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The study of the physical properties of open quan-
tum systems is at the heart of many investiga-
tions, which aim to describe their dynamical

evolution on theoretical ground and through physical
realizations. Here, we develop a presentation of dif-
ferent aspects, which characterize these systems and
confront different physical situations that can be real-
ized leading to systems, which experience Markovian,
non-Markovian, divisible or non-divisible interactions
with the environments to which they are dynamically
coupled. We aim to show how different approaches
describe the evolution of quantum systems subject to
different types of interactions with their environments.
Quanta 2021; 10: 42–54.

1 Introduction

Quantum systems are generally in contact with physical
environments, which may be of different types. The un-
derstanding and description of these systems have been
the object of multitude of studies, for example, see the
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pioneering work of Sudarshan, Mathews and Rau [1]
about the stochastic dynamics of quantum-mechanical
systems, a pedagogical review on quantum channels [2],
and a detailed survey on non-Markovianity [3]. The ex-
istence of an environment induces exchange processes
such as energy, heat, the measurement of physical observ-
ables, which characterize the system. These processes are
characterized by different types of properties. They are
induced by either discontinuous stochastic or determin-
istic continuous interactions. In general, the interactions
induce a time delay between the environment and the
system, optimally they may be close to instantaneous.
The understanding and control of these processes is of
paramount importance for the realization of quantum ob-
jects and the measurement of their physical properties
in many fields of quantum technology, for example, see
[4–8].

In the present work, we aim to present the different
physical cases concerning the dynamical evolution of
open quantum systems, confront different approaches
some of which have already been examined in this field.
We try to show the consequences of the nature of the
interaction, which couples them to their environments.

The organization of the present work is the follow-
ing: In Section 2, we recall the essential mathematical
definitions of a Markov process. In Section 3, we show
by means of a model physical and temporal conditions,
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which must be realized in order to generate a physical
Markovian quantum system. Section 4 deals with sys-
tems, which are explicitly subject to stochastic interac-
tions with their environment and presents the conditions
under which divisibility is realized. In Section 5, we
develop the central argument that divisibility may also
be reached when the environment and the interaction be-
tween the environment and the system is deterministic.
We work out the conditions under which this is realized.
Section 6 is devoted to a summary of the results and some
further comments. Explicit calculations are provided in
the appendices.

2 The interaction of the system
with its environment is of
stochastic nature

2.1 Classical Markov processes:
Mathematical definition

We recall here some mathematical aspects of Markov pro-
cesses and their relationship with the so called physical
Markovian property in order to show the link with its
use for the description of physical systems. The original
paper concerning this concept by A. A. Markov was pub-
lished in Russian in the Bulletin of the Mathematical and
Physical Society of the University of Kazan, 1906. An
English translation can be found in [9]. The mathemati-
cal concepts developed in the present section have been
taken from Ref. [10].

2.2 Random variables

Consider a sample space Ω of possible outcomes of a
random process wi. Each outcome is an event. The assig-
nation of a real number to each w leads to a random
variable X(w), a single-valued real function of w and Ω is
the domain of X.

2.3 Probabilities

Consider a random variable X and x a fixed real number,
AX the subset of Ω, which consists of all real sample
points to which X assigns the number x

AX = [w|X(w) = x] = [X = x] (1)

Because Ax is an event it will have a probability p =
P(Ax). One defines a cumulative distribution function as

FX(x) = P[X ≤ x] (2)

with x in the interval (−∞,+∞).

2.4 Stochastic or random process

Consider a set of random variables depending on a con-
tinuous variable t. Define X(t, w) as a collection of time
functions for a fixed value of w.

A stochastic or random process is a family of random
variables [X(t, w)] defined over a given parameter set T
indexed by t.

In the following the fixed event parameter w will be
left out in the notations.

2.5 Markov process and strong Markov
process

• A stochastic process [X(t)] where t belongs to a con-
tinuous ensemble T is called a first order Markov
process if for a sequence [t0, t1, ..., tn] the condi-
tional cumulative distribution function FX of X(tn)
for a given sequence X(t0), X(t1),..., X(tn−1) de-
pends only on [X(tn−1)]. The conditional probabil-
ity P for generating a random value X(tn) at time
tn if its value was X(tn−1), ....., X(t1), X(t0) at times
tn ≥ tn−1, ...,≥ t1 ≥ t0 is given by

P[X(tn)|X(tn−1), ....., X(t1), X(t0)] = P[X(tn)|X(tn−1)]
(3)

• The process is strong if [X(t + s) − X(t), s ≥ 0] has
the same distribution as the process [X(s), s ≥ 0]
and is independent of the process [X(s), 0 ≤ s ≤ t]
i.e., if the process is known at time t the probability
law of the future change of state of the process will
be determined as if the process started at time t,
independently of the history of the process between
t = 0 and t.

One can interpret the Markovian property of a
system S , which evolves stochastically, as a loss
of memory of the system over an arbitrarily short
interval of time. Hence the evolution is governed by a
process such that this evolution at any arbitrary time t
depends only on t, independently of its evolution in
the past. The strong limit of the process shows that the
evolution is invariant under time translation, it depends
only on the time interval between two random events
and not of the initial time at which the process is observed.

The consequence of the specific time dependence of
the Markov assumption applied to physical systems is the
divisibility (semi-group) property, which will be shown
in the following section.
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3 Physical stochastic quantum
processes: Phenomenological
approach

We use here a phenomenological approach, which ex-
emplifies the conditions under which a physical system
coupled to its environment evolves in such a way that
the characteristic time of its evolution is independent of
memory effects that may be induced by its environment.

3.1 Conditions for the existence of a
Markovian master equation

Consider an open quantum system S coupled to its en-
vironment E. In general S is described by its time-
dependent density operator ρ̂S (t) applied to its environ-
ment and can be obtained as the solution of a master
equation for a free system S . The evolution can be fol-
lowed in terms of the differential equation

dρ̂S (t)
dt

= lim
τ→0

ρ̂S (t + τ) − ρ̂S (t)
τ

(4)

where ρ̂S (t + τ) = L̂t,τρ̂S (t), L̂t,τ being the evolution oper-
ator from t to t + τ.

Since S is coupled to E the total system S + E is
described by a density operator ρ̂S E(t) whose general
expression can be written

ρ̂S E(t) = ρ̂S (t)ρ̂E(t) + δρ̂S E(t) (5)

ρ̂S (t) = TrE[ρ̂S E(t)] and ρ̂E(t) = TrS [ρ̂S E(t)]. The
traceless operator δρ̂S E(t) is generated by the coupling
between S and E. It perturbs the free evolution of S and
may induce retardation effects in the process, hence intro-
duce a memory effect into the description of the evolution.

Eq. 5 will show Markovian properties if two conditions
are satisfied:

• (a) ∥δρ̂S E(t)∥/∥ρ̂S E(t)∥ ≪ 1

• (b) ∥ρ̂E(t)∥ ≃ ∥ρ̄E∥

where ρ̄E is a constant density. Relation (a) originates
from the fact that the correlations induced by the coupling
are considered to be weak, (b) expresses the fact that E is
stationary and as a consequence, Lt,τ must be independent
of t so that E does not depend on earlier times.

Furthermore, the conditions under which the system
S obeys a Markovian behavior imply that the coupling
of S to E generated by the interaction HS E between S
and E consists of a succession of short actions over time
intervals [t, t + τE] where τE is a typical interaction time.

The system S is characterized by a typical evolution
time τS . A Markov process operates as a random walk
over large time intervals t during which the phase Φ(t) of
S perturbed by the presence of E adds up quadratically as

∆2Φ(t ≫ τE) ∼ (|HS E |τE/ℏ)2t/τE = t/τS (6)

where τS = ℏ2/(|HS E |
2τE) is the typical time over which

the system S evolves. One sees that τS is much larger
than τE if HS E is weak and τE is small.

One can infer that under these conditions the perturbed
part of the density operator δρ̂S E(t) will be of the order of

∥δρ̂S E(t)∥ = O(|HS E |
2τ2E/ℏ

2) = O(τE/τS ).

Consequently the inequality |HS E |τE/ℏ ≪ 1 qualifies the
Markovian property of the system.

The properties mentioned above can be realized under
specific conditions. If the environment is large the spec-
trum has a large extension ∆E and the density of states
generally large too. As a consequence the decay time
τE = ℏ/∆E , which is the time over which the correlations
generated by the coupling ĤS E between S and E survive
is small. Over this time interval the phase of the wave
function changes by an amount of the order of τE |HS E |/ℏ.

A rigorous Markovian behavior would correspond to
the condition τE = 0.

3.2 Markov processes and divisibility

The master equation derived above describes a Markovian
system because its derivation relies on the short memory
behavior of the correlations, which characterize the cou-
pling of the system to its stationary environment. In the
limit where τE goes to zero, the time correlations

C(t, t′) = lim
τE→0
⟨ĤS E(t)ĤS E(t′ = t + τE)⟩ ∝ δ(t − t′) (7)

hence at time t′ the system has lost the memory of its
coupling to the environment at time t. This effect is
general and does not depend on a specific form of the
interaction ĤS E .

As a consequence the master equation, which governs
the evolution of ρ̂S (t) depends on a single time variable.
The density operator ρ̂S (t2) will be related to ρ̂S (t1) for
t2 > t1 by the relation ρ̂S (t2) = Φ̂(t2, t1)ρ̂S (t1). Then for
any further time interval [t2, t3] one will get the property

ρ̂S (t3) = Φ̂(t3, t2)Φ̂(t2, t1)ρ̂S (t1) (8)

where Φ̂(t′, t) is the evolution operator of the open system
whose properties have been extensively studied [11–14].
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Divisibility is a property of Markov systems, it is gov-
erned by time scale considerations. The question, which
comes next, is to know whether this property is specific
to these systems, hence if divisibility is equivalent to
Markovianity. This will be examined in the recent fol-
lowing approach in which the action of the environment
possesses a stochastic character.

4 Formal approach of stochastic
quantum processes

The former developments do not explicitly allude to the
concept of stochasticity, which is the classical central
concept in a Markov process. This concept has been
introduced explicitly and developed in recent work by
Pollock and collaborators [15, 16] who worked out a for-
mal presentation of stochastic quantum processes and
derived a necessary and sufficient condition, which leads
to a rigorous description of a Markov process.

Consider a quantum system, which evolves from t = 0
under the action of r possible external devices of different
type d(r)

j , which act at time t = t j, for instance unitary
transformations, interactions with an environment mathe-
matically represented by completely positive maps.

At each step j one can define D j =
∑

r d(r)
j . If these

operations are repeated k times and are uncorrelated one
can define a sequence of actions

D(k−1←0) = {d
(rk−1)
k−1 ; .....; d(r1)

1 ; d(r0)
0 } (9)

The evolution of the density operator of the system
under the action of the devices will be given by the linear
CP (completely positive) map

ρ̂k = V̂(k←0)[D(k−1←0)] (10)

where V̂(k←0) leads the system from t = 0 to time tk if
the system was given by the correlated or uncorrelated
density ρ̂0 at time t = 0.

A quantum Markov process may be characterized by
so called “causal breaks”: at t = tk the system is reset by
means of the external devices and these actions do not
depend on the past.

Consider the system at time tl: ρ̂l = ρ̂l[D(l−1←0)] and
the action on the system at some time k < l where a
stochastic action of some d(r)

k acts with probability p(r)
k

corresponding to the positive projection operator Π̂(r)
k .

Then the system is prepared again in a state P(s)
k randomly

chosen out of a set [P(s)
k ]. The action at time tk breaks the

causal link between the past j < k and the future l > k.
At time l the density operator can be written as

ρ̃l = prρ̂l(P
(s)
k |Π̂

(r)
k ; D(k−1←0)) (11)

which corresponds to the density operator at time tl at
the condition that its outcome at tk is the state P(s)

k with
probability pr when at step k it was ρ̂k. The conditioning
argument is fixed by Π̂(r)

k and controls D(k−1←0). For-
getting the probability pr, which plays no role in the
determination of the Markovian property of the process,
one gets finally

ρ̂l = ρ̂l(P
(s)
k |Π̂

(r)
k ; D(k−1←0)) (12)

which is the quantum equivalent of the classical expres-
sion.

The process is Markovian if

ρ̂l(P
(s)
k |Π̂

(r)
k ; D(k−1←0)) = ρ̂l(P

(s)
k ) (13)

∀ P(s)
k , Π̂(r)

k ; D(k−1←0) and ∀ (l, k).
From this definition follows a central theorem.

The process is non-Markovian if and only if there exists
at least two different choices of measures (controls) such
that after a causal break at time tk [15]

ρ̂l(P
(s)
k |Π̂

(r)
k ; D(k−1←0)) , ρ̂l(P

(s)
k |Π̂

′(r′)
k ; D

′

(k−1←0)) (14)

The evolution is Markovian if ρ̂l is the same for all
linearly independent measures (controls).

This result induces two consequences:

• A given choice of decomposition D j =
∑

r d(r)
j leads

to a classical distribution iff the quantum process is
Markovian according to the definition above.

• A consequence of the Markovian property is the
divisibility (1/2-group property) of the process:
if the system evolves in time as ρ̂(tl) = T̂ (tl, t j)ρ̂(t j)
its evolution obeys also

ρ̂(tl) = T̂ (tl, tk)T̂ (tk, t j)ρ̂(t j) (15)

for l > k > j.

It is easy to realize that open quantum systems, which
interact by means of time-independent interactions, can-
not be Markovian except if the process goes in no more
than two time steps. This means that non-Markovian
processes are the general case.

In the phenomenological derivation of a Markov-type
master equation we have seen that many constraints have
to be introduced in order to approach a Markovian evo-
lution, among them the fact that the interaction between
the system and the environment should get as small as
possible. It is also clear that the existence of memory ef-
fects is intuitively understandable. The stochastic action
of the environment generates perturbations, which take
some time in order to be absorbed by the system.
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5 The interaction of the system
with its environment is of
deterministic nature: conditions
for rigorous divisibility

Consider the case for which the interaction between
S and E does not necessarily follow a stochastic pro-
cess, hence open quantum systems are not necessarily
driven by a Markovian or non-Markovian mechanism. We
want to know whether the time evolution of the system
possesses the semi-group (divisibility) property, which
characterizes Markov processes.

In the sequel we shall show that divisibility can in-
deed be realized in systems, which are not necessarily
Markovian.

5.1 General expression of the density
operator in the Liouvillian formalism

An open system S characterized by a density operator
ρ̂S (t), which evolves in time from t0 to t under the action
of the evolution operator T̂ (t, t0)

ρ̂S (t) = T̂ (t, t0)ρ̂S (t0) (16)

At the initial time t0 the system S is supposed to be
decoupled from its environment and characterized by the
density operator

ρ̂S (t0) =
∑
i1,i2

ci1c∗i2 |i1⟩⟨i2| (17)

and the environment E by

ρ̂E(t0) =
∑
α1,α2

dα1,α2 |α1⟩⟨α2| (18)

where |i1⟩, |i2⟩ and |α1⟩, |α2⟩ are orthogonal states in S
and E spaces respectively, ci1 , ci2 normalized amplitudes
and dα1,α2 weights such that ρ̂2

E(t0) = ρ̂E(t0).
At time t > t0 the reduced density operator in S space

is ρ̂S (t) = TrE[ρ̂(t)] where ρ̂(t) is the density operator of
the total system S + E. It can be written as [17]

ρ̂S (t) =
∑
i1,i2

ci1c∗i2Φ̂i1,i2(t, t0) (19)

with

Φ̂i1,i2(t, t0) =
∑
j1, j2

C(i1,i2),( j1, j2)(t, t0)| j1⟩S ⟨ j2| (20)

where the super matrix C reads

C(i1,i2),( j1, j2)(t, t0) =
∑
α1,α2,γ

dα1,α2U(i1 j1),(α1γ)(t, t0)

× U∗(i2 j2),(α2γ)(t, t0)
(21)

and

U(i1 j1),(α1γ)(t, t0) = ⟨ j1γ|Û(t, t0)|i1α1⟩

U∗(i2 j2),(α2γ)(t, t0) = ⟨i2α2|Û∗(t, t0)| j2γ⟩ (22)

The evolution operator reads Û(t, t0) = e−iĤ(t−t0), where
Ĥ is the total Hamiltonian in S + E space, and the super
matrix C obeys the condition limt→t0 C(i1,i2),( j1, j2)(t, t0) =
δi1,i2δ j1, j2 .

In the present formulation the system is described
in terms of pure states. The results, which will be
derived below, remain valid if the initial density op-
erator at the initial time is composed of mixed states
ρ̂S (t0) =

∑
i1,i2 ci1i2 |i1⟩S ⟨i2|.

One asks now under what conditions the evolution of
ρ̂S (t) will be divisible.

5.2 Divisibility: the system is coupled to a
unique state of the environment

Consider a system, which obeys the divisibility criterion
[13, 14]

ρ̂S (t, t0) = T̂ (t, τ)T̂ (τ, t0)ρ̂S (t0) (23)

with τ in the interval [t0, t].
The problem is now to find conditions under which

the general expression of ρ̂S (t, t0) obeys the divisibility
constraint fixed by Eq. (23) at any time t > t0.

For this to be realized the following relation must be
verified by the super matrix C

C(i1,i2),(k1,k2)(t, t0) =
∑
j1, j2

C(i1,i2),( j1, j2)(ts, t0)

×C( j1, j2),(k1,k2)(t, ts) (24)

The explicit form of this equation is worked out in Ap-
pendix A. Writing out explicitly the r.h.s. and l.h.s. of
Eq. (24) in terms of the expression of C given in Eq. (21)
for fixed values of i1 and i2 one finds from inspection of
Eqs. (50) and (51) that a sufficient condition for this to be
realized is obtained if there is a unique occupied state |η⟩
in E with dη,η = 1. This is in agreement with Ref. [18].

5.3 Generalization to several states in the
environment

It is our aim here to show that the semi-group (divisibility)
property can be realized even if there is more than one
state in E space. To see this we introduce the explicit
expression of the master equation, which governs an open
quantum system in a time local regime. Its expression
reads [11, 19–22]

d
dt
ρ̂S (t) =

∑
n

L̂nρ̂S (t)R̂+n (25)

where L̂n and R̂n are time independent operators.
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Using the general form of the density operator ρ̂S (t) given by Eqs. (17)-(22)

ρ̂
j1 j2
S (t) =

∑
i1i2

ci1c∗i2
∑
α1α2,γ

dα1,α2⟨ j1γ|Û(t, t0)|i1α1⟩⟨i2α2|Û∗(t, t0)| j2γ⟩ (26)

and taking its time derivative leads to two contributions to the matrix elements of the operator

d
dt
ρ

j1 j2
S 1 (t) = (−i)

∑
i1i2

ci1c∗i2
∑
α1,α2

dα1,α2

∑
βγk1

⟨ j1γ|Ĥ|k1β⟩⟨k1β|e−iĤ(t−t0)|i1α1⟩⟨i2α2|eiĤ(t−t0)| j2γ⟩

d
dt
ρ

j1 j2
S 2 (t) = (+i)

∑
i1i2

ci1c∗i2
∑
α1,α2

dα1,α2

∑
βγk2

⟨ j1γ|e−iĤ(t−t0)|i1α1⟩⟨i2α2|eiĤ(t−t0)|k2β⟩⟨k2β|Ĥ| j2γ⟩ (27)

and

d
dt
ρ̂

j1 j2
S (t) =

d
dt

[ρ j1 j2
S 1 (t) + ρ j1 j2

S 2 (t)]. (28)

From the explicit expression of the density operator ma-
trix element given by Eqs. (26)-(28) one sees that the
structure of the master equation given by Eq. (25), which
induces the divisibility can only be realized if |β⟩ = |γ⟩.
Three solutions of special interest can be found:

• There is only one state |γ⟩ in E space. This result has
already been seen on the expression of the density
operator above.

• The density operator ρ̂S (0) is diagonal in S space
with equal amplitudes of the states and the states in
E space are equally weighed, ρ̂E =

∑
α dα,α|α⟩⟨α|,

dα,α = 1/N where N is the number of states in E
space. See proof in Appendix B. These states called
maximally coherent states have been introduced in a
study of quantum coherence [23].

• If the environment stays in a fixed state |γ⟩, i.e. if the
Hamiltonian H̃ = ĤE + ĤS E is diagonal in a basis of
states in which ĤE is diagonal. Then, if the system
starts in a given state |γ⟩ it will stay in this state over
the whole interval of time and the density operator
will be characterized by a definite index γ ρ̂S γ(t, t0).
For an explicit expression of the matrix elements of
ρ̂S see Appendix C. The central point to notice here
is the fact that this happens if [ĤE , ĤS E]=0.

Each of these conditions is sufficient to insure the struc-
ture of the r.h.s. of Eq. (28). The last one is the most
general one. The commutation between ĤE and ĤS E is
a sufficient condition to induce divisibility. However, as
claimed in [15] and shown below, divisibility does not
necessarily induce a Markovian behavior. We shall give a
counter example below.

5.4 Memory effects and absence of
divisibility: two-time approach

We use now the projection formalism [24–27] and the
expression developed in Section 5.1 in order to analyze
the time evolution of the density operator of the total
system S + E

ρ̂(t, t0) =
∑
i1,i2

ci1c∗i2
∑
α

dααU(t, t0)|i1α⟩⟨i2α|U+(t, t0) (29)

We write the expression of ρ̂(t, t0) in a basis of states in
which ĤE is diagonal.

We introduce projection operators P̂ and Q̂ in E space
such that

P̂ρ̂(t, t0) =
n∑

k=1

|γk⟩⟨γk|ρ̂(t, t0)

Q̂ρ̂(t, t0) =
N∑

l=n+1

|γl⟩⟨γl|ρ̂(t, t0) (30)

where N is the total finite or infinite number of states in
E space and P̂ + Q̂ = Î where Î is the identity operator.
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The evolution of the density operator is given by the
Liouvillian equation

dρ̂(t, t0)
dt

= L̂(t)ρ̂(t, t0) = −i[Ĥ, ρ̂(t, t0)] (31)

Projecting this equation respectively on P̂ and Q̂ sub-
spaces leads to a set of two coupled equations

dP̂ρ̂(t, t0)
dt

= P̂L̂(t)P̂ρ̂(t, t0) + P̂L̂(t)Q̂ρ̂(t, t0)(a)

dQ̂ρ̂(t, t0)
dt

= Q̂L̂(t)Q̂ρ̂(t, t0) + Q̂L̂(t)P̂ρ̂(t, t0)(b) (32)

Choosing t0 = 0 in order to simplify the equations and
solving formally the second equation gives

Q̂ρ̂(t) = eQ̂L̂(t)tQ̂ρ̂(t = 0) +
∫ t

0
dt′eQ̂L̂(t′)t′ Q̂L̂(t′)P̂ρ̂(t − t

′

)

(33)

If inserted into the first equation one obtains

dP̂ρ̂(t)
dt

= P̂L̂(t)P̂ρ̂(t) + P̂L̂(t)eQ̂L̂(t)tQ̂ρ̂(0) + P̂L̂(t) ×∫ t

0
dt′eQ̂L̂(t′)t′ Q̂L̂(t′)P̂ρ̂(t − t′) (34)

This first order two-time integro-differential equation
reduces to an ordinary one-time differential equation un-
der one of the the following conditions:

• There is only one state |γ⟩ in E space. Then dimP̂ =
1 and dimQ̂ = 0. As a consequence Eq. (31) reduces
to

dP̂ρ̂(t)
dt

= iP̂[P̂ρ̂(t), Ĥ] (35)

• The density operator at t = 0 is such that P̂ρ̂(0)Q̂ =
0, i.e. ρ̂(0) is block diagonal and furthermore
[ĤE , ĤS E] = 0 in a basis of states in which ĤE

is diagonal. Then P̂ĤQ̂ = 0 and in the second terms
of Eqs. (32), P̂[Q̂ρ̂(t), Ĥ] = 0 and Q̂[P̂ρ̂(t), Ĥ] = 0.
This eliminates the second terms in Eqs. (32), which
decouple.

Hence the evolution of the P-projected density operator
P̂ρ̂(t) is local in time and possesses the divisibility prop-
erty. This result is again in agreement with the results
obtained above and also with Ref. [28]. Finally the evolu-
tion of the density operator in S space ρ̂S (t) is governed
by

TrPE
dP̂ρ̂(t)

dt
= iTrPE P̂[P̂ρ̂(t), H̃]

where PE stands for the P projection of E space and
H̃ = ĤS + ĤS E .

5.5 Memory effects and absence of
divisibility: one-time approach

A sufficient condition, which induces the divisibility, is
obtained if [ĤE , ĤS E] = 0 in a basis of states in which
ĤE is diagonal. The violtion of divisibility is realized
when ĤS E possesses non-diagonal elements. Then the
evolution of the density matrix is described by a master
equation whose matrix elements for a fixed state |γ⟩ in
E space depends on a unique time variable and takes the
form

dρ̂ik
S γ(t)

dt
= (−i)[Ĥγd , ρ̂S γ(t)]ik + (−i)

∑
β,γ

[Ωik
γβ(t) −Ω

ik
βγ(t)]

(36)

where Ĥγd is the diagonal part in E space of Ĥ for fixed γ
and

Ωik
γβ(t) =

∑
j

⟨iγ|ĤS E |β j⟩⟨ jβ|ρ̂S (t)|γk⟩

Ωik
βγ(t) =

∑
j

⟨iγ|ρ̂S (t)|β j⟩⟨ jβ|ĤS E |γk⟩ (37)

In the present formulation the master equation depends
on a unique time variable although it describes a non
divisible process. Physically it is the fact that the
environment gets the opportunity to “jump” from a state
|γ⟩ to another state |β⟩, which produces necessarily a
time delay. This time delay induces the violation of the
semi-group property. Here the strength of the violation is
measured by the strength of the non-diagonal elements.

Finding physical systems, which realize [ĤE , ĤS E] = 0
is certainly as difficult to realize as a rigorous Markovian
quantum process.

5.6 Entangled initial conditions

Consider the more general case for which initial corre-
lations at t0 are present [29]. Then the initial density
operator can be written as ρ̂(t0) = |Ψ(t0)⟩⟨Ψ(t0)| with
|Ψ(t0)⟩ =

∑
i,α ai,α|i, α⟩. Using the same notations as

above the component (k1, k2) of ρ̂k1k2
S (t) reads

ρ̂k1k2
S (t) =

∑
i1,i2

∑
α1,α2,γ

ai1,α1a∗i2,α2
Û(i1k1),(α1γ)(t, t0)

× Û∗(i2k2),(α2γ)(t, t0)|k1⟩⟨k2|

(38)

In order to test the divisibility property of the system S
one introduces two arbitrary time intervals [t, ts], [ts, t0]
and looks for an equality between the r.h.s. of Eq. (38)
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and the expression of the product of the evolution opera-
tors acting successively in the two intervals defined above.
Equating both sides one gets∑

j1, j2

∑
η

∑
γ

Û( j1k1),(ηγ)(t, ts)Û∗( j2k2),(ηγ)(t, ts)

×
∑
δ

Û(i1 j1),(α1δ)(ts, t0)Û∗(i2 j2),(α2δ)(ts, t0)|k1⟩⟨k2|

=
∑
γ

Û(i1k1),(α1γ)(t, t0)Û∗(i2k2),(α2γ)(t, t0)|k1⟩⟨k2| (39)

A sufficient condition, which leads to the formal equality
of the two sides in Eq. (39) can be realized if the sum-
mation of the states are such that |δ⟩ = |η⟩. Then the
summation over the intermediate states j1, j2 on the l.h.s.
of Eq. (39) can only be performed independently if the
summation over E space reduces to a unique state, which
allows the use of the closure property.

The expression of the density matrix in S space is then
given as

ρ
j1, j2
S (t) =

∑
i1,i2

ai1,ηa
∗
i2,η⟨ j1η|Û(t, t0)|i1η⟩⟨i2η|

× Û∗(t, t0)| j2η⟩| j1⟩⟨ j2|
(40)

for a fixed state |η⟩ in E space. The Hilbert space of the
total system S + E has to reduce in practice to dimen-
sion d + 1 where d is the dimension of S . Hence the
present solution leading to the divisibility property does
no longer hold when the system S and the environment
E are already interacting at the initial time t0 except if E
space contains a unique state. This is an exceptional situ-
ation and a sufficient condition for the realization of the
divisibility property for correlated states at the initial time.
Problems related to the presence of initial correlations in
an open quantum system coupled to an environment can
lead to non positivity in the evolution of the system. This
question has been investigated in many works over the
last years and comes out as a major difficulty, see [30,31]
and references therein.

5.7 Some further remarks concerning
entanglement

It is the existence of the coupling ĤS E between S and E,
which may generate entanglement between the system S
and the environment E. This coupling is also the source
of time retardation (non-divisibility) effects in the time
behavior of the system S .

A well known test concerning the time evolution of
entanglement in an open quantum system has been pro-
posed as a conjecture by Kitaev and confirmed in [32],

which proves the so called “small incremental entangling”
(SIE) [33].

It was shown that in the absence of ancilla states the
maximum time evolution of the von Neumann entropy
SS (t) = −Trρ̂S (t) log ρ̂S (t) verifies

Γmax =
dSS (t)

dt
|t=0 ≤ c∥Ĥ∥ log δ (41)

where δ = min(dS , dE), the smallest dimension of S and
E space, ∥Ĥ∥ is the norm of the interaction Hamiltonian
ĤS E and c a constant of the order of unity.

In the case discussed above δ = 1, hence Γmax = 0,
which shows that the entropy of the considered system
does not change at the origin of time. There is no initial
exchange of information between S and E space in this
case.

5.8 Divisibility does not necessarily imply
the commutation relation between the
environment and the interaction
Hamiltonians

We discuss here the outcome of a simple model in order
to show that the semi-group property can, under certain
special conditions, also be valid for systems, which do
not satisfy the condition [ĤE , ĤS E] = 0. Another exam-
ple has been worked out elsewhere for non-Markovian
systems [15].

Consider the case where the Hamiltonian Ĥ of the total
system reads

Ĥ = ĤS + ĤE + ĤS E (42)

with

ĤS = ωĴz

ĤE = βb+b

ĤS E = η(b+ + b)Ĵ2 (43)

which corresponds to the case where this time
[ĤS , ĤS E] = 0, b+, b are boson operators, ω is the ro-
tation frequency of the system, β the quantum of energy
of the oscillator and η the strength parameter in the cou-
pling interaction between S and E.

Since Ĵz and Ĵ2 commute in the basis of states [| jm⟩]
the matrix elements of Ĥ in S space read

⟨ jm|Ĥ| jm⟩ = ωm + βb+b + η j( j + 1)(b+ + b) (44)

The expression of the density operator ρ̂S (t) at time t
is then obtained by taking the trace over the environment
states of the total Hamiltonian ρ̂(t) leading to

ρ̂S (t) = TrE ρ̂(t) (45)

Quanta | DOI: 10.12743/quanta.v10i1.157 November 2021 | Volume 10 | Issue 1 | Page 49

http://dx.doi.org/10.12743/quanta.v10i1.157


whose matrix elements read

ρ
jm1, jm2
S (t) = ρ jm1, jm2

0 (t)ΩE( j, j, t) (46)

with

ρ
jm1, jm2
0 (t) = e[−iω(m1−m2)]t/(2 j + 1) (47)

The bosonic environment contribution can be put in the
following form

ΩE( j, j, t) =
nmax∑
n=0

1
n!

∑
n′,n”

En,n′( j, t)E∗
n”,n

( j, t)

[(n′!)(n′′!)]1/2 (48)

The results are exact. The Zassenhaus development for-
mulated in Appendix D was used in order to work out the
expressions [34]. The expressions of the polynomials
En,n′(t) and E∗n′′,n(t) are developed in Appendix E.

By simple inspection of the expressions in Appendix E
it can be seen that the non-diagonal elements of ρ jm1, jm2

S (t)
may cross zero when t increases but oscillate and never
reach and stay at zero whatever the length of the time
interval, which goes to infinity.

More precisely the time dependence of ρ̂S (t) is
uniquely determined by the behavior of oscillatory func-
tions, which depend on the parameters ω, γ( j) and β.
If these parameters induce commensurable oscillation
periods one realizes that the density matrix can evolve
periodically over periods, which correspond to some T .

Hence if ρ̂S (t) = L(t,0)ρ̂S (0) then

ρ
jm1, jm2
S (t) = L2T,T LT,0ρ

jm1, jm2
S (0) (49)

for t = 2T . The expression reflects a semi-group property
of ρ jm1, jm2

S (t) for selected time intervals [nT, pT ], p ≥ n.

6 Conclusions

In the present work, we examined different aspects of the
evolution of open quantum systems. We first recalled
the celebrated mathematical (classical) Markov process
and examined different applications of the concept in
quantum physics.

We then started from a phenomenological derivation
of a master equation obeyed by the open system.
There it comes out that a Markovian behavior can be
approximatly realized under two conditions: a weak
coupling between the system and its environment, a short
memory correlation time in the environment compared to
the characteristic evolution time of the system.

Next, we recalled the recent formal derivation of a nec-
essary and sufficient condition for the Markovian behavior
of a system, which is tested at different times by means of
stochastic processes [15]. The result emphasizes the pre-
dictable impossibility of such systems to show a rigorous
Markovian evolution. This does not come as a surprise
and comforts the intuitive feeling that physical systems
always react with a certain time delay to the action com-
ing from the outside. This time delay corresponds to a so
called memory time, the system keeps track of the past, a
process, which takes a certain time and can be expressed
in terms of trajectories. A process will be Markovian iff
it does not depend on the history of the evolution pro-
cess [15, 35]. The understanding of these systems has
been the object of many applications in different areas of
physics, for instance Ref. [36] where the description of
the environment used has been confronted with stochastic
approaches.

Further, we examined the case of systems, which are
not coupled to an environment through stochastic action
and such that the Hamiltonians, which govern the envi-
ronment and the coupling between the environment and
the system commute. In this case we presented sufficient
conditions for which the evolution of a system possesses
the semi-group (divisibility) property, a central charac-
teristic of Markov processes. If divisibility characterizes
the system the environment follows the state in which
the interaction started (i.e a fixed “trajectory”, “channel”).
If divisibility is not preserved this property is no longer
realized, i.e. the environment may choose different states
in which it evolves leading to different histories. This
fact explains the existence of a memory time, as it is the
case in non-Markovian process, the time over which the
system “feels” the changes, which happen in the environ-
ment. An experiment led to the observation of “quantum
jumps” between states in a driven quantum system [37],
which shows how different histories can be experimen-
tally generated.

Finally, we addressed the problem, which concerns
the presence of entanglement at initial time between the
states of the system of interest and the environment to
which it is coupled and showed under which conditions
the time evolution of the system may remain divisible.
The time evolution of the open system cannot possess the
divisibility property if the spectrum of the environment
contains more than one state and the wave function of
the system and its environment are entangled from the
beginning. The correlation between the initial state of
the system and a non-Markovian behavior of the time
evolution of the system has been addressed by means of
different arguments [30].
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To summarize, the Markovian or semi-group property
of open quantum systems is generated through one of the
following properties:

• the correlation time in the environment τE is small
compared to the typical evolution time of the sys-
tem τS .

• the environment follows a fixed “trajectory” in its
evolution in time, whatever the interaction, stochas-
tic or deterministic, weak or strong.

• the divisibility property, i.e. the absence of time
delay in the interaction between the system and its
environment, which may be due to specific proper-
ties of the environment and its interaction with the
system.

In principle, the density operators of systems, which
undergo memory effects are governed by two-time master
equations. In the specific case we presented the dynami-
cal equations that show a one-time behavior. The absence

of time delays appears through the role played by non-
diagonal matrix elements of the Hamiltonian, which gov-
erns the interaction between the system and its environ-
ment. This interaction can be arbitrarily large. Similarly
to an example given in Ref. [15] we worked out an exam-
ple, which confirms that divisibility is a property, which
does not necessarily imply Markovianity. The present
work shows also that Markovianity and divisibility are
properties, which may rarely characterize the evolution
of open quantum systems.

It should be noted that we have presented and shown
in this paper some aspects of the dynamics of the evolu-
tion of an open quantum system. Another aspects have
advanced the understanding of these systems and made
valuable developments in different areas of physics, we
mention here the one based on the study of the dynamics
of a dissipative system, see the remarkable work such
as Legett et al. [38] as well as recent works [39–41] and
references therein.

Appendix A: Imposing the divisibility constraint

Using the explicit expression of the super matrix C given by Eqs. (21)-(22), the divisibility constraint in Eq. (24) for
fixed states (i1, i2), (k1, k2) imposes the following relation∑

α1,α2,γ

dα1,α2U(i1k1),(α1γ)(t − t0)U∗(i2k2),(α2γ)(t − t0)

=
∑
j1, j2

∑
α1,α2,β1,β2

dα1,α2dβ1,β2

∑
γ,δ

U( j1k1),(β1δ)(t − ts)U(i1 j1),(α1γ)(ts − t0)U∗( j2k2),(β2δ)(t − ts)U∗(i2 j2),(α2γ)(ts − t0) (50)

In order to find a solution to this equality and without loss of generality we consider the case where the density
matrix in E space is diagonal. Then the equality reads∑

α,γ

dα,αU(i1k1),(αγ)(t − t0)U∗(i2k2),(αγ)(t − t0)

=
∑
j1, j2

∑
α,β

dα,αdβ,β
∑
γ,δ

U( j1k1),(βδ)(t − ts)U(i1 j1),(αγ)(ts − t0)U∗( j2k2),(βδ)(t − ts)U∗(i2 j2),(αγ)(ts − t0) (51)

A sufficient condition to realize the equality is obtained if dβ,β = dα,α and consequently if the weights d on both sides
are to be the same one ends up with dα,α = 1. This last condition imposes a unique state in E space, say |η⟩. In this
case dη,η = 1 and Eq. (24) reduces to

U(i1k1),(ηη)(t− t0)U∗(i2k2),(ηη)(t− t0) =
∑

j1

U(i1 j1),(ηη)(ts− t0)U( j1k1),(ηη)(t− ts)
∑

j2

U∗( j2k2),(ηη)(t− ts)U∗(i2 j2),(ηη)(ts− t0) (52)

which proves the equality.

Appendix B: Special case of divisibility

Starting from the expression of the density operator given by Eqs. (19)-(22), we consider the case where |ci| = 1/n
for all i where n is the number of states in S space and dα1,α2 = 1/Nδα1,α2 .
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In this case the relation, which imposes the divisibility constraint reads

1
Nn

∑
iα,γ

U(ik1),(αγ)(t, t0)U∗(ik2),(αγ)(t, t0) =
1

N2n

∑
j1 j2β,δ

U( j1k1),(βδ)(t, ts)U∗( j2k2),(βδ)(t, ts)
∑
i,α,γ

U(i j1),(αγ)(ts, t0)U∗(i j2),(αγ)(ts, t0)

(53)
The expression in the last line leads to∑

i,α,γ

U(i j1),(αγ)(ts, t0)U∗(i j2),(αγ)(ts, t0) = Nδ j1, j2 (54)

and finally the r.h.s. reduces to ∑
j1 j2β,δ

U( j1k1),(βδ)(t, ts)U∗( j2k2),(βδ)(t, ts) = 1/Nδk1,k2 (55)

It is easy to observe that working out the l.h.s. of Eq. (53) leads to the same result.

Appendix C: Different expressions
of Eq. (27)

For a fixed unique state γ the expressions of d
dtρ

j1 j2
S 1γ(t) and

d
dtρ

j1 j2
S 2γ(t) given in Eq. (27) can be written as

d
dt
ρ

j1 j2
S 1γ(t) = (−i)

∑
k1k2

A j1k1
γ ρ

k1k2
S 1γ (t)I

k2 j2 (56)

where Î is the identity operator in S space and

A j1k1
γ = ⟨ j1γ|ĤS |k1γ⟩ + ⟨ j1γ|ĤE + ĤS E |k1γ⟩ (57)

and similar expressions for d
dtρ

j1 j2
S 2γ(t). The matrix ele-

ments of ĤS E in the second term on the r.h.s. of the
expression of A are generally non diagonal in E. They
are diagonal if ĤE and ĤS E commute.

In symmetrized form the r.h.s. of the master equation
reads

(−i)Ĥρ̂S +(i)ρ̂S Ĥ = (Î−iĤ)ρ̂S (Î+iĤ)−ρ̂S −Ĥρ̂S Ĥ (58)

Appendix D: The Zassenhaus
development

If X = −i(t − t0)(ĤS + ĤE) and Y = −i(t − t0)ĤS E

eX+Y = eX ⊗ eY ⊗ e−c2(X,Y)/2! ⊗ e−c3(X,Y)/3! ⊗ e−c4(X,Y)/4! . . .

(59)
where
c2(X,Y) = [X,Y]
c3(X,Y) = 2[[X,Y],Y] + [[X,Y], X]
c4(X,Y) = 3[[[X,Y],Y],Y] + 3[[[X,Y], X],Y] +
[[[X,Y], X], X], etc.

The series has an infinite number of term, which can
be generated iteratively in a straightforward way [42].
If [X,Y] = 0 the truncation at the third term leads to the
factorisation of the X and the Y contribution. If [X,Y] = c
where c is a c-number the expression corresponds to the
well-known Baker–Campbell–Hausdorff formula.

Appendix E: The bosonic content of
the density operator

The expressions of the bosonic contributions to the den-
sity matrix ρ jm1, jm2

s (t) are given by

En,n′( j, t) = e−iβt
∑

n≥n2,n3≥n2

∑
n3≥n4,n′≥n4

(−i)n+n3(−1)n′+n2−n4

n!n′!(n3!)2[α(t)n+n3−2n2][ζ(t)n3+n′−2n4]
(n − n2)!(n3 − n4)!(n3 − n2)!(n′ − n4)!

eΨ(t) (60)

and

E∗
n′′ ,n

( j; t) = eiβt
∑

n′′≥n2,n3≥n2

∑
n3≥n4,n≥n4

in
′′
+n3(−1)n+n2−n4

n
′′

!n!(n3!)2[α(t)n
′′
+n3−2n2][ζ(t)n+n3−2n4]

(n′′ − n2)!(n3 − n2)!(n3 − n4)!(n − n4)!
eΨ(t) (61)

The different quantities, which enter En,n′( j, t) and
E∗

n′′ ,n
( j; t) are

α(t) =
γ( j) sin βt
β

(62)

ζ(t) =
β[1 − cos γ( j)t]

γ( j)
(63)

γ( j) = η j( j + 1) (64)

Ψ(t) = −
1
2

[
γ2( j) sin2(βt)

β2 +
β2(1 − cos γ( j)t)2

γ2( j)

]
(65)
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tonic quantum technologies. Nature Photonics 2009;
3(12):687–695. doi:10.1038/nphoton.2009.

229.

[8] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Naka-
mura, C. Monroe, J. L. O’Brien. Quantum com-
puters. Nature 2010; 464(7285):45–53. doi:10.
1038/nature08812.

[9] R. A. Howard. Dynamic Probabilistic Systems. Vol-
ume I: Markov Models. John Wiley & Sons, Ltd,
New York, 1971.

[10] O. C. Ibe. Markov Processes for Stochastic Model-
ing. 2nd Edition. Elsevier, Amsterdam, 2013.

[11] G. Lindblad. On the generators of quantum dynam-
ical semigroups. Communications in Mathemati-
cal Physics 1976; 48(2):119–130. doi:10.1007/
bf01608499.

[12] H.-P. Breuer. Non-Markovian generalization of the
Lindblad theory of open quantum systems. Physi-
cal Review A 2007; 75(2):022103. doi:10.1103/
PhysRevA.75.022103.

[13] B. Vacchini, H.-P. Breuer. Exact master equations
for the non-Markovian decay of a qubit. Physi-
cal Review A 2010; 81(4):042103. doi:10.1103/
PhysRevA.81.042103.

[14] A. Rivas, S. F. Huelga, M. B. Plenio. En-
tanglement and non-Markovianity of quan-
tum evolutions. Physical Review Letters
2010; 105(5):050403. arXiv:0911.4270.
doi:10.1103/PhysRevLett.105.050403.

[15] F. A. Pollock, C. Rodrı́guez-Rosario, T. Frauen-
heim, M. Paternostro, K. Modi. Operational Markov
condition for quantum processes. Physical Re-
view Letters 2018; 120(4):040405. doi:10.1103/
PhysRevLett.120.040405.

[16] F. A. Pollock, C. Rodrı́guez-Rosario, T. Frauenheim,
M. Paternostro, K. Modi. Non-Markovian quantum
processes: complete framework and efficient char-
acterization. Physical Review A 2018; 97(1):012127.
doi:10.1103/PhysRevA.97.012127.
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