′ (t)→ −

ı

ℏ

∫
H(r)(x, x′, t)ψ(r)(x′, t)dx′,

where dx′ is the differential length, H(r)(x, x′, t) is the
Hamiltonian density or the Hamiltonian per unit of length
(or, in general, d-dimensional volume), and ψ(r)(x, t) is
the wave function. The reader should be warned that
even when the same symbol was used for the discrete and
continuum Hamiltonian, they are not the same. Also here-
after Hamiltonian will be used for both the discrete and
continuum case. Moreover, in a d-dimensional lattice, the
differential volume is dV ′d = dx′1...dx′d, and the integral,
as usual, is a multiple integral, one per dimension as it
will be shown below. The final result is

∂ψ(r)(x, t)
∂t

= −
ı

ℏ

∫
H(r)(x, x′, t)ψ(r)(x′, t)dx′,

∀x, x′ ∈ ℜ, (9)

and after an average over realization

∂ψ(x, t)
∂t

= −
ı

ℏ

∫
H(x, x′, t)ψ(x′, t)dx′

∀x, x′ ∈ ℜ,(10)

where it was assumed that H(r)(x, x′, t) and
ψ(r)(x′, t) are statistically independent, consequently,
H(r)(x, x′, t)ψ(r)(x′, t) = H(r)(x, x′, t) ψ(r)(x′, t) =

H(x, x′, t)ψ(x′, t). If it is needed to obtain a Schrödinger-
like equation, the Hamiltonian must be split in a sum like
H(x, x′, t) = H1(x, x′) + H0(x, x) ψ(x,t)

ψ(x′,t) , where H0(x, x)
and H1(x, x′) are both time independent. Then Eq. (10)
becomes

∂ψ(x, t)
∂t

= −
ı

ℏ

∫
H1(x, x′)ψ(x′, t)dx′

−
ı

ℏ
I1H0(x, x)ψ(x, t), (11)

where, making dx′ = d (△x′) with △x′ = x′ − x [see
Eqs. (14) and (15) below],

I1 =

∫ L′1

−L′1

d(△x′) = 2L′1.

In order to obtain a Taylor series expansion of the
right-hand side of Eq. (11), it is necessary to rewrite the
evolution equation in a convenient way

ψ(x′, t) = ψ(x + △x′, t) = ψ(x, t) +
∂ψ(x, t)
∂x

(△x′)

+
1
2
∂2ψ(x, t)
∂x2 (△x′)2 + O((△x′)3)

H1(x, x′) = H1(x, x + △x′) = H1(x, x) + O(△x′).

(12)

After replacing Eq. (12) in Eq. (11) and integrating
over x′ it is easily found

∂ψ(x, t)
∂t

= −
ı

ℏ
(h1 + h2 + h3 + h0) + O((△x′)3), (13)
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where

h1 = H1(x, x)ψ(x, t)I1

h2 = H1(x, x)
∂ψ(x, t)
∂x

I2

h3 = H1(x, x)
1
2
∂2ψ(x, t)
∂x2 I3

h0 = I1H0(x, x)ψ(x, t),

and

I1 =

∫ x+L′1

x−L′1

dx′ =
∫ L′1

−L′1

d(△x′) = 2L′1,

I2 =

∫ L′1

−L′1

(△x′)d(△x′) =
[
(△x′)2

2

]L′1

−L′1

= 0,

I3 =

∫ L′1

−L′1

(△x′)2d(△x′) =
[
(△x′)3

3

]L′1

−L′1

= 2
 (L′1)3

3

 .
(14)

Note that these integrals are the same as the summations
s0, s1, and s2, in Eq. (7), except for the fact that half the
number of points of the lattice N1 is here half the length
of the lattice L1. In Eq. (14) it was used the following
change of variable

d(△x′) =
d(x′ − x)

dx′
dx′ = dx′. (15)

Letting

[H0(x, x) + H1(x, x)] I1 = V(x),
1
2

H1(x, x)I3 =

(
−ℏ2

2meff

)
, (16)

in Eq. (13), the usual Schrödinger-like equation is ob-
tained. Note that it is possible to choose H0(x, x) ,
H1(x, x), and L1, in such a way that the results obtained
from a discrete lattice, given in [9,11], are recovered. The
final result is

H0(x, x) =
E0

I1
,

H1(x, x) = −
2A
I3
,

L′1 = b
√

3. (17)

It is not difficult to see that, even when the formal results
obtained in Eq. (16) are correct, in Eq. (17) the value
of half the length of the lattice, obtained after equating
meff =

(
ℏ2

2Ab2

)
, given in [11], to meff =

(
−ℏ2

H1(x,x)I3

)
, is too

small and consequently a meaningless result. However,
we could provide a “reasonable physical assumption” that
allows to obtain an alternative appropriate result: In order
to achieve this goal, let us assume that the Hamiltonian is

different from zero only inside an interval −L′′1 ≤ △x′ ≤
L′′1 with |L′′1 | < L1, then the integrals in Eq. (14) are

I′1 =

∫ x+L′′1

x−L′′1

dx′ =
∫ L′′1

−L′′1

d(△x′) = 2L′′1 ,

I′2 =

∫ L′′1

−L′′1

(△x′)d(△x′) =
[
(△x′)2

2

]L′′1

−L′′1

= 0,

I′3 =

∫ L′′1

−L′′1

(△x′)2d(△x′) =
[
(△x′)3

3

]L′′1

−L′′1

= 2
 (L′′1 )3

3

 ,
(18)

and consequently, Eq. (16) becomes[
H′0(x, x) + H′1(x, x)

]
I′1 = V(x),

1
2

H′1(x, x)I′3 =

(
−ℏ2

2meff

)
, (19)

and Eq. (17) must be changed to

H′0(x, x) =
E0

I′1
,

H′1(x, x) = −
2A
I′3
,

L′′1 = b
√

3, (20)

where L′′1 was obtained after equating meff =
(
ℏ2

2Ab2

)
to

meff =

(
−ℏ2

H′1(x,x)I′3

)
. This sort of “cut off” provides an inter-

val which is much smaller than the length of the lattice
L1 and is very close to the lattice spacing b = a1, which
is a very reasonable physical result and justifies the ap-
proximate value of the Hamiltonian in Eq. (12).

4 Extensions to multi-dimensional
lattice

The extension to a d-dimensional lattice is straightfor-
ward. Defining d-dimensional vectors −→x and −→x ′, the
Taylor series expansion of the wave function is

ψ(
−→
x′, t) = ψ(−→x + △−→x ′, t) = ψ(−→x , t) +

∞∑
k=1

1
k!
∇k

dψ(−→x , t)

(21)
where k! is the factorial of k, △−→x ′ = −→x ′ − −→x , and

∇d =

(
△x′1

∂

∂x1
+ · · · + △x′d

∂

∂xd

)
, (22)

where △x′l = x′l−xl, for l = 1, · · · , d, is the l-th component
of △−→x ′. As usual, in Eq. (21)

ψ(−→x ′, t) = ψ(x′1, · · · , x
′
d, t),
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ψ(−→x + △−→x ′, t) = ψ(x1 + △x′1, · · · , xd + △x′d, t).

(23)

With the above extension to a d-dimensional lattice it is
possible to rewrite all the one-dimensional equations. For
example,

dψi1···id (t)
dt

= −
ı

ℏ

∑
i′1

· · ·
∑

i′d

Hi1···id ,i′1···i
′
d
(t)ψi′1···i

′
d
(t),

∀i1, · · · , id, i′1, · · · , i
′
d ∈ Λd, (24)

where i1, · · · , id, i′1, · · · , i
′
d are the components of the sites

i, i′ in a Λd lattice. Using a finite d-dimensional centered
differences, extension of the discrete one-dimensional
case can be obtained. The explicit form will be not con-
sidered here and only the continuum version will be an-
alyzed. To this end, the definitions corresponding to the
d-dimensional extensions are

∂ψ(−→x , t)
∂t

= −
ı

ℏ

∫
H(−→x ,−→x ′, t)ψ(−→x ′, t)dV ′

= −
ı

ℏ

∫
H1(−→x ,−→x ′)ψ(−→x ′, t)dV ′

−
ı

ℏ
I0H0(−→x ,−→x )ψ(−→x , t),

∀x1, · · · , xd, x′1, · · · , x
′
d ∈ ℜ, (25)

where, as in the one-dimensional case, H(−→x ,−→x ′, t) =
H1(−→x ,−→x ′) + H0(−→x ,−→x ) ψ(−→x ,t)

ψ(−→x ′,t)
, with H1(−→x ,−→x ′) and

H0(−→x ,−→x ′) are both time independent, and

I0 =

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

d
(
△x′1

)
· · · d

(
△x′d

)
) =

(
2L′1

)
· · ·

(
2L′d

)
.

Using the extension of the change of variables given in
Eq. (15), it is easy to obtain

d(△V ′) = d(x′1 − x1) · · · d(x′d − xd)

= d
(
△x′l

)
· · · d

(
△x′d

)
=

d(x′1 − x1)
dx′1

dx′1 · · ·
d(x′d − xd)

dx′d
dx′d

= dx′1 · · · dx′d
= dV ′. (26)

The final d-dimensional evolution equation can be written
in the following convenient form

∂ψ(−→x , t)
∂t

= −
ı

ℏ

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

H1(−→x ,−→x ′)ψ(−→x ′, t)D△′ + H00

∀x1, · · · , xd, x′1, · · · , x
′
d ∈ ℜ, (27)

where H00 = −
ı
ℏ I0H0(−→x ,−→x )ψ(−→x , t). It was also used

d(△V ′) = d
(
△x′l

)
· · · d

(
△x′d

)
= D△′, in the second equal-

ity, which is very convenient when the expansion of

ψ(−→x + △−→x ′, t) and H1(−→x ,−→x + △−→x ′), in a Taylor series,
provides a set of elementary integrations as it was done
in Eq. (18) for a one-dimensional lattice. Finally, using
the Taylor series expansion given in Eq. (21) up to k = 2,
and letting H1(−→x ,−→x + △−→x ′) = H1(−→x ,−→x ) + O(△−→x ′), a
d-dimensional Schrödinger-like equation is obtained. As
in the one-dimensional case, if only three term are kept,
it is easy to find

∂ψ(−→x , t)
∂t

= H00 +

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

H11

1 + ∇d +
∇2

d

2


×ψ(−→x , t)D△′

= H00 + H11I0ψ(−→x , t) + I1 + I2,

∀x1, · · · , xd, x′1, · · · , x
′
d ∈ ℜ, (28)

where H11 = −
ı
ℏH1(−→x ,−→x ),

I1 = −
ı

ℏ
H1(−→x ,−→x )

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

∇ψ(−→x , t)D△′

= H11

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

(
△x′1

∂

∂x1
+ · · · + △x′d

∂

∂xd

)
×ψ(−→x , t)D△′

= H11

(
I1,1

∂ψ(−→x , t)
∂x1

+ · · · + I1,d
∂ψ(−→x , t)
∂xd

)
,

(29)

and

I2 = −
ı

ℏ
H1(−→x ,−→x )

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

∇2
d

2
ψ(−→x , t)D△′

=
H11

2

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

(
△x′1

∂

∂x1
+ · · · + △x′d

∂

∂xd

)2

×ψ(−→x , t)D△′.

(30)

It is not difficult to see that all the integrals on the
right-hand side of Eq. (29) are zero. Remembering that
∂ψ(−→x ,t)
∂xl

= constant ∀l = 1, · · · , d, I1 is a sum of elemen-
tary integrals. A generic multiple integral corresponding
to the l-th term is a product of integrals like

I1,l =

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

△x′ld
(
△x′1

)
· · · d

(
△x′d

)
)

= I′1 · · · I
′
l · · · I

′
d = 0, ∀l = 1, · · · , d, (31)

where

I′1 = △x′l

∫ L′1

−L′1

d△x′1 = △x′l
[
△x′1)

]L′1
−L′1
= 2L′1△x′l ,

...
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I′l =
∫ L′l

−L′l

△x′ld△x′l =

 (△x′l)
2

2

L′1

−L′1

= 0,

∀l = 1, · · · , d,
...

I′d = △x′l

∫ L′d

−L′d

d△x′d = △x′l
[
△x′d)

]L′d
−L′d
= 2L′d△x′l .

(32)

Due to the fact that always one of the factors, in each
of the d terms in Eq. (29), is zero because I′l = 0
∀l = 1, · · · , d, then I1,l = 0 ∀l = 1, · · · , d and conse-
quently also I1 = 0. After expanding the right-hand side
in Eq. (30)

I2 =
H11

2

∑
l.l′

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

△x′l△x′l′
∂2ψ(−→x , t)
∂xl∂xl′

D△′

 ,
=

H11

2

∑
l.l′

∂2ψ(−→x , t)
∂xl∂xl′

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

△x′l△x′l′D△
′

 ,
=

H11

2

∑
l.l′

∂2ψ(−→x , t)
∂xl∂xl′

(
Il,l′

)
, (33)

where

Il,l′ =

∫ L′1

−L′1

· · ·

∫ L′d

−L′d

△x′l△x′l′d
(
△x′1

)
· · · d

(
△x′d

)
= I′1 · · · I

′
l · · · I

′
d = 0, ∀l′ , l, (34)

because

I′l′ =
∫ L′l

−L′l

△x′l△x′l′d
(
△x′l

)
= △x′l′

∫ L′l

−L′l

△x′ld
(
△x′l

)
= △x′l′

△x′2l
2

L′l

−L′1

= 0, ∀l′ , l. (35)

On the other hand

I′l′ =
∫ L′l

−L′l

△x′l△x′l′d
(
△x′l

)
=

∫ L′l

−L′l

△x′2l d
(
△x′l

)
=

△x′3l
3

L′l

−L′1

= 2
L′3l
3
, ∀l′ = l, (36)

consequently

Il,l = I′l′

(d−1) times︷          ︸︸          ︷∫ L′1

−L′1

· · ·

∫ L′d

−L′d

d
(
△x′1

)
· · · d

(
△x′d

)
= 2

L′3l
3

∏
k,l

2L′k

 , (37)

where Il,l′ = Il,l was used, indicating that only those terms
where l′ = l remain. The other d − 1 integrals are all of
the form

Ik =

∫ L′k

−L′k

d
(
△x′k

)
= 2L′k, ∀k , l.

The final result is

I2 =
H11

2

∑
l.l

∂2ψ(−→x , t)
∂xl∂xl

(
Il,l

)
,

=
H11

2

∑
l

∂2ψ(−→x , t)
∂x2

l

(
Il,l

)
. (38)

Assuming L′1 = · · · = L′d = L′ then Il,l = 2 L′3
3 (2L′)d−1

∀l = 1, · · · , d and consequently

I2 =
H11

2
(
Il,l

)∑
l

∂2ψ(−→x , t)
∂x2

l

,

=
H11

2

(
2

L′3

3

) (
2L′

)d−1
∇2ψ(−→x , t),

= −
ı

ℏ
H1(−→x ,−→x )

(
L′3

3

) (
2L′

)d−1
∇2ψ(−→x , t), (39)

where

∇2 =
∂2ψ(−→x , t)
∂x2

1

+ · · · +
∂2ψ(−→x , t)
∂x2

d

.

It is not difficult to see that for d = 1 the one-dimensional
results are recovered. In order to connect the above evolu-
tion equation with a continuum Schrödinger-like equation
it is necessary to make[

H0(−→x ,−→x ) + H1(−→x ,−→x )
]

I0 = V(−→x ),

H1(−→x ,−→x )
(

L′3

3

) (
2L′

)d−1
=

(
−ℏ2

2meff

)
, (40)

where I0 =
(
2L′1

)
· · ·

(
2L′d

)
= (2L′)d. With these results

Eq. (27) becomes

∂ψ(−→x , t)
∂t

= −
ı

ℏ

(
−
ℏ2

2meff
∇2ψ(−→x , t) + V(−→x )ψ(−→x , t)

)
,

which is the well-known deterministic Schrödinger equa-
tion.

As expected, for d = 1 the results of Eqs. (16) and
(17) or Eqs. (19) and (20), depending of the limits of the
integrals, are recovered.

5 Other uses and extensions

Now it will be considered other possibilities of the present
approach.
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5.1 Evolution equation like the heat
equation

For example, choosing the right-hand side of Eq. (40) in
other different form, it could be found another evolution
equation like the heat equation. Letting

[
H0(−→x ,−→x ) + H1(−→x ,−→x )

]
I0 = µ

(
−ℏ

ı

)
,

H1(−→x ,−→x )
(

L′3

3

) (
2L′

)d−1
= α

(
−ℏ

ı

)
, (41)

where α and µ are real coefficients, solving for H0(−→x ,−→x )
and H1(−→x ,−→x ) and after replace both in Eq. (27), it is
possible to find the following evolution equation

∂ψ(−→x , t)
∂t

= α∇2ψ(−→x , t) + µψ(−→x , t). (42)

5.2 Inclusion of nonlinear terms

Inclusion of nonlinear terms are possible letting

H(−→x ,−→x ′, t) =

H0(−→x ,−→x ′, t)
ψ(−→x , t)

ψ(
−→
x′, t)

+ H1(−→x ,−→x ′, t)


=

[
H0(−→x ,−→x , t)

ψ(−→x , t)

ψ(−→x ′, t)
+ H1(−→x ,−→x , t)

]
.

(43)

Both H0(−→x ,−→x , t) and H1(−→x ,−→x , t) are now time dependent
Hamiltonians and were obtained after taking the Taylor
series expansion up to the first term like H0(−→x ,−→x ′, t) =
H0(−→x ,−→x , t) + O(△−→x ′) and H1(−→x ,−→x ′, t) = H1(−→x ,−→x , t) +
O(△−→x ′). With these modifications both sides in Eq. (40)
become[

H0(−→x ,−→x , t) + H1(−→x ,−→x , t)
]

I0 = κ0ψ(−→x , t)ψ∗(−→x , t)

= κ0|ψ(−→x , t)|2,

H1(−→x ,−→x , t)
(

L′3

3

) (
2L′

)d−1
= κ2, (44)

where κ0 and κ2 are constants. Then, solving for
H0(−→x ,−→x , t) and H1(−→x ,−→x , t) and after replacing both in
Eq. (27), it is possible to find the following nonlinear
deterministic Schrödinger equation

∂ψ(−→x , t)
∂t

= −
ı

ℏ

(
κ2∇

2ψ(−→x , t) + κ0|ψ(−→x , t)|2ψ(−→x , t)
)
.

(45)

Of course, lot of other possibilities can be obtained by
changing the right-hand side of Eq. (40) or Eq. (45).

5.3 Extension to a system of many
particles

The extension to a many particles system is straightfor-
ward. The coordinates, the wave function, and the Lapla-
cian, must be changed to

−→x = −→x 1, · · · ,
−→x N ,

ψ(−→x , t) = ψ(−→x 1, · · · ,
−→x N , t),

V(−→x , t) = V(−→x 1, · · · ,
−→x N , t),

∇2 =

N∑
k=1

∇2
k ,

where N is the number of particles, −→x k = x1,k, · · · , xd,k

are the coordinates of the k-th particle, and
∇2

k =
∂2

∂x2
1,k
+ · · · + ∂2

∂x2
d,k

, for k = 1, · · · ,N.

6 The Schrödinger equation as a
limiting case of the
Schrödinger-like equation

It is possible to find the Schrödinger equation as a par-
ticular case of the Schrödinger-like equation as follows.
Beginning with Eq. (13) and taking into account all the
remaining terms in the Taylor series expansion of ψ(x′, t)
in Eq. (12), it is possible to prove that all the remaining
terms are zero, for a particular value of the limits of the
integral. The remaining terms are

R(x′, t) = H′1(x, x)
∫ L′′1

−L′′1

∞∑
n=3

∂nψ(x, t)
∂xn

(△x′)n

n!
d(△x′).

=

∞∑
n=3

∂nψ(x, t)
∂xn In(L′′1 ), (46)

where

In(L′′1 ) = H′1(x, x)
∫ L′′1

−L′′1

(△x′)n

n!
d(△x′)

=
2H′1(x, x)

n!
(L′′1 )n+1

n + 1
. (47)

and it was used L′′1 instead of L′1 in order to avoid misun-
derstandings, like it was made in Eq. (18), because here
again it will be assumed that the Hamiltonian is different
from zero in an interval, which will be chosen in order to
make the remaining term zero.

Using H′1(x, x), given in Eq. (16), the final result is

In(L′′1 ) =
2
n!

C
(L′′1 )3

(L′′1 )n+1

n + 1
= Cn(L′′1 )n−2, (48)
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where

C =
−3ℏ2

2meff
,

Cn =
2C

n!(n + 1)
. (49)

It is obvious that for L′′1 → 0, R(x′, t) → 0
in Eq. (46), then the Schrödinger-like equation be-
comes the Schrödinger equation. The extension to the
d−dimensional case, using again L′′1 instead of L′1, is
straightforward. Beginning with the remainder terms of
Eq. (28)

R(
−→
x′, t) =

∫ L′′1

−L′′1

· · ·

∫ L′′d

−L′′d

H11

 ∞∑
n=3

∇n
d

n!

ψ(−→x , t)D△′

= H11

 ∞∑
n=3

∂nIn

 = ∞∑
n=3

∂nH11In, (50)

where

∂n =
1
n!

n∑
k1=1

· · ·

n∑
kn=1

∂nψ(−→x , t)
∂xk1 · · · ∂xkn

, (51)

In =

∫ L′′1

−L′′1

· · ·

∫ L′′d

−L′′d

△′xk1
· · · △′xkn

D△′, (52)

and

D△′ = d
(
△′xk1

)
· · · d

(
△′xkn

)
. (53)

Using similar arguments like the ones that lead to Eq. (37)
the multiple integral, assuming that L′′1 = · · · = L′′d , is

In = 2
L′′(n+1)

1

n + 1

(
2L′′1

)(d−1)
, (54)

and using the value of H1(−→x ,−→x ), obtained from Eq. (40),
it is easy to see that

Rn = H11In

= Cd

L′′31

3

(
2L′′1

)(d−1)
−1

2
L′′(n+1)

1

n + 1

(
2L′′1

)(d−1)

= 6Cd
L′′(n−2)

1

n + 1
, (55)

where Cd is a constant independent of L′′1 . It is not dif-
ficult to see that for L′′1 → 0, Rn → 0 ∀n ≥ 3 and

consequently R(
−→
x′, t) → 0. This result proves that the

Schrödinger equations can be obtained from Schrödinger-
like equations as a limiting case.

7 Conclusions

The present paper deals with the derivation of determinis-
tic Schrödinger-like equations from stochastic evolution
equations after an average over realization both for dis-
crete as well as continuum equations. The deterministic
version can be compared to some previous results, where
the proposed equations in [11], here are rigorously ob-
tained from first principles. Also the Schrödinger equa-
tion can be obtained as a particular case of Schrödinger-
like equations using a limiting procedure, as it was done
in Section 6. Many other evolution equations can be ob-
tained by simply changing the right-hand side of Eq. (44)
and in the most general form like[

H0(−→x ,−→x , t) + H1(−→x ,−→x , t)
]

I0 = F0(−→x , t),

H1(−→x ,−→x , t)
(

L′3

3

) (
2L′

)d−1
= F2(−→x , t), (56)

generates the nonlinear evolution equation

∂ψ(−→x , t)
∂t

= −
ı

ℏ

(
F2(−→x , t)∇2ψ(−→x , t) + F0(−→x , t)ψ(−→x , t)

)
,

where F2(−→x , t) and F0(−→x , t) are arbitrary complex func-
tions allowing to find all previous results, and many oth-
ers, as special cases (see e.g. [17] for other examples of
nonlinearity). It is easy to see that the new equations, in
Eq. (56), are in general a system of four linear equations
allowing to find the real and imaginary part of H1(−→x , t)
and H0(−→x , t). Of course, this is a pure formal extension
and the meaning, in each case, must be discussed. Note
that all the discrete and continuum Schrödinger-like equa-
tions were obtained essentially using three main steps.
Firstly, the assumption that the stochastic Hamiltonians
and the wave functions are statistically independent, sec-
ondly, the splitting of the Hamiltonian in two terms like

H(−→x ,−→x ′, t) = H0(−→x ,−→x ′, t)
ψ(−→x , t)

ψ(−→x ′, t)
+ H1(−→x ,−→x ′, t)

and, thirdly, the expansion in a series up to an appropriate
given order of △x′l = x′l − xl for l = 1, · · · , d.

Lot of additional extensions can be worked as, for
example, the evolution equation of other operators as
shown in the Appendix.
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Appendix

Here, it will be sketched another possible approach which can be obtained using the Taylor series expansion given
in the last two equations in the introduction. The integral, given on the right-hand side in Eq. (9), can be written as

I =
∫

H(x, x + △x′, t)ψ(x + △x′, t)d△x′

=

∫  ∞∑
m=0

∂mH(x, x, t)
∂xm

∆x′m

m!

 ×
 ∞∑

n=0

∂nψ(x, t)
∂xn

∆x′n

n!

 d△x′

=

∞∑
m=0

∞∑
n=0

(
∂mH(x, x, t)

∂xm
∂nψ(x, t)
∂xn

) ∫
∆x′m

m!
∆x′n

n!
d△x′

=

∞∑
m=0

∞∑
n=0

(
∂mH(x, x, t)

∂xm
∂nψ(x, t)
∂xn Imn

)

=

∞∑
n=0

(
Hmn

∂nψ(x, t)
∂xn

)
∀x, x′ ∈ ℜ, (57)

where d△x′ = d (x′ − x) = dx′, and assuming that the
limits of △x′ are △i = x′i − x and △ f = x′f − x, the integral
is trivial and becomes

Imn =

∫ △ f

△i

∆x′m

m!
∆x′n

n!
d△x′

=
1

m!n!

∫ △ f

△i

∆x′(m+n)d△x′

=
1

m!n!

[
∆x′(m+n+1)

(m + n + 1)

]x′f−x

x′i−x

=
1

m!n!

(
x′f − x

)(m+n+1)
−

(
x′i − x

)(m+n+1)

(m + n + 1)
. (58)

Note that the integral is Imn = Imn (x) and depends on x.
Also it was defined

Hmn =

∞∑
m=0

∂mH(x, x, t)
∂xm Imn. (59)

A particularly interesting case is the one where the
coefficients Hmn are finite for n ≤ 2 and 0 otherwise. In
this case

I = Hm0ψ(x, t) + Hm1
∂1ψ(x, t)
∂x1 + Hm2

∂2ψ(x, t)
∂x2 . (60)

The coefficients that provide the Schrödinger equation are

Hm0 =

∞∑
m=0

∂mH(x, x, t)
∂xm Im0 = V (x) ,

Hm1 =

∞∑
m=0

∂mH(x, x, t)
∂xm Im1 = 0,

Hm2 =

∞∑
m=0

∂mH(x, x, t)
∂xm Im2 =

−ℏ2

2meff
,

.̇

.̇

Hmn =

∞∑
m=0

∂mH(x, x, t)
∂xm Imn = 0, ∀n ≥ 3. (61)

The present approach allows to find, if it is possible,
not only the Schrödinger equation but also ∂mH(x,x,t)

∂xm ∀m,
after solving the set of linear equations given in Eq. (61).
Due to the fact that |Imn| becomes smaller for growing
values of m and n, approximate values can be obtained
making m = n = p, for p as large as we want. In matrix
form the set of linear equations given in Eq. (61), for the
case of m = n = 4 , can be written as

I44D41 = C41, (62)

where

I44 =



1
0!0!

(
△1

f−△
1
i

1

)
1

0!1!

(
△2

f−△
2
i

2

)
1

0!2!

(
△3

f−△
3
i

3

)
1

0!3!

(
△4

f−△
4
i

4

)
.

.

1
1!0!

(
△2

f−△
2
i

2

)
1

1!1!

(
△3

f−△
3
i

3

)
1

1!2!

(
△4

f−△
4
i

4

)
1

1!3!

(
△5

f−△
5
i

5

)
.

.

1
2!0!

(
△3

f−△
3
i

3

)
1

2!1!

(
△4

f−△
4
i

4

)
1

2!2!

(
△5

f−△
5
i

5

)
1

2!3!

(
△6

f−△
6
i

6

)
.

.

1
3!0!

(
△4

f−△
4
i

4

)
...

1
3!1!

(
△5

f−△
5
i

5

)
...

1
3!2!

(
△6

f−△
6
i

6

)
...

1
3!3!

(
△7

f−△
7
i

7

)
...

.

.



,

(63)
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D41 =



∂0H(x,x,t)
∂x0

∂1H(x,x,t)
∂x1

∂2H(x,x,t)
∂x2

∂3H(x,x,t)
∂x3

.

.


, C41 =



V (x)
0
−ℏ2

2meff

0
.

.


. (64)

Also, in general, matrix Ipp can be split as a sum of
two symmetric ones like

Ipp = I f
pp − Ii

pp, (65)

where the first four elements look like

Ii
44 =



1
0!0!

(
△1

i
1

)
1

0!1!

(
△2

i
2

)
1

0!2!

(
△3

i
3

)
1

0!3!

(
△4

i
4

)
.

.

1
1!0!

(
△2

i
2

)
1

1!1!

(
△3

i
3

)
1

1!2!

(
△4

i
4

)
1

1!3!

(
△5

i
5

)
.

.

1
2!0!

(
△3

i
3

)
1

2!1!

(
△4

i
4

)
1

2!2!

(
△5

i
5

)
1

2!3!

(
△6

i
6

)
.

.

1
3!0!

(
△4

i
4

)
...

1
3!1!

(
△5

i
5

)
...

1
3!2!

(
△6

i
6

)
...

1
3!3!

(
△7

i
7

)
...

.

.


,

(66)

I f
44 =



1
0!0!
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1

)
1

0!1!

(
△2

f
2

)
1

0!2!

(
△3

f
3

)
1

0!3!

(
△4

f
4

)
.

.

1
1!0!

(
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f
2

)
1

1!1!

(
△3

f
3

)
1

1!2!

(
△4

f
4

)
1

1!3!

(
△5

f
5

)
.

.

1
2!0!

(
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f
3

)
1

2!1!

(
△4

f
4

)
1

2!2!

(
△5

f
5

)
1

2!3!

(
△6

f
6

)
.

.

1
3!0!

(
△4

f
4
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...

1
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(
△5
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5
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1
3!2!

(
△6

f
6
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...

1
3!3!

(
△7

f
7

)
...

.

.



,

(67)
and both square matrices are symmetrical. Of course,
other Schrödinger-like evolution equation can be obtained
changing the right-hand side of Eq. (61).

A possible generalization of the present approach
can be to obtain the Taylor series expansion of
O

(
x, x′, x′′, ..., x(k), t

)
for any operator O and any k.
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