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eak measurements can be seen as an attempt
Wat answering the Which way? question with-

out destroying interference between the path-
ways involved. Unusual mean values obtained in such
measurements represent the response of a quantum
system to this forbidden question, in which the #rue
composition of virtual pathways is hidden from the
observer. Such values indicate a failure of a measure-
ment where the uncertainty principle says it must fail,
rather than provide an additional insight into physi-
cal reality.
Quanta 2013; 2: 50-57.

1 Introduction

Twenty five years ago Aharonov, Albert and Vaidman
published a paper entitled “How the result of a measure-
ment of a component of the spin of a spin—% particle can
turn out to be 100” [1]. The authors’ idea was further de-
veloped in a large volume of work on the so-called weak
measurement (see, for example, [2H10])), culminating in a
somewhat bizarre report by the British Broadcasting Cor-
poration (BBC) suggesting that “pioneering experi-
ments have cast doubt on a founding idea of the branch
of physics called quantum mechanics”. There seems to
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be room for discussion about what actually happens in
a weak measurement, and this is the subject of this pa-
per. Some of the early and more recent criticism of the
original approach used in [[I]] can be found in [12H17].

There appear to be only two possible answers to the
original question posed by the authors of [1]]: (1) there is
a new counterintuitive aspect to quantum measurement
theory, or (2) the interpretation of the result of the mea-
surement is flawed. In this paper we will follow [14] in
advocating the second point of view. The argument is
subtle. There is no error in the simple mathematics of [1]).
It is the interpretation of the result which is at stake.

Below we will argue that weak measurement could be
viewed as an attempt to answer the Which way? question
without destroying interference between the pathways
of interest. Such an attempt, however, must fail as a
consequence of the uncertainty principle and the
unusual results that can be obtained for weak values are
just the evidence of this failure.

2 Probabilities and negative
probabilities

A random variable f is fully described by its probability
distribution p(f). Often it is sufficient to know only the
typical value of f, and the range over which the values are
likely to be spread. To get an estimate for the centre and
the width of the range, one usually evaluates the mean
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value of f, given by

[ fo(Hdf
f=F——— (D
[pHdf
and the standard mean deviation
o= (5= (? ()

Suppose f can only take the values 1 and 2, and its un-
normalised probability distribution is p(1) = 1.1 and
p(2) = 1. We, therefore, have

_ [1xp(1) +2xp)]
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which reasonably well represent the centre and width of
the interval [1, 2] containing the values of f.

Suppose next that, for whatever reason, the unnor-
malised probabilities were allowed to take negative values,
for example

o) = -1.1 4)
p2) =1

Using the same formulas, we find
&= -9 ()
o =~ 10.49:

which, clearly, no longer describe the range [1, 2], since
[{f)] is too large, and o is purely imaginary. The reason
for obtaining such an anomalous mean value is that the
denominator in is small, while the numerator
is not - hence the large negative expectation value in

In general, the mean and the standard mean deviation
of an alternating distribution do not have to represent the
region of its support. These useful properties of (f) and
o are lost, once a distribution is allowed to change its
sign.

To make things worse, let us assume that the unnor-
malised probabilities p(f) are also allowed to take com-
plex values

p(f) = p1(f) +102(f) (6)

while f may take any value inside the interval [a, b]. As
before, we will construct a normalised distribution

o(f)

=27 (7)
I p(rdf
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which can now be written as a sum of its real and imagi-
nary parts

w(f) = wi(f) + 1w (f) (8)
_ A2(01(f)/Ar) + AXpa(f)/A2)
B A2+ A2
p2(f)/A2 = p1(f)/A
+1A,4,22 A§+A1§ 1 )
where ,
f o(Hdf = A + 1A, (10)

Now we may wonder whether the value of Re(f) =

fa b fwi(f)df would give us an idea about the location of
the interval [a, b]. From |Equation 8 we note that if both
p1(f) and p(f) do not change sign, w;(f) is a proper
probability distribution, and its mean certainly lies within
the region of its support. If, on the other hand, both p;(f)
and py(f) alternate, the mean Re(f) is allowed to lie any-
where, and may not tell us anything about the actual range
of values of f.

So here is how a confusion might arise: suppose one
needs to evaluate the average of a variable known to take
values between 1 and 2 indirectly, i.e., without checking
whether the distribution alternates, or is a proper proba-
bilistic one. Obtaining a result of —9 may seem unusual,
until it is realised that the employed distribution changes
sign, and scrambles the information about the actual range
values involved.

One remaining question is why was it necessary to
employ such a tricky distribution in the first place?

A chance to employ oscillatory complex-valued distribu-
tions is offered by quantum mechanics, and for a good
reason. Consider a kind of double-slit experiment in
which a quantum system, initially in a state |/), may reach
a given final state |F’) via two pathways, the correspond-
ing probability amplitudes being A(1) and A(2). There
are two possibilities.

Case (1). The pathways interfere, and the probability
to reach |F) is given by

PPl = 1A(1) + AQ))? (11)

Case (2). Interference between the pathways has been
completely destroyed by bringing the system in contact
with another system, or an environment. Now the proba-
bility to reach |F) is

PEl = 1A +1AQ)1 (12)
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The two cases are physically different, as are the two
probabilities. In the second case the two pathways are
real. One can make an experiment which would confirm
by multiple trials that the system travels either the first or
the second route with frequencies proportional to |A(1)[?
and |AQ2)[%, respectively. In the first case the individual
pathways remain virtual. Together they form a single
real pathway travelled with probability |A(1) + A2)]%, and
there is no way of saying, even statistically, which of the
two virtual paths the system has actually travelled.

The above leads to a loose formulation of the uncer-
tainty principle (|18]]: several interfering pathways or
states should be considered as a single unit. Quantum
interference erases detailed information about a system.
This information can only be obtained if interference
is destroyed, usually at the cost of perturbing the sys-
tem’s evolution, thus destroying also the very studied
phenomenon, e.g., an interference pattern in Young’s
double-slit experiment.

Let us discuss the pathways in a slightly more formal
way. By slicing the time interval into N subintervals,
and sending N to infinity, we can write the transition
amplitude for a system with a Hamiltonian A as a sum
over paths traced by a variable A:

—1Ht/h .
(Fle™MDy = Tim 3 (Flag,.,)
ki,ka,...kni1

—1Ht/haN
X{ gy, le” N |ag Magy|--lag,)

x{ar, le N |y Yag, |T)

= Z AP [path]

paths

(13)

where a; and |ay) are the eigenvalues and eigenvectors of
the variable of interest A, Alay) = ailay). We also intro-
duced Feynman paths: functions which take the values ax
from the spectrum of A at each discrete time. In the limit
N — oo we will denote such a path by a(f). The paths are
virtual pathways, each contributing a probability ampli-
tude AF/[path] defined in In the chosen
representation they form the most detailed complete set
of histories available to the quantum system.

We may be interested not in every detail of the parti-
cle’s past, but only in the value of a certain variable, a
functional defined for a Feynman path a(¢) as an integral

¥ [path] = f B(ta(t")dr' (14)
0

where S(¢) is a known function of our choice. We can
define a less detailed set of virtual pathways by grouping
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together those paths for which the value of ¥ [a] equals
some f. Each pathway now contributes the amplitude

O llf) = ), 8(f - T IpathA™ ' [path]

paths

(15)

where 6(z) is the Dirac delta. The new pathways con-
tain the most detailed information about the variable ¥,
while information about other variables has been lost to
interference in the sum given by

Next, we can define a coarse-grained amplitude distri-
bution ¥ for # by smearing ®F /(7| f) with a window
function G(f):

vlap = [60-potdneg as
With G(f) chosen, for example, to be a Gaussian of a
width A f we are unable to distinguish the values f] and f»
less than A f apart, | f| — f2| < Af, since the corresponding
pathways may now interfere.

The coarse-graining does, however, have a physical
meaning. Consider a basis {F'} containing our final state
|F), and construct a state [P/ (1]f)) = X [FYPF<I(1]f) so
that ¥F /(1| f) = (F|¥!(1]f)). It is easy to check [20] that
P (i f)) satisfies a differential equation

0 (1)) = [H - o BOA| @) (17
with the initial condition
W/ (2 = 01)) = GOID (18)

This can also be seen as a Schrodinger equation describ-
ing a system interacting with a von Neumann pointer [21]]
whose position is f. With it we have the recipe for measur-
ing the the quantity ¥ [path]: first prepare the system in
the initial state |I) and the pointer in the state f GOHIHdf.
Switch on the coupling, and at a time ¢ measure the pointer
position accurately. Interference between paths with dif-
ferent values of ¥ [path] will be destroyed, since they lead
do different pointer positions.

Our measurement scheme has an important parameter, the
width of the window G(f), Af, which determines the ex-
tent to which we can ascertain the value of ¥ [path], once
the pointer has been found in f. This accuracy parameter
also determines the perturbation a measurement exerts on
the measured system. This, in turn, can be judged by how
much the probability to arrive in a final states |F') with the
meter on differs from that with the meter off. The former
is given by

Pr () = f PP f (19)
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—zflt/h|l>|2

and, in general, is not equal to |(F|e since

qu<m@“%wmr¢aﬂww@@A<m>
aﬁwwﬁﬁnzaﬂf®“%WMW<m>

where the last equality is obtained by integrating

The perturbation can be minimised by choosing G(f) to
be very broad. By construction, the value of ¥ typically
lies within a finite interval, say, a < ¥ [path] < b, outside
of which ®F/(#|f’) vansihes. A very broad G(f — f")
can, therefore be replaced by G(f), making the left-hand
side of Eéuation 20| proportional to (F' ol 79%

Thus, in order to study the system with the interference
between the pathways intact, we must make a highly
inaccurate weak measurement. This can be achieved by
introducing a high degree of uncertainty in the pointer’s
initial position. The following classical example may give
us some encouragement.

Consider a classical system which can reach a final state
in several different ways. Let us say, a ball can roll from
a hole 7 to a hole F' down the first groove with the prob-
ability w; > 0, or down the second groove, with the
probability w, > 0, and so on. It is easy to imagine a
purely classical pointer which moves one unit to the right
if the ball travels the first route, or two units to the right,
if the second route is travelled, and so on. The meter is
imperfect: we can accurately determine its final position,
while we cannot be sure that it has been set exactly at zero.
Rather, its initial position is distributed around 0 with a
probability density G(f) of a zero mean and a known vari-
ance. Let there be just two routes. Now the final meter
readings are also uncertain, with the probability to find it
in f given by

PF*%f>=LfCXf—f6w00df 22)

w(f) =wio(f — 1)+ wad(f —2)

If the meter is accurate, i.e., if G(f) is very narrowly
peaked around f = 0, and if we perform N trials, we will
have just two possible readings: f = 1 will be realized
approximately Nw; times and f = 2 will be realized
approximately Nw; times.

Suppose next that the meter is highly inaccurate, and
the width of G, Af is much larger than 1. A simple
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calculation shows [[14]] that the first two moments of the
final distribution are given by

m=fmmﬁ 23)
o [ n [ r2G(hHdf
q>—f€w@ﬂﬂ»756ﬂ7

We have, therefore, a very broad distribution, whose mean
coincides with the mean of w(f). Since the second mo-
ment of G is known, by performing a large number of
trials we can extract from the data also the variance o of
w(f). For instance, if the two routes are travelled with

equal probabilities, w; = wy = %, we have
(fy = 15 (24)
o = 05

From this we can correctly deduce that there are just two,
and not three or four, routes available to the system, and
that they are travelled with roughly equal probabilities.
This simple example shows that, classically, even a highly
inaccurate meter can provide some information about the
alternatives available to a stochastic system. It is just a
matter of performing a large number of trials required to
gather the necessary statistics. Next we will see whether
this remains true in the quantum case.

In the quantum case, employing an inaccurate meter has
a practical advantage: we minimise the back-action of
the meter on the measured system, and may hope to learn
something without destroying the interference. As dis-
cussed in we can make a measurement non-
invasive by giving the initial meter position a large quan-
tum uncertainty (that is to say, we choose a pure meter
state broad in the coordinate space). We prepare the
system and the pointer in a product state, given by
turn on the interaction, check the system’s final
state, and sample the meter reading provided this final

state is |F'). From |[Equation 17|the moments of the distri-

bution of the meter readings are given by

[ Frer<tafirar
[FI@fPRdf

(f" = (25)

As the width of the initial meter state Af tends to infinity,
assuming ImG(f) = 0 we have [[14]

(f) =Re(f) + O(1/Af) (26)
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[ F2G(prdf
[G(frdf
+IfI* + O(1/Af)

(% = +CRe(f) - If?  @7)

where C is a factor of order of unity, which depends only
on the shape of G(f) [14]], and we have introduced the
notation f” for the n-th moment of the complex-valued

amplitude distribution ®(f) defined in

n@F«—I d
e UYL 08)

Jeanaf
It is at this point that improper averages (Equation 28)

evaluated with oscillatory distributions enter our calcula-
tion, originally set to evaluate proper probabilistic aver-
ages (Equation 26)). Expressions similar to [Equation 26|
have been obtained earlier in [1,4]] for a weak von Neu-
mann measurement and in [22]] for the quantum traversal
time. They are the quantum analogues of the classical

We see that the quantum case turns out to be different
in one important aspect. Where the inaccurate classical
calculation of yields the mean of the proba-
bility distribution, its quantum counterpart gives us the
mean evaluated with the probability amplitude ®F ! (t|f).
There is no a priori reason to expect that either its real
or imaginary part does not change sign. As discussed in
[section 2| and |section 3| such averages are not obliged
to tell us anything about the actual range of a random
variable. Thus, our attempt to answer the Which way?
(Which f?) question is likely to fail, as we are not able to
extract the information about the alternatives available to
a quantum system. Because of the uncertainty principle,
as long as the pathways remain interfering alternatives,
the question that we are asking is not well posed.

9 A double slit experiment

To give our approach a concrete example, we return to the
double slit experiment. Consider a two-level system, e.g.,
a spin-% precessing in a magnetic field. The Hamiltonian
is given by:

H = hwi 6y (29)
where wy is the Larmor frequency, and
R 01

is the Pauli spin matrix. We assume that the spin is pre-
selected in a state polarised along the z-axis at ¢ = 0, and
then post-selected in the same state at r = 7. We also
wish to know the state of the spin half-way through the
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Figure 1: Schematic diagram showing a Feynman path a(t)
fora spin-% precessing in a magnetic field. The path connects
the state |1) at t = 0 with the same state at t = 1.5659/wy,
(very close to t = m/2wy ). Between these times the path jumps
between 1 and 2, passing through |2) at t = n/4wy.

transition, at r = 7/2. We follow the steps outlined in[sec}
At any given time, and in the given representation,
the spin can point up or down the z-axis. We label these
two states |1) and |2), respectively. Feynman paths are,
therefore, irregular curves, as shown in

The functional ¥ (path) is given by with
B') =6t -T/2):

F (path) = f t §(t' — T/2)a()dl =a(T/2)  (31)
0

Thus, we combined the Feynman paths ending in the state
|1) at t = T into two virtual pathways, one containing the
paths passing at t = T/2 through the state |1), and the
other containing the paths passing through the state |2).
The corresponding probability amplitudes are those for
evolving the spin freely from its initial state to |1) or [2)
at t = T/2, and then to the final state |1) att = T:

cosz(wLT/Z)
—sin*(w.T/2)

A(l)
AQ2) =

(32)

We will need a meter. The interaction —19y6(t — T/ 2)A
corresponds to a von Neumann measurement [21] of the
operator A = [1IX1] + 212)¢2[] performed at t = T/2.
The accuracy of the measurement depends on the width
Af of the initial meter state, which we will choose to be
a Gaussian:

G(f) = @/nAf)s exp(—f2 /A (33)
[16wrar=1 (34)
Then, the average meter reading (f) in is
given by:
2 2 —0.5/Af?
(fy = ALY +240) + 3A(DAQ)e 5

T A2 + AQQ)? + 2A(1)AQR)e05/AS
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Figure 2: The mean meter reading as the function of the accuracy of the measurement in the double slit case of The
freely precessing spin is pre-selected in the state |1) at time t = 0 and post-selected in the same state |1) at time t = 1.5659/wy.
In the strong measurement regime the meter destroys coherence between the pathways passing through different slits, but also
destroys the interference pattern. In the weak regime the interference is intact, but the measured mean slit number is —100. In
the intermediate regime the mean slit number changes smoothly from 1.5 to —100.

Its dependence on Af is shown in |Figure 2|

This is, of course, an oversimplified version of the
Young’s double slit experiment: the states at t = 7/2 play
the role of the two slits, and the states at ¢ = T play the
role of the positions on the screen where an interference
pattern is observed.

Consider first a strong measurement of the slit number.
Choose the final time such that finding the freely pre-
cessing spin in the state |1) is unlikely (our interference
pattern has there a minimum), say 7' = 1.5659/w;.. In the
limit Af — 0, the probability distribution for the meter

readings is (cf. [Equation 19):
P'N(T|f) = cos*(w T/2)5(f — 1)
+sint(w T/2)5(f - 2)
~ 0.2526(f — 1) + 0.2485(f — 2)

(36)

We observe that the two pathways are travelled with al-

most equal probability, and[Equation 33| gives us the mean

slit number:
<f>strong ~ 1.5 37

However, this is not the original spin precession we set
out to study. The interference pattern has been destroyed
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and the probability to arrive at the final position |1), which
without a meter was:

IA(1) + AQ2)]> ~ 0.000024 (38)
is now close to 0.5. This is a textbook example which
illustrates the uncertainty principle: converting virtual
paths into real ones comes at the cost of loosing the inter-
ference pattern.

We may now try to minimise the perturbation in the
hope to learn something about the route chosen by the
system without destroying the interference. In the limit

Af — oo, after many trials, we will find that the mean
number of the slit that has been chosen is:

1x A1) +2xAQ)\ _

(fIweak = Re A + AQ) =-100

(39)

This brings us back to our original question, to rephrase
the title of [1], “How the result of measuring the number
of the slit in a double slit experiment can turn out to be
-10077?
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We have tried to evaluate the mean number of the slit
a particle goes through in a double slit experiment, and
came up with the number —100. The mathematics is
straightforward, and we need to understand the meaning
of this result before employing weak measurements for
other purposes. There are just two slits, numbered 1 and
2, so the result looks a bit strange. Has our measurement
gone wrong, or is the quantum world so strange that there
are slits we are not aware of? We opt for the first choice.
(The authors of [5]] suggested using weak measurements
to analyse the so-called Hardy’s paradox. Our analysis
of their approach, and of the paradox itself can be found
in [[15,/16])

Flawed measurements are common in classical physics.
They can be made and repeated, but only have meaning
within the narrow context of the flawed experiment itself.
A broken speedometer may read 50 mph each time the
car goes at 100 mph, and might convince the driver, but
not the traffic policemen who stops him for speeding.
Similarly, the slit number —100 may come up in a weak
measurement, but cannot be used for any other purpose,
such as convincing a potential user that the screen he is
about to buy has more than two holes drilled in it.

There is, however, one important distinction. Classi-
cally, one can always find the right answer and correct, or
re-calibrate the errant speedometer. Quantally, it is not so.
According to the uncertainty principle, there is no correct
answer to the question asked. The nearest classical anal-
ogy might be this: suppose a (purely classical) charge can
be transferred across one of the two lead wires, and an
observer can measure, which one has been chosen. Then
the wires are heated up and melted into one. Which of
the two wires has the charge gone through now? This is
what interference does, it melts the pathways through the
two slits into a single one, thus depriving the Which way?
question of its meaning.

Weak measurements rely on an interesting interference
effect which has applications beyond measurement the-
ory [23L[24]]. They can be made, and have been made
in practice [2[]. They have useful applications in inter-
ferometry [[7.[8]]. However, their results should not be
over-interpreted. Bizarre weak values indicate the failure
of a measurement procedure under the conditions where,
according to the uncertainty principle, it must fail. Seen
like this, the weak measurements loose much of their orig-
inal appeal, and the calculation of weak values reduces to
a simple exercise in first order perturbation theory.

In this paper we have discussed situations in which
the results of weak measurements should be taken with
great care. Especially when the result of a weak mea-
surement turns out to be counterintuitive, we think that
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it is important to correctly interpret this result within the
general framework of quantum mechanics, and we have
emphasized the role of the uncertainty principle in this
respect. In particular, counterintuitive weak values might
be the sign that our interpretation of the result of a weak
measurement has been pushed far beyond what a well
posed question is in the context of the quantum theory of
measurement. Without providing an answer themselves,
weak measurements might help promote the search for
more general frameworks, within which fundamental prin-
ciples of quantum mechanics could find a more natural
explanation.
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