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The quantum theory of measurement has been
with us since quantum mechanics was invented.
It has recently been invigorated, partly due to

the increasing interest in quantum information sci-
ence. In this partly pedagogical review I attempt
to give a self-contained overview of non-relativistic
quantum theory of measurement expressed in density
matrix formalism. I will not dwell on the applications
in quantum information theory; it is well covered by
several books in that field. The focus is instead on ap-
plications to the theory of weak measurement, as de-
veloped by Aharonov and collaborators. Their devel-
opment of weak measurement combined with what
they call post-selection – judiciously choosing not only
the initial state of a system (pre-selection) but also its
final state – has received much attention recently. Not
the least has it opened up new, fruitful experimen-
tal vistas, like novel approaches to amplification. But
the approach has also attached to it some air of mys-
tery. I will attempt to demystify it by showing that (al-
most) all results can be derived in a straight-forward
way from conventional quantum mechanics. Among
other things, I develop the formalism not only to first
order but also to second order in the weak interac-
tion responsible for the measurement. I apply it to
the so called Leggett–Garg inequalities, also known
as Bell inequalities in time. I also give an outline, even
if rough, of some of the ingenious experiments that

the work by Aharonov and collaborators has inspired.
As an application of weak measurement, not related
to the approach by Aharonov and collaborators, the
formalism also allows me to derive the master equa-
tion for the density matrix of an open system in inter-
action with an environment. An issue that remains in
the weak measurement plus post-selection approach
is the interpretation of the so called weak value of an
observable. Is it a bona fide property of the system
considered? I have no definite answer to this ques-
tion; I shall only exhibit the consequences of the pro-
posed interpretation.
Quanta 2013; 2: 18–49.

1 Introduction

The measurement aspects of quantum mechanics are as
old as quantum mechanics itself. When von Neumann
wrote his overview [1] of quantum mechanics in 1932, he
covered several of these aspects. The review volume [2]
edited by Wheeler and Zurek tells the history up until
1983. Since then, the interest has if anything increased,
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in particular in connection with the growth of quantum
information science. Three books reflect the evolution
of the field: the one by Braginsky and Khalili [3] from
1992, the one by Nielsen and Chuang [4] from 2000,
and the more recent one by Wiseman and Milburn [5]
from 2009. One important feature in the development
over the last decades has been the increasing emphasis on
what is call ancilla (or indirect) measurement, in which
the measurement process is modeled in some detail by
considering how the system under study interacts with
the measurement device.

Since the seminal paper [6] from 1988 by Aharonov,
Albert and Vaidman, there has been another interesting
development largely parallel to other ones. This is the
field of weak measurement and weak values. Since it
was started, its ideas have been skillfully advocated, in
particular by Aharonov and collaborators; see [7–17]. A
thorough, up-to-date review of the field with an extensive
list of references is in [18].

Aharonov and collaborators started from the well-
known characteristics of quantum mechanics which dis-
tinguishes it from classical physic: a quantum mechanical
measurement irrevocably disturbs the system measured.
What, they asked, would happen if the interaction respon-
sible for the measurement becomes very weak? True, the
disturbance will decrease but so will also the information
obtained in the measurement process. The revolutionary
observation by Aharonov and collaborators is that this
trade-off could be to the advantage of the non-disturbance
aspect. There is new physics to be extracted from weak
measurement, in particular when the weak measurement
is combined with a judicious choice of the initial state
(pre-selection) and the final state (post-selection) of the
system under study.

This article provides an overview of the field of weak
measurement without claiming originality of the results.
The purpose is also to give a general pedagogical intro-
duction to some more modern aspects of quantum theory
of measurement. Prerequisites from readers will only
be basic knowledge of the standard formulation of quan-
tum mechanics in Hilbert space as presented in any well-
written textbook on quantum mechanics, like [19,20]; the
latter also covers some of the material I present in this
article.

To make the article self-contained, and to introduce
the notations to be used, I begin anyhow with a summary
of the standard quantum theory of measurement. In sec-
tion 2, I treat the direct (or projective) scheme, and in
section 3 and section 4, the indirect (or ancilla) scheme. I
do this in the density matrix formalism, which I also de-
scribe in some detail; other names for the density matrix
are state matrix, density operator and statistical operator.
Part of my motivation for doing so is that this formalism –

arguably slightly more general than the pure-state, wave-
function (or Hilbert-space state) formalism – is a straight-
forward, though maybe somewhat clumsy, approach to
reaching the quantum mechanical results one wants, and
this, again arguably, in a less error-prone way. In fact,
the density matrix formalism provides an indispensable
tool for any thorough-going analysis of the measurement
process. Despite my preference for density matrices, in
some of the more concrete problems I revert to the pure-
state formalism. Anyhow, I illustrate in subsection 10.2
the advantage of the density matrix formalism by a side
theme, not related to the main track of the article, viz.,
continuous measurement. In particular I derive, even if
in a pedestrian way, the so called master equation for an
open system.

The approach to the measurement process taken here
is not the most general one. An approach based on
so called measurement operators and on effects, alias
positive-operator valued measures (POVMs) is more gen-
eral; see [5, section 1.4.1] and subsection 10.1. In fact, the
basic premises of that approach can be derived from the
density matrix treatment of the ancilla method reviewed
in section 3. In subsection 10.1, I expose these items.

In section 5, my treatment of weak measurements will
be focused on the scheme by Aharonov and collabora-
tors that combines it with post-selection. I present the
main arguments and derive expressions for the relevant
quantities. In fact, I do this not only to linear order in the
strength of the interaction but to second order.

Even without invoking weak measurements, it is of
interest to study amplification. This is done by focusing
on that subensemble of the total measured sample that
arises from chosing only those events that end up in a
particular final state. I give some examples on how such
an amplification setup could be implemented.

If there ever were any magic connected with the deriva-
tion and application of weak value, I hope my presentation
will get rid of them. For example, nowhere in my argu-
ments will there occur negative probabilities or complex
values of a number operator. In fact, what I present is
nothing but conventional quantum mechanics applied to
some particular problems. In short, I hope that the article
will provide a framework that aims to clear up some of
the inadvertencies regarding the concept of weak value
that, in my opinion, can be found in the literature both by
theorists and experimentalists.

In section 6, I choose to illustrate the fruitfulness of
the weak measurement plus post-selection approach by
applying it to the so called Leggett–Garg inequalities [21],
sometimes also called the Bell inequalities in time.

In section 7, I describe, even if in rough outlines only,
some of the very ingenious experiments – admittedly
subjectively chosen – that have exploited the new vistas
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opened up by the weak measurement plus post-selection
approach. To give a trailer of what they include: it is
nowadays possible to measure the wave function of a
particle directly, as well as to map the trajectories of the
particles in a double-slit setup.

Up till the last but one section of this article, the argu-
ments are strictly based on conventional quantum mechan-
ics and should not meet with any objections. If there are
any open questions regarding the approach by Aharonov
and collaborators, they concern the very interpretation of
the formalism. In section 8, I venture into this slightly
controversial field. There, I attempt to further illuminate
some of the basic premises that underlie the concept of a
weak value, but also to raise some questions regarding its
meaning and interpretation.

A final section 9 before the appendices gives a sum-
mary and some further discussion of the conclusions
reached in the article.

Not covered in this article is the extension of conven-
tional quantum mechanics in terms of the so called the
two-state vector formalism that Aharonov and collabora-
tors have proposed [7], partly as a further development of
their weak measurement approach. These ideas definitely
go beyond conventional quantum mechanics. Another
active field of research, which is not covered herein, is the
information-theoretic aspect of the quantum measurement
process. Here, I may refer the interested reader to [4, 5].

2 The ideal (or projective)
measurement scheme

2.1 The basic scheme

All treatment of measurements in conventional quantum
mechanics relies in one way or another on a standard
treatment of the measurement process due to Born and
von Neumann [1], with later extension by Lüders [22].
The scheme is sometimes also named after von Neumann.
Since I will refer to a von Neumann protocol later on in
this article, I prefer not to attach von Neumann’s name
to the present scheme in order not to cause unnecessary
confusion.

As it is described in most textbooks, it goes something
like this. The object to be measured is a system S de-
scribed by a normalized ket |s〉 in a (finite-dimensional)
Hilbert spaceHS. This system could be an atom, an elec-
tron, a photon, or anything amenable to a quantum me-
chanical description. Suppose we are interested in mea-
suring an observable S on this system. The observable is
described by a Hermitian operator Ŝ = Ŝ † and has a com-
plete, orthonormal set of eigenstates |si〉, i = 1, 2, . . . , dS ,
where dS is the dimension of the Hilbert spaceHS.

The physical interpretation is entailed in the following
rules:

Rule (1): The possible result of measuring the observ-
able S on the system S is one of the eigenvalues si of the
operator Ŝ , and nothing else.

Rule (2): Under the same conditions, the probability
of obtaining a particular eigenvalue si (assumed for sim-
plicity to be non-degenerate) of the operator Ŝ , given that
the system S is in the state |s〉, is

prob(si||s〉) = |〈si|s〉|2 (1)

Rule (3): After such a measurement with the result si,
the system S is described by the ket |si〉. This is usually
described as the reduction (or collapse) of the state vector
|s〉 to |si〉.

Moreover, I shall only consider non-destructive mea-
surements, i.e., measurements that do not destroy the
system, even if they may leave it in a new state. For ex-
ample, if the system is a photon, I require there still to be
a photon after the measurement.

Let me elaborate somewhat on these basic premises.
Firstly, I want to reformulate the postulates in the more

general framework, where states are described by density
matrices, also called density operators or statistical oper-
ators. These are not vectors but operators in the Hilbert
space HS. For the simple case when the system S is
described by a pure state in the form of a ket

|s〉 =

dS∑
i=1

ci|si〉 (2)

the corresponding density matrix – I will denote it by σ̂ –
is simply the projector P̂s with the definition

σ̂ = P̂s = |s〉〈s| (3)

In the more general case, when the system S is described
by a (classical) statistical mixture, i.e., an incoherent
superposition of pure, normalized (but not necessarily
orthogonal) states |s(a)〉, a = 1, 2, . . . ,K, each with its
projector P̂s(a) and each with a probability pa, the density
matrix σ̂ representing the state of the system S is given
by

σ̂0 =

K∑
a=1

paP̂s(a) (4)

Here, I attached a subscript 0 to σ̂ in order to identify it
as the initial state. We shall meet such density matrices
in a slightly different context later on, when discussing
the state of one part of a system composed of several
subsystems.

One important property of a density matrix is that it
has unit trace, the trace being defined as the sum of its
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diagonal elements

Tr(σ̂0) =

K∑
a=1

paTr
(
P̂s(a)

)
=

K∑
a=1

pa = 1 (5)

This trace property of any density matrix then expresses
the normalization condition and is a very useful check
when performing calculations.

With such an incoherent sum of pure states, the three
measurement rules above take a partly new form:

Rule (1′): Same as rule (1).
Rule (2′): The probability of obtaining a particular

eigenvalue si of the operator Ŝ , given that the system S
is in the state σ̂0, is

prob (si|σ̂0) =
∑

a

paprob
(
si||s(a)〉

)
(6)

Before turning to the third (collapse) condition in the
density matrix formalism, I want to elaborate on this new
expression for the probability. Using

prob
(
si||s(a)〉

)
= |〈si|s(a)〉|2

= 〈si|s(a)〉〈s(a)|si〉

= 〈si|P̂s(a) |si〉 (7)

one finds

prob (si|σ̂0) = 〈si|
∑

a

paP̂s(a) |si〉

= 〈si|σ̂0|si〉 (8)

It is standard to rewrite this simple expression in a slightly
more complicated form, which will be advantageous later
on. Using the fact that the eigenstates are orthogonal,
〈si|s j〉 = δi, j, one deduces that

prob (si|σ̂0) = 〈si|σ̂0|si〉

=
∑

j

〈s j|si〉〈si|σ̂0|si〉〈si|s j〉

= Tr
(
P̂siσ̂0P̂si

)
= Tr

(
P̂siσ̂0

)
(9)

Here the last equation follows from the easily proved
invariance of the trace under cyclic permutations and
from the fact that a projector P̂ is idempotent

P̂P̂ = P̂2 = P̂ (10)

As an interim summary, then, the second condition may
be formulated as:

Rule (2′): The probability of obtaining a particular
eigenvalue si of the operator Ŝ , given that the system S
is in the state σ̂0, is

prob (si|σ̂0) = Tr
(
P̂siσ̂0

)
(11)

The collapse condition may now be stated in two dif-
ferent forms, as conditional or unconditional. The con-
ditional (or ‘selective’) form applies when one asks for
the density matrix after the measurement with a particular
result si and reads:

Rule (3′): Measurement of Ŝ , with result si, transforms
the original density matrix σ̂0 into the conditional density
matrix σ̂1(hereafter subscript 1 identifies entities after the
measurement) according to

σ̂0 →
P̂siσ̂0P̂si

prob(si|σ̂0)
= σ̂1(|si) (12)

This is the so called Lüders’ rule [22] for how an ideal
measurement transforms (or collapses or updates) the
initial density matrix; we will meet this rule in several
disguises in the sequel.

Let me note in passing that the rules (2′) and (3′) in fact
also apply in case the eigenvalue si is degenerate, then
with the projector onto a non-degenerate state replaced
by the projector onto that subspace of the Hilbert space
HS which is spanned by the eigenvectors having this
eigenvalue.

It is easy to check that the rule (3′) entails the rule
(3) when the density matrix σ̂0 represents a pure state.
Moreover, one may convince oneself that the conditional
density matrix, σ̂1(|si), even if the initial state is a mixture,
represents a pure state provided the eigenvalue si is non-
degenerate.

The unconditional or non-selective case occurs when
the measurement is performed but when, for one reason
or another, one does not register the outcomes. Then,
one must average over the possible conditional density
matrices, each with its probability, to get:

Rule (3′′): Measurement of Ŝ , but without registering
the result, transforms the original density matrix σ̂0 into
the unconditional density matrix σ̂1 according to

σ̂0 →
∑

i

prob(si|σ̂0)σ̂1(|si)

=
∑

i

(
P̂siσ̂0P̂si

)
= σ̂1 (13)

2.2 Post-selection and the
Aharonov–Bergmann–Lebowitz rule

As an application of the projective measurement scheme,
let me consider a situation in which two successive mea-
surements are made on the same system; remember that I
suppose all measurement on the system under study to be
non-destructive.

Begin by preparing (pre-selecting) the system S in an
initial (pure, for simplicity) state |s〉. Let this be followed
by a measurement of the observable S , resulting in one
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|s>

|s1>

|s2>

|s3>

|si>

|sds
>

|f>

S F

Figure 1: Illustrating the procedure behind the Aharonov–
Bergmann–Lebowitz rule using a multiple-slit setup. With non-
destructive measurements, one may envisage a situation where
the system S is prepared (pre-selected) in state |s〉 (assumed
for simplicity to be a pure state; the argument can equally well
be carried through if the pre-selected state is a mixture), then
subjected to a first measurement of the observable S , followed
by a second measurement, now of another observable F. Of
all the possible results of the this second measurement, only
those which give rise to one particular post-selected eigenstate
| f 〉 of F are kept in the Aharonov–Bergmann–Lebowitz rule.

of the eigenstates |si〉, i = 1, 2, . . . , dS , of the operator Ŝ
with probability prob(si||s〉) = |〈si|s〉|2. Finally, subject
the system to a second measurement, now of another ob-
servable F. One is interested in the case when this second
measurement projects the system into a particular eigen-
state | f 〉 with eigenvalue f of the corresponding operator
F̂ (see Figure 1). The joint probability for obtaining |si〉

in the first measurement and | f 〉 in the second is then

prob(si, f ||s〉) = prob( f ||si〉) × prob(si||s〉)

= |〈 f |si〉|
2|〈si|s〉|2 (14)

Moreover, taking into account the fact that any of the dS

states |si〉 could be projected to | f 〉, the total probability
prob( f ||s〉) of obtaining f independently of the intermedi-
ate states |si〉 is

prob( f ||s〉) =
∑

i

prob(si, f ||s〉)

=
∑

i

|〈 f |si〉|
2|〈si|s〉|2 (15)

So far the argument is straight-forward. But let me
now, with Aharonov, Bergmann and Lebowitz [23], so
to speak turn the argument around and ask for the prob-
ability prob(si|| f 〉, |s〉) of finding a certain intermediate
eigenvalue si, given that the post-selection obtains f . Us-
ing standard (Bayes’) rules for handling probabilities,

Aharonov, Bergmann and Lebowitz deduced

prob(si|| f 〉, |s〉) =
prob(si, f ||s〉)

prob( f ||s〉)

=
|〈 f |si〉|

2|〈si|s〉|2∑
j

|〈 f |s j〉|
2|〈s j|s〉|2

(16)

This is the Aharonov–Bergmann–Lebowitz rule when the
eigenvalue si is non-degenerate. In case si is a degenerate
eigenvalue of the operator Ŝ the Aharonov–Bergmann–
Lebowitz rule reads

prob(si|| f 〉, |s〉) =
|〈 f |P̂si |s〉|

2∑
j

|〈 f |P̂s j |s〉|2
(17)

where, as before, P̂si is the projector onto the subspace
corresponding to the eigenvalue si.

From the Aharonov–Bergmann–Lebowitz rule one may
now obtain a conditional mean value, 〈Ŝ 〉 f , of the observ-
able Ŝ , that is conditioned on the outcome | f 〉 of the
post-selection

〈Ŝ 〉 f =
∑

i

si prob (si|| f 〉, |s〉)

=
∑

i

si
|〈 f |si〉|

2|〈si|s〉|2∑
j

|〈 f |s j〉|
2|〈s j|s〉|2

(18)

The Aharonov–Bergmann–Lebowitz rule has been the
focus of much further development, in particular by
Aharonov and collaborators. It has also stirred much
controversy, relating, e.g., to questions whether the rule
can in some way be applied counterfactually, i.e., even if
the intermediate measurement of the observable S is not
carried out. I will not go into anything of this, but refer
the interested reader to some of the literature (see [7, 8]
and references therein). I will, however, comment on the
Aharonov–Bergmann–Lebowitz rule in connection with
my treatment below of so called weak measurements.

2.3 Time evolution

For completeness, let me quote the rules for time evolu-
tion in quantum mechanics. For a pure state |s〉 at time
t0, one obtains the state |s〉t at a later time t from the
evolution equation

|s〉
Û
−→ |s〉t = Û |s〉 (19)

Û = exp
(
−
ı

~

∫ t

t0
dt′ĤS

)
(20)
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by time-integration of the Schrödinger equation with the
Hamiltonian ĤS. This translates immediately to the time
evolution of a density matrix

σ̂0 → σ̂t = Ûσ̂0Û† (21)

with Û† the Hermitian conjugate of Û.

3 The indirect (or ancilla)
measurement scheme

3.1 Modeling the measurement process

The approach to measurement described in section 2
leaves the concept of measurement unanalyzed. In partic-
ular, it takes no account whatsoever of how the measure-
ment is performed, what kind of measurement apparatus
is used, what distinguishes measurements from other pos-
sible types of interactions, etc.

In the indirect, or ancilla, scheme that I will now de-
scribe, one goes a few steps in the direction of describ-
ing the very measurement process. True, it is still very
schematic. But at least it introduces a measurement de-
vice (or ancilla) – to be alternatively called a meter or a
pointer – into the picture even if ever so schematically.
It is the interaction of the meter with the system – called
alternatively the object, or the probe or, for photons, the
signal photon – that constitute the measurement: by read-
ing off the meter one gets information as to the value of
the system observable. Note that in experimental situa-
tions, the meter and the system could even be properties
of one and the same physical object – like momentum
and polarization for a photon (see section 7 for some
examples).

The meterM will be modeled as a quantum device. It
has a Hilbert space HM with a complete, orthonormal
set of basis states |mk〉, k = 1, 2, . . . , dM, where dM is
the dimension of HM. The operator in HM which has
these states as eigenstates is denoted M̂. For reasons to
become clearer later on, the observable M is called the
pointer variable, and the states |mk〉 the pointer states.
The intrinsic Hamiltonian ofM is denoted ĤM. For sim-
plicity, it will be assumed to vanish in most cases I treat
– if not, use time-dependent operators in the Heisenberg
representation (see [24]) – but it is instructive to keep it
when setting up the scheme. Projectors in HM will be
denoted Ômk , etc. The meter is assumed to be prepared in
an initial pure state |m(0)〉 – not necessarily an eigenstate
of the pointer variable M̂ (see below) – so that the meter
initial density matrix is µ̂0 = |m(0)〉〈m(0)|.

The object or system S – I sometimes also refer to it as
the object-system in order to distinguish it from the total
system comprising the meter and the object-system – has

its Hilbert spaceHS in the same way as in the projective
measurement scheme of section 2. It has a complete,
orthonormal set of basis states |si〉, i = 1, 2, . . . , dS , with
dS the dimension of the Hilbert space HS. They are
eigenstates of the operator Ŝ inHS which corresponds to
the observable S to be measured. The system’s intrinsic
Hamiltonian is ĤS (which, as with ĤM, I will assume to
vanish); projectors in HS will be denoted P̂si , etc. The
system is assumed to be initially prepared (pre-selected)
either in a pure state |s〉 given by Equation 2 – in which
case its density matrix is σ̂0 = |s〉〈s| – or in a more
general state described by an arbitrary σ̂0 (but of course
normalized so that Tr(σ̂0) = 1).

The total system T comprises the object-system S and
the meterM. Its Hilbert space isHT = HS⊗HM, where
the symbol ⊗ stands for the direct product. The initial
state of the total system is τ0 = σ̂0 ⊗ µ̂0, i.e. the system
and the meter are assumed to be initially uncorrelated
(not entangled). The total Hamiltonian is

ĤT = ĤS + ĤM + Ĥint (22)

The interaction Hamiltonian Ĥint does not vanish, and
depends on the observable Ŝ to be measured as well as on
a pointer variable; see below for details. Moreover, the
assumption of non-destructive measurement (as spelled
out in subsection 3.2 below) – in the present case, with
vanishing intrinsic Hamiltonians, this is the criterion for a
so called quantum non-demolition measurement – implies
that the commutator [Ĥint, Ŝ ] = 0.

3.2 The pre-measurement

The system and the meter are assumed to interact via a
unitary time-evolution operator Û in what is called a pre-
measurement. This means that the total system T with
its initial density matrix τ̂0 will evolve unitarily into τ̂1:

τ̂0 = σ̂0 ⊗ µ̂0
Û
−→ τ̂1 = Ûσ̂0 ⊗ µ̂0Û† (23)

where Û† is the Hermitian conjugate of Û. If the Hamil-
tonian is known, the unitary operator Û is given by

Û = exp
(
−
ı

~

∫
dtĤT

)
(24)

with t denoting time. To start with, I shall, however, not
use this Hamiltonian expression but characterize Û in
another way.

To this end, note that for Û to be a pre-measurement
of Ŝ , Û must have properties so that it distinguishes be-
tween the different states |si〉. It is therefore assumed
that an initial joint pure state |si〉 ⊗ |m(0)〉 of the system
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and the meter – remember that I consider non-destructive
measurements – is transformed by Û into

|si〉 ⊗ |m(0)〉
Û
−→ Û

(
|si〉 ⊗ |m(0)〉

)
= |si〉 ⊗ |m(i)〉 (25)

where i = 1, 2, . . . , dS and the meter states |m(i)〉 act as
markers for the system state |si〉; we will see in detail how
this comes about later.

If this initial state is a superposition of eigenstates given
by Equation 2, and because Û is a linear operator, we get

|s〉 ⊗ |m(0)〉
Û
−→ Û

(
|s〉 ⊗ |m(0)〉

)
=

dS∑
i=1

ci|si〉 ⊗ |m(i)〉 (26)

The joint matrix τ̂0 = σ̂0 ⊗ µ̂0, written out in full detail,
evolves according to

τ̂0
Û
−→ τ̂1 = Ûσ̂0 ⊗ µ̂0Û†

=
∑
i, j

(
|si〉 ⊗ |m(i)〉〈si|σ̂0|s j〉〈s j| ⊗ 〈m( j)|

)
=

∑
i, j

(
|m(i)〉P̂siσ̂0P̂s j〈m

( j)|
)

(27)

where the last equation has introduced the projection
operators P̂si = |si〉〈si| and similarly for P̂s j .

It is important to note that

• A system’s pure eigenstate |si〉 is left unchanged un-
der this operation; among other things, the assump-
tion of a non-destructive measurement is important
here.

• One of the most important consequences of the pre-
measurement is that the object-system’s state be-
comes correlated (entangled) with the meter state:
τ̂1 cannot be written as a product of one object state
and one meter state.

• The meter states |m(0)〉 and |m(i)〉 are, in general, not
eigenstates of the meter operator M̂, but superpo-
sitions of such eigenstates. In particular, the states
|m(0)〉 and |m(i)〉, i = 1, 2, . . . , dS , are normalized but
in general not mutually orthogonal. Nor do they
form a complete set inHM. Indeed, the dimensions
dS and dM of the respective Hilbert spacesHS and
HM need not be equal.

• The operation Û thus correlates the system state
|si〉 with the meter state |m(i)〉 but not necessarily
in a unique way: to each |si〉 there corresponds a
definite |m(i)〉, different for different |si〉, but there
could be overlap between |m(i)〉 and |m( j)〉, expressed
by 〈m(i)|m( j)〉 , 0, for i , j. An example we will
see in more detail later on : |m(i)〉 could represent a

Gaussian distribution (Equation 42) for a continu-
ous pointer variable q (the position of a pointer on a
scale) so that |m(i)〉 ∼ exp

[
−(q − gsi)2/4∆2

]
, where

g is a coupling constant and ∆ the width of the Gaus-
sian; for large enough ∆ compared to gsi, different
wave functions (different i-values) will overlap sub-
stantially. See further subsection 4.1 below.

The rule for obtaining the separate states σ̂1 for the sys-
tem, and µ̂1 for the meter, after this pre-measurement, is
to take the partial trace over the non-interesting degrees
of freedom. In case we want the state σ̂1 of the system,
this means summing over the basis states |mk〉 for HM,
transforming an operator inHS ⊗HM into one inHS:

σ̂0
Û
−→ σ̂1 = TrMτ̂1 =

∑
k

〈mk|τ̂1|mk〉

=
∑
k,i, j

〈mk|m(i)〉P̂siσ̂0P̂s j〈m
( j)|mk〉

=
∑
i, j

(
P̂siσ̂0P̂s j〈m

( j)|m(i)〉
)

(28)

The last equation follows from the completeness of the
basis states |mk〉 in the Hilbert spaceHM.

As is seen, were it not for a possible overlap between
the meter states |m(i)〉 and |m( j)〉, the system density matrix
σ̂1 after the pre-measurement would have had diagonal
elements only, i.e. would not have allowed any interfer-
ence effects between different eigenvalues si. Another
way to express this fact is to realize that, in case of no
overlap between different states |m(i)〉, the indirect mea-
surement scheme have the same consequences for the
object-system as would a projective measurements have
had: if 〈m(i)|m( j)〉 = 0 for i , j, then the ancilla scheme
is the same as the projective scheme. The general case,
〈m(i)|m( j)〉 , 0 for i , j, does allow for interference, a
fact which will have interesting measureable effects as
we will see in more detail in section 5.

The same conclusion may be reached by considering
the meter. Its state after the pre-measurement is

µ̂0
Û
−→ µ̂1 = TrSτ̂1 =

∑
i

〈si|τ̂1|si〉

=
∑

i

|m(i)〉〈si|σ̂0|si〉〈m(i)| (29)

with matrix elements

〈mk|µ̂1|ml〉 =
∑

i

〈mk|m(i)〉〈si|σ̂0|si〉〈m(i)|ml〉 (30)

expressed in terms of the wavefunctions 〈mk|m(i)〉. From
this result we again see clearly that a pre-measurement
can distinguish effectively between different values si

of the system observable Ŝ only if different meter wave
functions 〈mk|m(i)〉 do not overlap.
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3.3 The read-out: Projective measurement
on the meter

So far, no real measurement has been performed in the
sense of obtaining a record. The entangled system-meter
is still in a quantum-mechanical superposition τ̂1. One
needs a recording, a read-out of the meter, in order to
obtain information that constitutes a real measurement
(see for example [5] , in particular section 1.2)

Therefore, the next step in this indirect measurement
scheme is to subject the meter, and only the meter, to
a projective measurement of the pointer observable M.
Reading off the meter means obtaining an eigenvalue
mk of the corresponding operator M̂ in a reaction that
is symbolized by the projector Ômk = |mk〉〈mk| onto the
corresponding subspace of the meter Hilbert spaceHM.
Since, as a result of the pre-measurement, the system is
entangled with the meter, this will influence the system
state too, and is therefore also a measurement of the
object-system as will be evident shortly.

For the total density matrix, this projective measure-
ment, complying to the Lüders’ rule (Equation 12), im-
plies

τ̂1
Ômk
−−−→ τ̂1(|mk) =

(
ÎS ⊗ Ômk

)
τ̂1

(
ÎS ⊗ Ômk

)
prob (mk)

(31)

where ÎS is the unit operator inHS and where prob(mk) =

prob(mk|τ̂1) is the probability of obtaining the pointer
value mk given the state τ̂1. It may be evaluated

prob(mk) = TrT
[(
ÎS ⊗ Ômk

)
τ̂1

]
=

∑
i

(
|〈m(i)|mk〉|

2〈si|σ̂0|si〉
)

=
∑

i

prob(mk||m(i)〉) × prob(si|σ̂0) (32)

Note again that the mk-distribution reflects the si-
distribution uniquely only if the different wave functions
〈mk|m(i)〉 do not overlap.

The result for prob(mk) may seem remarkable: no
quantum-mechanical interference here! Rather, the prob-
ability of finding the value mk for the pointer variable
is the sum of products of two probabilities. The one is
prob(mk||m(i)〉), the probability to obtain the pointer value
mk, given the state |m(i)〉 that corresponds, in the pre-
measurement, to the state |si〉. The other is prob(si|σ̂0),
the probability to obtain the value si in the initial state
σ̂0 of the system. Indeed this is what one would expect
from a pure classical treatment of probabilities, but here
it arises from the quantum mechanical formalism.

So what have we learned concerning the object-system
from this read-out of the meter? The answer sits in its
density matrix σ̂1(|mk) after the read-out, representing

as it does the state of the system after that action. It is
obtained in the usual way by taking the partial trace of
the corresponding total density matrix

σ̂1(|mk) = TrMτ̂1(|mk)

=
1

prob(mk)
TrM

[(
ÎS ⊗ Ômk

)
τ̂1

(
ÎS ⊗ Ômk

)]
=

1
prob(mk)

〈mk|Ûσ̂0 ⊗ µ̂0Û†|mk〉

=
1

prob(mk)
〈mk|Û |m(0)〉σ̂0〈m(0)|Û†|mk〉

=
1

prob(mk)
Ω̂kσ̂0Ω̂

†

k (33)

where Ω̂k is an operator onHS defined by

Ω̂k = 〈mk|Û |m(0)〉

=
∑

i

〈mk|m(i)〉|si〉〈si|

=
∑

i

〈mk|m(i)〉P̂si (34)

The operators Ω̂k are called measurement operators,
in the literature often denoted M̂k (but I use Ω̂k since in
this article I use M for entities related to the meter). They
play an important role in general theories of measure-
ment [4, 5]. Some of their properties are presented in
subsection 10.1.

If we, in describing the system after the pre-
measurement, do not care which of the results mk is ob-
tained in the projective measurement on the meter – we
deliberately neglect the outcome of the read-out – then
the system must be described by the statistical sum over
all possibilities∑

k

prob(mk) × σ̂1(|mk) =
∑

k

Ω̂kσ̂0Ω̂
†

k

=
∑

k

〈mk|Ûσ̂0 ⊗ µ̂0Û†|mk〉 = σ̂1 (35)

This is exactly the same unconditional density matrix
σ̂1, Equation 28, as the one that describes the system
right after the pre-measurement and before the projec-
tive measurement of the meter has taken place. For this
unconditional density matrix of the system it is thus of
no importance whether one performs the projective mea-
surement on the meter or not, provided the result is not
recorded. In particular, an unregistered projective meter
measurement has no effect on the probability distribution
for the eigenvalues si.

For completeness, I also give the meter’s density matrix
after the meter has been read-out. It takes the form

µ̂1(|mk) =
Ômk µ̂1Ômk

prob(mk)
(36)
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In particular, the meter and the object-system become
un-entangled after a conditional measurement (but not
after an unconditional one).

Now that the machinery is set up, it may be used to
answer any legitimate question regarding results of the
measurement process. I will use it extensively in the
sequel. But first, I will need a further general result.

3.4 Consecutive measurements

For future use, I will consider the case of two succes-
sive ancilla measurements. The system remains intact –
remember I require non-destructive measurement – but
is transformed in steps according to the rules just estab-
lished.

To start with, let me assume that the second measure-
ment involves a different meter from the first. Looking
only at the un-conditional matrices for the system, one
has

σ̂0
1st measurement
−−−−−−−−−−−−→ σ̂1 =

∑
k1

Ω̂
(1)
k1
σ̂0Ω̂

(1)†
k1

σ̂1
2nd measurement
−−−−−−−−−−−−→ σ̂2 =

∑
k2

Ω̂
(2)
k2
σ̂1Ω̂

(2)†
k2

(37)

σ̂2 =
∑
k1,k2

Ω̂
(2)
k2

Ω̂
(1)
k1
σ̂0Ω̂

(1)†
k1

Ω̂
(2)†
k2

=
∑
k1,k2

Ω̂
(2)
k2

Ω̂
(1)
k1
σ̂0

(
Ω̂

(2)
k1

Ω̂
(1)
k2

)†
(38)

That is, the measurement operators for consecutive ancilla
measurement compose naturally. In particular, the gener-
alization to any number of consecutive measurements is
obvious.

If the second measurement is identical – has an identi-
cal meter to the first and is involved in an identical unitary
pre-measurement Û as the first – the expression simplifies
to

σ̂2 =
∑
k,k′

Ω̂
(1)
k′ Ω̂

(1)
k σ̂0

(
Ω̂

(1)
k′ Ω̂

(1)
k

)†
=

∑
i, j

P̂siσ̂0P̂s j

(
〈m( j)|m(i)〉

)2
(39)

as is seen by a short calculation. This expression, too, is
easily generalized to any number of identical measure-
ments.

4 Some application of the ancilla
scheme

In this section, I give some examples of applications
(protocols) based on the indirect, or ancilla, measurement

scheme. These examples will be used several times later
on in the article for more concrete illustration of particular
aspects of weak measurements and weak values.

4.1 The von Neumann protocol

Soon after quantum mechanics was invented, von Neu-
mann [1, chapter 6] gave a formulation of the measure-
ment process which is, essentially, a specific application
of the ancilla scheme. His protocol gives a more detailed
specification of the meterM and uses a particular form
for the interaction Hamiltonian Ĥint between the object-
system S and the meter M and, consequently, for the
unitary pre-measurement operator Û. I will now describe
that measurement protocol, for simplicity for the case
where the initial state is a pure state.

As a matter of terminology, do not confuse the von
Neumann measurement protocol presented here, which
is a particular realization of the present ancilla measure-
ment scheme, with the von Neumann scheme, which is a
term sometimes used as alternative name to the projective
measurement scheme described in section 2.

The meter is supposed to have a continuous pointer
variable Q̂ replacing M̂, and with pointer states |q〉 replac-
ing |mk〉. Here, I take the usual liberty of the physicist
in translating, without further ado, a discrete treatment
in the finite-dimensional Hilbert space HM into a con-
tinuous one. Almost realistically, q is to be thought of
as the pointer position of a graded gauge. One may then
introduce the wave functions ϕ0(q) and ϕi(q) from the
expansions

|m(0)〉 =

∫
dq|q〉〈q|m(0)〉 =

∫
dq|q〉ϕ0(q) (40)

|m(i)〉 =

∫
dq|q〉〈q|m(i)〉 =

∫
dq|q〉ϕi(q) (41)

I shall assume that the initial pointer state ϕ0(q) is
centered around q = 0, i.e., that the expectation value
〈Q̂〉0 in the initial state vanishes. A particular choice for
ϕ0(q) could be

ϕ0(q) =

[
1

√
2π∆2

exp
(
−

q2

2∆2

)] 1
2

(42)

so chosen that the probability density |ϕ0(q)|2 is a Gaus-
sian with width ∆. As will be clear in a moment, the other
wave functions, ϕi(q), can be expressed in terms of ϕ0(q).

The next step in this protocol is to specify the interac-
tion Hamiltonian. The choice von Neumann made was

Ĥint = γ Ŝ ⊗ P̂ (43)

Here, γ is a coupling constant and P̂ is the meter variable
conjugate to the pointer variable Q̂, i.e., P̂ is the meter
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momentum, obeying the commutation relation [Q̂, P̂] =

ı~. Moreover, Ŝ is the observable one wants to measure
for the object-system; as previously, it is assumed to act
in a finite-dimensional Hilbert space.

The measurement is supposed to occur during a short
time interval δtU , so that the time integral

∫
dtĤint enter-

ing in the time-evolution operator Û may be substituted
by γ Ŝ ⊗ P̂δtU ; possible effects from switching the in-
teraction on and off is assumed to be taken into account
by suitable smoothing of the time-dependence of the in-
teraction. The combination γ δtU = g is then a kind of
effective coupling constant. (In the litterature – see for
example [7, 8] – it is in fact more common to use an alter-
native but equivalent way of implementing this impulse
approximation, viz., to set the coupling constant γ equal
to gδ(t) with δ(t) the Dirac δ-function.)

All this, and the simplifying assumption that the intrin-
sic Hamiltonians ĤS and ĤM both vanish, imply that the
unitary operator Û responsible for the pre-measurement
becomes

Û = exp(−
ı

~

∫
dtĤT )

= exp(−
ı

~

∫
dtĤint)

= exp(−
ı

~
g Ŝ ⊗ P̂) (44)

The reason for this very choice of Ĥint hangs on the fact
that an operator exp( ı~λP̂) , with λ a real number, acts
as a translation operator on a wave function ϕ(q) in the
q-basis:

exp(
ı

~
λP̂)|ϕ〉 = exp(

ı

~
λP̂)

∫
dq|q〉ϕ(q)

=

∫
dq|q〉ϕ(q + λ) (45)

Consequently,

|si〉 ⊗ |m(0)〉
Û
−→ |si〉 ⊗ |m(i)〉 (46)

|si〉 ⊗ |m(i)〉 = Û(|si〉 ⊗ |m(0)〉)

= exp(−
ı

~
g Ŝ ⊗ P̂)(|si〉 ⊗ |m(0)〉)

= |si〉 ⊗ (exp(−
ı

~
gsiP̂)|m(0)〉)

= |si〉 ⊗ (exp(−
ı

~
gsiP̂)

∫
dq|q〉ϕ0(q))

= |si〉 ⊗

∫
dq|q〉ϕ0(q − gsi) (47)

In other words,

|m(i)〉 =

∫
dq|q〉〈q|m(i)〉

=

∫
dq|q〉ϕi(q)

=

∫
dq|q〉ϕ0(q − gsi) (48)

so that, finally

ϕi(q) = ϕ0(q − gsi) (49)

This means that the initial pointer state of the meter, as-
sumed to be centered around q = 0, is transformed by
the pre-measurement to a superposition of states ϕi(q),
which are translations of the initial state by the amount
gsi. In a very concrete and manifest way this illustrates
that the von Neumann protocol describes how the pre-
measurement shifts the pointer from q = 0 to one of the
values q = gsi, which can then be obtained in the read-
out. It indeed constitutes a measurement of the system
variable Ŝ !

All relevant quantities related to the measurement may
now be evaluated in terms of the shifted states ϕ0(q− gsi).
Let me, for example, consider the meter density matrix
after the pre-measurement

µ̂1 =
∑

i

|m(i)〉〈si|σ̂0|si〉〈m(i)|

=
∑

i

〈si|σ̂0|si〉

∫
dqdq′|q〉ϕ0(q − gsi)

×ϕ0(q′ − gsi)∗〈q′| (50)

It can be used to calculate the mean value 〈h(Q̂)〉1 of
any function h(Q̂) of the pointer observable Q̂ after the
pre-measurement (indicated by the subscript 1)

〈h(Q̂)〉1 = Tr
[
h(Q̂)µ̂1

]
(51)

=
∑

i

〈si|σ̂0|si〉

∫
dq h(q)|ϕ0(q − gsi)|2

In particular (as usual, a subscript 0 indicates entities in
the initial state)

〈Q̂〉1 =
∑

i

〈si|σ̂0|si〉

∫
dq q|ϕ0(q − gsi)|2

= g〈Ŝ 〉0 + 〈Q̂〉0 = g〈Ŝ 〉0 (52)

since 〈Q̂〉0 = 0 by assumption, and

〈Q̂2〉1 = 〈Q̂2〉0 + g2〈Ŝ 2〉0 (53)

so that the variance (spread) of the Q-distribution after the
pre-measurement is augmented compared to the initial
state by the variance of the S -distribution

∆Q2
1 = 〈Q̂2〉1 −

(
〈Q̂〉1

)2
= ∆Q2

0 + g2∆S 2
0 (54)

a very reasonable result.
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4.2 The double qubit

By the ingenuity of the experimentalists it is possible to
produce single photons with well-defined polarization,
to entangle two photons prepared in that way, and to
measure the polarization of either or both [25]. This type
of experiment in which one qubit measures another qubit
is aptly amenable to analysis in the indirect measurement
scheme of this section [26].

In such a photon experiment one describes the photon
polarization states in a 2-dimensional Hilbert space in
terms of basis vector |H〉 and |V〉, corresponding respec-
tively to horizontal and vertical polarizations. Essentially
only for ease of notation, I shall instead use a so called
computational basis in which |H〉 is substituted by |0〉 and
|V〉 by |1〉 [27, 28]. I shall attach a subscript S for entities
belonging to the system (or signal) photon, a subscriptM
for those belonging to the meter (or probe) photon.

The translation of the general scheme into this particu-
lar realization then takes the following form.

For the initial states one chooses

|s〉 = α|0〉S + β|1〉S (55)

with complex numbers α and β satisfying |α|2 + |β|2 = 1,
and

|m(0)〉 = cos
ϑ

2
|0〉M + sin

ϑ

2
|1〉M (56)

The observable to be measured is

Ŝ S1 = |0〉S〈0|S − |1〉S〈1|S (57)

which in the photon case is (one of) the so called Stokes’
parameter(s); here, it may be identified with the Pauli
matrix σ̂z (no relation whatsoever to my notation for the
system density matrix!). Its eigenstates are |0〉S and |1〉S
with eigenvalues +1 and −1, respectively. Note that my
use here of the computational basis deviates from my
notation elsewhere in the article. In a fully consistent
notation, |0〉S should be replaced by |si = +1〉 and |1〉S
by |si = −1〉. I hope the reader can bear these inconsisten-
cies.

For the pre-measurement Û, the protocol says

|0〉S ⊗ |k〉M
Û
−→ |0〉S ⊗ |k〉M (58)

|1〉S ⊗ |k〉M
Û
−→ |1〉S ⊗ |1 − k〉M (59)

where k = 0, 1. In computer language jargon, this is
called an CNOT gate. For an arbitrary (but pure) initial
state the pre-measurement then implies

|s〉 ⊗ |m(0)〉 = (α|0〉S + β|1〉S) ⊗ (cos
ϑ

2
|0〉M + sin

ϑ

2
|1〉M)

Û
−→ α|0〉S ⊗ (cos

ϑ

2
|0〉M + sin

ϑ

2
|1〉M)

+β|1〉S ⊗ (sin
ϑ

2
|0〉M + cos

ϑ

2
|1〉M) (60)

From here, one identifies the two possible meter states
after the pre-measurement

|m(si=+1)〉 = cos
ϑ

2
|0〉M + sin

ϑ

2
|1〉M (61)

|m(si=−1)〉 = sin
ϑ

2
|0〉M + cos

ϑ

2
|1〉M (62)

which in their turn can be used to obtain the total system
density matrix τ̂1.

4.3 Amplification by post-selection

In the ideal measurement scheme, restricting the events
under consideration to one particular final state | f 〉 for the
system by post-selection, led to the Aharonov–Bergmann–
Lebowitz rule as spelled out in subsection 2.2. Since the
ancilla scheme does not measure the system observable Ŝ
directly, it does not provide any direct way to obtain the
Aharonov–Bergmann–Lebowitz rule. But in the limit of a
strong measurement – which, as shown in subsection 3.2,
can be achieved if there is no overlap between the different
meter states |m(i)〉 – one retrieves all the results of the
projective scheme, including the Aharonov–Bergmann–
Lebowitz rule.

In the ancilla scheme, there are more degrees of free-
dom than those for the system, viz., those for the meter.
This may be used to extract new information. In partic-
ular, a judicious choice of a post-selected state | f 〉 for
the system with respect to the pre-selected one, σ̂0 (or
|s〉〈s| if it is a pure state), provides a technique for am-
plification that has been exploited in exquisite ways by
experimentalists. I devote this section to the theoretical
background for that technique, while subsection 7.2 de-
scribes the experiments. Similar considerations may be
found in [29–31].

To exploit the added degrees of freedom of the meter,
the trick in the ancilla scheme is, firstly, to make no
read-out on the meter: all density matrices should be the
unconditional ones. In particular, the joint system density
matrix after pre-measurement becomes

τ̂1 =
∑
i, j

(|m(i)〉P̂siσ̂0P̂s j〈m
( j)|) (63)

Next, post-select | f 〉 for the system, turning the joint
system density matrix τ̂1 into

τ̂ f =

(
P̂ f ⊗ ÎM

)
τ̂1

(
P̂ f ⊗ ÎM

)
prob( f |τ̂1)

(64)

where
prob( f |τ̂1) = Tr

[(
P̂ f ⊗ ÎM

)
τ̂1

]
(65)

Finally, focus on the meter density matrix µ̂ f = TrS(τ̂ f )
after the post-selection, and use it to investigate suitable
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observables for the meter in that state, trying to get the am-
plifying effect from choosing the denominator prob( f |τ̂1)
as small as possible.

I shall not treat the most general case, but start by
concentrating on the special case where the system is a
qubit, described by a pure state

|s〉 = α|0〉 + β|1〉 (66)

with complex numbers α and β satisfying |α|2 + |β|2 = 1.
The system observable is chosen to be

Ŝ = |0〉〈0| − |1〉〈1| (67)

that is one of the Stokes parameters in case the qubit is a
photon (see subsection 4.2).

As for the meter, it is taken to be a von Neumann one
(see subsection 4.1), so that

Û = exp(−
ı

~
g Ŝ ⊗ P̂) (68)

with P̂ the meter operator conjugate to the pointer variable
Q̂. Consequently,

|s〉 ⊗ |m(0)〉 = |s〉 ⊗
∫

dq|q〉ϕ0(q)

Û
−→ α|0〉

∫
dq|q〉ϕ0(q − g) + β|1〉

∫
dq|q〉ϕ0(q + g)

(69)

In fact, this is a good model for a Stern–Gerlach setup,
with g a measure of the (inhomogeneous) magnet field
– g is proportional to µ∂Bz

∂x where µ is the magnetic mo-
ment of the electron (no connection whatsoever to my
notation for the meter density matrix!) and Bz the mag-
netic field causing the spin components in the z-direction
to be separated – and q the length coordinate along this
z-direction.

Upon post-selection of a system state | f 〉 (in the Stern–
Gerlach setup, this should be the eigenstate of a spin
component other than the ones in the z-direction), the
matrix element of the ensuing meter final density matrix
µ̂ f , calculated as described above, may be written

〈q|µ̂ f |q′〉 =
ϕ̃ f (q)ϕ̃ f (q′)∗

prob( f |τ̂1)
(70)

Here, the (non-normalized) wave function ϕ̃ f (q) for the
meter after the post-selection is given by

ϕ̃ f (q) = α fϕ0(q − g) + β fϕ0(q + g) (71)

α f = α〈 f |0〉 (72)

β f = β〈 f |1〉 (73)

and the probability to obtain the eigenvalue f is

prob( f |τ̂1) =

∫
dq|ϕ̃ f (q)|2

= |α f |
2 + |β f |

2 + 2Re(
∫

dqα fϕ0(q − g)β∗fϕ0(q + g)∗)

(74)

In fact, the expression for the wave function may be
derived directly from considerations of the state vectors
instead of using the density matrix formalism.

Of particular interest shall be the mean value 〈Q̂〉 f

of the pointer variable after the post-selection. A short
calculation gives

〈Q̂〉 f = Tr(Q̂µ̂ f ) =
g
(
|α f |

2 − |β f |
2
)

|α f |
2 + |β f |

2 + 2rRe
(
α fβ

∗
f

) (75)

where
r =

∫
dqϕ0(q − g)ϕ0(q + g)∗ (76)

the overlap between the two wave functions, is assumed to
be real (which it is , e.g., for ϕ0(q) an even function of its
argument q). This simple form for Tr(Q̂µ̂ f ) also requires
cross products like

∫
dqqϕ0(q − g)ϕ0(q + g)∗ to vanish,

which would occur, e.g., for ϕ0(q) an even function of its
argument q and real.

The expression for 〈Q̂〉 f is to be compared to the
mean value 〈Q̂〉1 of the pointer variable without any post-
selection

〈Q̂〉1 = Tr(Q̂µ̂1) = g(|α|2 − |β|2) (77)

One realizes immediately the possibility of reaching much
larger values for 〈Q̂〉 f than for 〈Q̂〉1 due to the denomina-
tor prob( f |τ̂1) in the expression for 〈Q̂〉 f . Upon choosing
a small value for prob( f |τ̂1), one could expect a large
amplification effect

〈Q̂〉 f

〈Q̂〉1
� 1 (78)

In other words, accommodating the post-selected state | f 〉
so that only rare events are considered – low prob( f |τ̂1) –
one might hope to achieve a large amplification.

A more concrete result is obtained by studying 〈Q̂〉 f

as a function of 〈 f |s〉. A straight-forward calculation,
assuming α f , 0, shows that

|〈Q̂〉 f | ≤
g

√
1 − r2

(79)

with equality for

〈 f |s〉 = α f
1
r

[
±

√
1 − r2 − (1 − r)

]
(80)
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For that value of 〈 f |s〉 one has

prob( f |τ̂1) = 2
|α f |

2
(
1 − r2

)
1 +
√

1 − r2
(81)

As one sees, the amplification effect becomes larger, the
nearer r is to ±1, but with a corresponding decrease of the
probability to find the state | f 〉. This leads me to consider,
in the next section, so called weak measurements, in
which one strives for r → 1.

But before that, let me quote two other results.
Firstly, it is also of some interest to calculate the vari-

ance, ∆Q2
f , of the pointer distribution after the post-

selection. For a Gaussian initial meter function, one finds

∆Q2
f = ∆Q2

0 +g2
{
|α f |

2 + |β f |
2

prob( f |τ̂1)
−

 |α f |
2 − |β f |

2

prob( f |τ̂1)

2 }
(82)

For 〈Q̂〉 f at the maximal value one has

∆Q2
f = ∆Q2

0 (83)

At maximal amplification, the spread of the final pointer
distribution is thus the same as the corresponding initial
one, independent of the strength of the measurement. In
fact, there are even values of 〈 f |s〉 for which the final
pointer spread is smaller than the initial one.

Secondly, I will just mention the results of the ampli-
fication considerations for the double qubit of subsec-
tion 4.2. Very similar arguments as those for the von
Neumann protocol above, and without extra assumptions,
lead to

prob( f |τ̂1) = |α f |
2 + |β f |

2 + 2 sinϑRe
(
α fβ

∗
f

)
(84)

with the angle ϑ giving the initial composition of the
meter qubit as given in subsection 4.2. Consequently, the
mean value 〈ŜM1 〉 f of the Stokes’ parameter

ŜM1 = |0〉M〈0|M − |1〉M〈1|M (85)

for the meter qubit, after the post-selection as above on
| f 〉 for the system, becomes

〈ŜM1 〉 f = Tr
(
ŜM1 µ̂ f

)
=

cosϑ (|α f |
2 − |β f |

2)
prob( f |τ̂1)

(86)

The similarity of this expression to the one for 〈Q̂〉 f above,
allows one to draw the conclusion that

|〈ŜM1 〉 f | ≤
cosϑ√

1 − sin2 ϑ
= 1 (87)

Consequently, and maybe not too astonishing: from the
point of view of amplification in the double qubit case,
there is no real gain using post-selection in the sense that
one will never reach outside the conventional interval.

5 Weak measurements – with or
without post-selection

A quantum mechanical measurement, described either by
the ideal measurement scheme of section 2 or the indirect
one of section 3, in general implies that the object-system
under study will suffer large changes (disturbances) in
its state, even if the measurement is considered non-
destructive; indeed, non-destructive only means that the
system is not annihilated in the measurement. In the for-
malism I have described, these disturbances appear in
the change from the initial density matrix σ̂0 to a usu-
ally quite different matrix σ̂1 after the measurement. A
weak measurement is a measurement that disturbs the
state of the object of interest as little as possible. As we
will see, a weak measurement is also such that the mea-
surement results are less clear than in a strong or sharp
measurement. For example, there will be difficulties in
distinguishing one eigenvalue of the observable under
study from another. This feature, however, can and has
to be compensated for by increasing the statistics, i.e.,
repeating the experiment many more times.

But is it not kind of silly to deliberately refrain from
doing a measurement as sharply as possible? The answer
is that new phenomena occur for weak measurement, phe-
nomena that can only be studied by weakening the interac-
tion responsible for the measurement as much as possible.
As has been advocated, in particular by Aharonov and
collaborators [7, 8], the idea of using weak measurement
is particularly fruitful when combined with post-selection.
Let me first give a short overview of these ideas.

5.1 Preliminaries on weak values from
indirect measurement with
post-selection

Consider a setup like the one I described in section 3,
with the system under study coupled to a measurement
device, the meter. In this preliminary presentation, let me
focus on the more concrete expression for Û from the von
Neumann protocol of subsection 4.1. For simplicity, let
the system initial state be a pure one, |s〉. What I called
the pre-measurement Û amounts to the transition

|s〉 ⊗ |m(0)〉
Û
−→ Û(|s〉 ⊗ |m(0)〉) (88)

= exp(−
ı

~
g Ŝ ⊗ P̂)(|s〉 ⊗ |m(0)〉)

A weak measurement may be characterized by the fact
that g is small, so that a Taylor series expansion of the
exponential should be valid

exp(−
ı

~
g Ŝ ⊗ P̂) ≈ (1 −

ı

~
g Ŝ ⊗ P̂) (89)
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By post-selecting on a state | f 〉 for the system, and assum-
ing 〈 f |s〉 , 0, the resulting final state |m( f )〉 for the meter
may be written

|m( f )〉 = 〈 f | exp
(
−
ı

~
g Ŝ ⊗ P̂

) (
|s〉 ⊗ |m(0)〉

)
≈ 〈 f |s〉(1 −

ı

~
g
〈 f |Ŝ |s〉
〈 f |s〉

P̂)|m(0)〉

≈ 〈 f |s〉 exp(−
ı

~
g S wP̂)|m(0)〉 (90)

where the so called weak value S w of Ŝ is defined by

S w =
〈 f |Ŝ |s〉
〈 f |s〉

(91)

Moreover, and for simplicity, S w has been assumed real;
this will be relaxed in due course.

As an aside, I remark that Aharonov and collabora-
tors [7, 8] take a slightly different approach to this ap-
proximation scheme, essentially amounting to – in my
conventions – characterizing a weak measurement as one
in which the spread ∆P0 in the meter momentum ob-
servable P̂ tends to zero, equivalent to a spread ∆Q0 in
the pointer variable Q̂ that tends to infinity. The two ap-
proaches are equivalent whenever both apply; in fact, the
relevant small parameter is rather g/∆Q0.

It follows from the treatment of the von Neumann pro-
tocol in subsection 3.2 that the result for |m( f )〉means that
the initial meter wave function 〈q|m(0)〉 = ϕ0(q), centered
around q = 0, is transformed into a final wavefunction

ϕ f (q) = 〈q|m( f )〉 = ϕ0(q − g S w) (92)

that is the initial wavefunction shifted by gS w and not by
any of the eigenvalues gsi, as was the case in the original
von Neumann protocol.

This procedure thus puts focus on a new entity for the
object-system S, viz., the weak value S w of an observable.
Note that S w depends both on the initial system state |s〉
and on the final state | f 〉. Note also that the way it enters
the game is via an ancilla measurement. There is no
room for it in a projective measurement scheme, simply
because there is no weak measurement to be defined in
that scheme.

The weak value has been the focus of much almost
philosophical debate; see, e.g., [7] and references therein.
It has also been used in several ingenious ways by ex-
perimentalists – see section 7 below – to study entities
not thought measureable at all, like the trajectories in a
double slit experiment or the wave function of an object;
it has also been used for amplification purposes. Before I
comment a little on the meaning of a weak value, and de-
scribe some of these experimental items, I must elaborate
on the rather crude derivation just given and look a little
bit more in detail on how weak measurements in general
are to be described.

5.2 Weak measurement in the ancilla
scheme

As I already emphasized, weak measurements must be
treated in the ancilla scheme. My treatment here corre-
sponds to what is presented in [29–31]

From section 3, recall that the total system density
matrix τ̂1 after the pre-measurement Û is τ̂1 = Ûτ̂0Û†.
Here, τ̂0 = σ̂0 ⊗ µ̂0 is the direct product of the system
initial density matrix σ̂0 and the meter initial density
matrix µ̂0 = |m(0)〉〈m(0)| . Now, assuming that in Û =

exp(− ı
~

∫
dtĤT ) we may write (see the treatment of the

von Neumann protocol in subsection 4.1; also, recall that I
assume the intrinsic Hamiltonians ĤS and ĤM to vanish)

exp(−
ı

~

∫
dtĤT ) = exp(−

ı

~

∫
dtĤint)

= exp(−
ı

~
g Ŝ ⊗ N̂) (93)

with g an (effective) coupling constant, Ŝ the operator for
the observable under study for the object-system, and N̂ a
Hermitian operator, a (conjugate) pointer variable in the
Hilbert spaceHM of the meter. Besides being motivated
by the choices made in the von Neumann protocol, one
may also argue that the interaction Hamiltonian, repre-
senting, as it should, a non-destructive measurement of Ŝ ,
should commute with Ŝ . The simplest choice is then to
have it proportional to that operator. The meter operator
N̂ will be specified later; it generalizes the P̂ operator of
the von Neumann protocol. For ease of writing, I also
temporarily introduce the abbreviation X̂ = g Ŝ ⊗ N̂. Then

Û = exp(−
ı

~

∫
dtĤT )

= exp(−
ı

~
X̂)

= 1 −
ı

~
X̂ −

1
2~2 X̂2 + O(X̂3) (94)

so that (an approximate sign, ≈, means equality disregard-
ing terms of order X̂3 and higher)

τ̂1 = Ûτ̂0Û† ≈
(
1 −

ı

~
X̂ −

1
2~2 X̂2

)
τ̂0

(
1 +

ı

~
X̂ −

1
2~2 X̂2

)
≈ τ̂0 +

ı

~

[
τ̂0, X̂

]
−

1
2~2

(
X̂2τ̂0 + τ̂0X̂2 − 2X̂τ̂0X̂

)
= τ̂0 +

ı

~

[
τ̂0, X̂

]
−

1
2~2

[[
τ̂0, X̂

]
, X̂

]
(95)

with brackets [. . .] symbolizing a commutator; the last
term is then a double commutator.

Using the simplifying assumptions

〈N̂〉0 = TrM
(
µ̂0N̂

)
= 0 (96)

〈N̂2〉0 = TrM
(
µ̂0N̂2

)
, 0 (97)
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the system’s unconditional density matrix reads

σ̂1 = TrMτ̂1 ≈ σ̂0 −
1

2~2 g
2〈N̂2〉0

[[
σ̂0, Ŝ

]
, Ŝ

]
(98)

This becomes more illuminating if one exhibits its matrix
elements in the |si〉-basis

〈si|σ̂1|s j〉 ≈ 〈si|σ̂0|s j〉

[
1 −

1
2~2 g

2〈N̂2〉0
(
si − s j

)2
]

(99)

an expression which indeed shows characteristics of a
weak measurement: the correction to the initial density
matrix is even of second order in the strength g of the
measurement.

Next, consider the overlap 〈m(i)|m( j)〉 of the final meter
state in this approximation. A short calculation – or a
direct comparison of the expression for 〈si|σ̂1|s j〉 just
derived with the general expression Equation 28 – shows
that

〈m(i)|m( j)〉 ≈ 1 −
1

2~2 g
2〈N̂2〉0

(
si − s j

)2
(100)

meaning that for a weak measurement there is (almost)
total overlap between the different meter states, i.e., they
do not any longer differentiate (effectively) between the
different si values. This is again a special characteristic
of weak measurements.

The final meter state, calculated in the same approxi-
mation, is

µ̂1 = TrS(τ̂1) ≈ µ̂0 +
ı

~
g〈Ŝ 〉0

[
µ̂0, N̂

]
−

1
2~2 g

2〈Ŝ 2〉0
[[
µ̂0, N̂

]
, N̂

]
(101)

Let me immediately note one consequence of this result.
I want to find the after-measurement mean value, 〈M̂〉1 ,
of the meter variable M̂ conjugate to N̂ – meaning that
the commutator

[
M̂, N̂

]
= ı~; of course, this is copied on

the von Neumann protocol case, where one identifies N̂
with P̂ and M̂ with Q̂. Assuming the corresponding mean
value 〈M̂〉0 in the initial state to vanish, it reads

〈M̂〉1 = g〈Ŝ 〉0 + O(g2) (102)

This relation between the mean values of the pointer vari-
able M̂ and the system variable Ŝ is a further characteris-
tic of weak measurements.

5.3 Weak measurement followed by
post-selection

The next step in the protocol is to subject the system after
the weak measurement, when it is described by a total
density matrix

τ̂1 ≈ τ̂0 +
ı

~
[τ̂0, g Ŝ ⊗ N̂] −

1
2~2 [[τ̂0, g Ŝ ⊗ N̂], g Ŝ ⊗ N̂]

(103)

to a post-selection on the state | f 〉 for the system. Since
the object-system and the meter are still entangled before
this action – it is assumed that no read-out of the meter
has taken place – the meter state µ̂ f will also be influenced
by the post-selection. It takes the form

µ̂ f =
1

prob( f |τ̂1)
TrS

[(
P̂ f ⊗ ÎM

)
τ̂1

]
(104)

Here P̂ f = | f 〉〈 f | is the usual projector, so that the
numerator reads

TrS
[(
| f 〉〈 f | ⊗ ÎM

)
τ̂1

]
≈ 〈 f |σ̂0| f 〉µ̂0

+
ı

~
g
{
〈 f |σ̂0Ŝ | f 〉µ̂0N̂ − 〈 f |Ŝ σ̂0| f 〉N̂µ̂0

}
−

1
2~2 g

2
{
〈 f |σ̂0Ŝ 2| f 〉µ̂0N̂2 + 〈 f |Ŝ 2σ̂0| f 〉N̂2µ̂0

−2〈 f |Ŝ σ̂0Ŝ | f 〉N̂µ̂0N̂
}

(105)

For ease of comparison with what is usually quoted in
the literature, I shall in the following only consider the
case of a pure initial system state, σ̂0 = |s〉〈s|. Then

TrS
[(
| f 〉〈 f | ⊗ ÎM

)
τ̂1

]
≈ |〈 f |s〉|2µ̂0

+2
g

~
Im

(
〈 f |Ŝ |s〉〈s| f 〉N̂µ̂0

)
−

(
g

~

)2
Re

(
〈 f |Ŝ 2|s〉〈s| f 〉N̂2µ̂0

−〈 f |Ŝ |s〉〈s|Ŝ | f 〉N̂µ̂0N̂
)

(106)

Here, the symbol Im (respectively Re) means the anti-
Hermitian (respectively Hermitian) part of the bracketed
operator that follows. Assuming 〈 f |s〉 , 0, this may be
written

TrS
[(
| f 〉〈 f | ⊗ ÎM

)
τ̂1

]
≈ |〈 f |s〉|2

[
µ̂0 + 2

g

~
Im

(
S wN̂µ̂0

)
−

(
g

~

)2
Re

(
〈 f |Ŝ 2|s〉
〈 f |s〉

N̂2µ̂0 − |S w|
2N̂µ̂0N̂

) ]
(107)

where S w, given by Equation 91, is the weak value of the
observable Ŝ .

The expression for the probability prob( f |τ̂1) is most
easily obtained from the requirement that Tr

(
µ̂ f

)
= 1. It

reads, to second order in the strength g of the interaction,
and using 〈N̂〉0 = 0,

prob( f |τ̂1) ≈ |〈 f |s〉|2
[
1 −

(
g

~

)2
〈N̂2〉0

×Re
(
〈 f |Ŝ 2|s〉
〈 f |s〉

− |S w|
2
) ]

(108)

where Re (and Im in the following equations) now means
the ordinary real (respectively imaginary) value.
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It pays to stop for a while and digest this result. It
says that the probability to obtain a final state | f 〉 after
the pre-measurement, and for a system initially in a state
|s〉, is, to leading order in the measurement strength g,
given by the overlap |〈 f |s〉|2. This is not that astonishing.
But it is important for the subsequent applications of the
procedure, in which the weak value S w of the observable
Ŝ for the system is in focus. The case of amplification
is particularly important. In the special cases I studied
in subsection 4.3, large amplification requires a small
value of prob( f |τ̂1), which for weak measurement means
a small value of 〈 f |s〉, in turn implying a large value of
S w. I will treat amplification in the weak measurement
scheme in more detail in subsection 5.5 below.

Continuing on the main track, the final expression for
the meter density matrix µ̂ f after post-selecting on the
state | f 〉 – assuming the initial object state to be pure,
σ̂0 = |s〉〈s|, that 〈 f |s〉 , 0, and correct to second order in
the interaction strength g – then reads

µ̂ f ≈ D−1
[
µ̂0 + 2

g

~
Im

(
S wN̂µ̂0

)
(109)

−

(
g

~

)2
Re

(
〈 f |Ŝ 2|s〉
〈 f |s〉

N̂2µ̂0 − |S w|
2N̂µ̂0N̂

) ]
For easier writing, I here introduced the abbreviation

D = 1 −
(
g

~

)2
〈N̂2〉0Re

(
〈 f |Ŝ 2|s〉
〈 f |s〉

− |S w|
2
)

(110)

As is seen, the weak value S w takes a prominent place
here; in fact, to first order in the interactions strength g it
is the only reference to the object that remains.

The expression for µ̂ f contains all relevant information
of the joint meter-system state after the post-selection;
the meter and the object-system are of course no longer
entangled after the post-selection. It may be used to cal-
culate any relevant quantity one wants. In that way, one
may deduce the value of S w from suitably chosen mea-
surements on the meter. In this sense, S w is a measurable
quantity.

More concretely, let L̂ be any meter observable. Ne-
glecting the g2 term in the nominator, one has for the
expectation value 〈L̂〉 f of L̂ after the post-selection

〈L̂〉 f = Tr(L̂µ̂ f ) ≈ 〈L̂〉0 + 2
g

~
Im

(
S w〈L̂N̂µ̂0〉

)
D−1 (111)

Here, it is instructive to write L̂N̂ as a sum of a commuta-
tor and an anticommutator

L̂N̂ =
1
2

([
L̂, N̂

]
+

{
L̂, N̂

})
(112)

so that

2Im
(
S w〈L̂N̂〉0

)
= −ı〈

[
N̂, L̂

]
〉0Re (S w)

+〈
{
N̂, L̂

}
〉0Im (S w) (113)

explicitly exhibiting the real and imaginary parts of S w

separately.
Two concrete choices of L̂ may illustrate the procedure.

Consider first L̂ = N̂. Then, within the approximations
made, one gets

〈N̂〉 f ≈ 2
g

~
〈N̂2〉0Im (S w)D−1 (114)

The second case is the same as was considered in sub-
section 5.2 above, viz., of an operator M̂ that is conju-
gate to the operator N̂ in the sense that the commutator
[M̂, N̂] = ı~; the anticommutator {M̂, N̂} in general re-
mains unknown. It follows that

〈M̂〉 f ≈

(
g Re (S w) +

g

~
〈{N̂, M̂}〉0Im (S w)

)
D−1 (115)

so from here Re (S w) may be recovered as well.

5.4 Application 1: Weak measurement in
the von Neumann protocol

Much of the treatment above is tailored on the von Neu-
mann measurement protocol of subsection 4.1. So it is not
astonishing that the results just derived may be directly
applied to that case.

I first note that the wavefunction of the meter after the
pre-measurement but before post-selection becomes

ϕ1(q) ≈ ϕ0
(
q − g〈s|Ŝ |s〉

)
(116)

reflecting the fact that

〈Q̂〉1 = g〈Ŝ 〉0 = 〈s|Ŝ |s〉 (117)

(see the expression for 〈M̂〉1 given by Equation 102 in
subsection 5.2).

Let us stop for a moment to comprehend this result.
As a mean value, 〈s|Ŝ |s〉 is usually thought of as the
sum of its eigenvalues weighted with their respective
probabilities. To measure it would, then, require many
measurements on the system S to find these eigenvalues
and probabilities. Here, it appears in principle directly
from the (weak) measurement on the ancilla through the
wave function of the latter. Of course, there are caveats:
In any case, it will be a matter of getting the statistics.
And is it really easier or more economical to make the
necessary (weak) measurement on the ancilla than to
determine 〈s|Ŝ |s〉 in the conventional way?

From Equation 114 and Equation 115, with the substi-
tions N̂ → P̂ and M̂ → Q̂, one immediately deduces

〈Q̂〉 f ≈

(
gRe (S w) +

g

~
〈
{
P̂, Q̂

}
〉0Im (S w)

)
D−1

vN (118)

〈P̂〉 f ≈ 2
g

~
〈P̂2〉0Im (S w)D−1

vN (119)
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with

DvN = 1 −
(
g

~

)2
〈P̂2〉0Re

(
〈 f |Ŝ 2|s〉
〈 f |s〉

− |S w|
2
)

(120)

Note in particular that 〈Q̂〉 f contains a term ∝ Im (S w):
in general, 〈

{
P̂, Q̂

}
〉0 , 0, but the anticommutator term

does vanish for an initial meter wave function ϕ0(q) that
is purely real.

These results mean that the weak value S w for the
system’s observable Ŝ can be directly read-off from the
(mean) position of the pointer variables Q̂ and P̂ after the
post-selection operation. The results also generalize the
results of the more brute-force method of subsection 5.1,
the result of which within its limits is also confirmed.

It is also of some interest to calculate the second mo-
ment 〈Q̂2〉 f of the pointer position and of its conjugate
momentum. One finds

〈Q̂2〉 f = 〈Q̂2〉0 + O(g2) (121)

〈P̂2〉 f = 〈P̂2〉0 + O(g2) (122)

provided third-moment quantities like 〈Q̂2P̂〉 and 〈P̂3〉

vanish (which they do, e.g., for a wave function ϕ0(q)
symmetric around q = 0). The result means that the
spread of the pointer states surviving the post-selection is
approximately the same as the initial spread of the pointer
states.

5.5 Application 2: Weak values for double
qubits

The double qubit case of subsection 4.2 requires a slightly
different approach, since there I did not define any uni-
tary operator Û. This case is especially interesting, since
here all calculations can be made analytically without any
approximations [26]; in the presentation here, however,
I shall restrict myself to the weak measurement approxi-
mation.

The important starting point is the entangled wave func-
tion, given by Equation 60, after the pre-measurement

α|0〉S ⊗
(
cos

ϑ

2
|0〉M + sin

ϑ

2
|1〉M

)
+β|1〉S ⊗

(
sin

ϑ

2
|0〉M + cos

ϑ

2
|1〉M

)
(123)

By inspection, one sees that a weak measurement is one
in which the angular variable ϑ is near π

2 . To exploit
this fact, one puts ϑ = π

2 − 2ε and makes a Taylor series
expansion in the (small) parameter ε.

I give the result only for one relevant entity, the Stokes
parameter ŜM1 for the meter. After some calculations one

finds, neglecting terms of order ε3:

〈ŜM1 〉 f = Tr
(
ŜM1 µ̂ f

)
=

cosϑRe(〈 f |Ŝ S1 |s〉〈s| f 〉)
prob( f |τ̂1)

≈ εRe(Ŝ S1 )wD−1
dq (124)

where, with the abbreviations α f = α〈 f |0〉 and β f =

β〈 f |1〉,

Ddq = 1 − ε2Re(α fβ
∗
f )|〈 f |s〉|

−2 (125)

and where 〈 f |s〉 = α f + β f is assumed not to vanish.

5.6 Application 3: Amplification with weak
measurement

From the treatment in subsection 4.3, the maximum ampli-
fication under the assumption made there – the essential
points being the use of a von Neumann measurement on
a qubit – was regulated by the overlap

r =

∫
dqϕ0(q − g)ϕ0(q + g)∗ (126)

in the sense that

|〈Q̂〉 f | ≤
g

√
1 − r2

(127)

In the weak measurement approximation

r = 1 −
1
2

(
g

~

)2
〈P̂2〉0 + O(g3) (128)

so that √
1 − r2 ≈

g

~

(
〈P̂2〉0

) 1
2 (129)

and consequently

〈Q̂〉max
f ≈ ~

(
〈P̂2〉0

)− 1
2
∼

(
〈Q̂2〉0

) 1
2 (130)

In other words, the weak measurement plus post-selection

procedure provides for a large amplification 〈Q̂〉 f

〈Q̂〉1
, the max-

imum of which is regulated by the spread of the initial
meter wave function. However, the large amplification
comes at a price – the corresponding value for the proba-
bility reads

prob( f |τ̂1) ≈
(
g

~

)2
|α f |

2〈P̂2〉0 ∝
(
〈Q̂〉max

f

)−2
(131)

so a large amplification occurs only very rarely.
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6 Testing the Leggett–Garg
inequality with the double qubit

As a non-trivial example of the use of the weak measure-
ment concept, I will in this section apply it to one of the
Leggett–Garg inequalities, derived in subsection 10.3.

Bell derived his famous inequality from certain very
general and ‘reasonable’ assumptions (locality, macro-
realism). Quantum mechanics violates Bell’s inequal-
ity, as do experiments. As a further probe on the rela-
tion of the micro world to the macro world, Leggett and
Garg [21] derived another set of inequalities that again
follow from some very general and reasonable assump-
tions: macroscopic realism and nonevasive measurability.
The main difference to Bell’s approach is that the Leggett–
Garg inequalities involve measurements at different times
but on one and the same system; that is why these inequal-
ities are also sometimes called Bell inequalities in time.
Subsection 10.3 gives a background to Leggett–Garg in-
equalities. For some experiments on Leggett–Garg in-
equalities, see [28, 32–34].

From subsection 10.3, I take a Leggett–Garg inequality,
given by Equation 203, in the form applicable to a weak
measurement plus post-selection situation. The relevant
quantity is

〈B̂〉 = 〈s|Ŝ |s〉 + |〈 f |s〉|2(Re (S w) − 1) (132)

where as before S w denotes the weak value Equation 91
of the observable Ŝ .

The Leggett–Garg inequality, assuming the eigenvalues
of Ŝ all lie in the interval [−1,+1], reads

− 3 ≤ 〈B̂〉 ≤ 1 (133)

Let me now apply this Leggett–Garg inequality to the
double qubit scheme of subsection 4.2.

Firstly, I note that the Leggett–Garg inequality is for-
mulated only in terms of quantities referring to the object-
system S; however, the meter is so to speak in the back-
ground, needed at least for an experimental determination
of S w. Since only entities referring to the system are
involved, I may use a simplified notation with no sub-
script S on the state vectors, etc; they now all refer to the
object-system.

The initial state for the object-system is

|s〉 = α|0〉 + β|1〉 (134)

where |α|2 + |β|2 = 1. The observable is taken to be

Ŝ = |0〉〈0| − |1〉〈1| (135)

(the Stokes’ parameter Ŝ 1 for the photon case), and post-
selection is made on

| f 〉 = cos
ϑ

2
|0〉 + sin

ϑ

2
|1〉 (136)

It follows that

〈s|Ŝ |s〉 = |α|2 − |β|2 (137)

〈 f |s〉 = α cos
ϑ

2
+ β sin

ϑ

2
(138)

|〈 f |s〉|2Re (S w) = Re(〈s| f 〉〈 f |Ŝ |s〉)

= |α cos
ϑ

2
|2 − |β sin

ϑ

2
|2 (139)

The entity 〈B̂〉 under these particular circumstances then
reads (α =

√
1 − |β|2 is assumed real)

〈B̂〉 = |α|2 − |β|2 + |α cos
ϑ

2
|2 − |β sin

ϑ

2
|2

−|α cos
ϑ

2
+ β sin

ϑ

2
|2 (140)

= 1 − 3|β|2 + |β|2 cosϑ −
√

1 − |β|2 sinϑRe(β)

It may take values up to a maximum of 13
12 , occurring for

β = ± 1
6 , ϑ = ∓ arccos 1

6 , thus exceeding the Leggett–Garg
inequality limit of +1.

In summary, the double qubit version of the weak value
protocol affords an interesting testing ground for Leggett–
Garg inequality. Concretely, it proves that quantum me-
chanics violates the Leggett–Garg inequality. The experi-
ments [28, 32–34] that test the Leggett–Garg inequality
in other ways show the same. Since all these approaches
apply weak measurements, the Leggett–Garg assump-
tion of non-invasive measurement (see subsection 10.3)
is (approximately) fulfilled. Consequently, the reason for
violating Leggett–Garg inequality can be uniquely traced
to the quantum mechanics violation of the other main as-
sumption in deriving Leggett–Garg inequality: quantum
mechanics as well as nature do not respect the assumption
of macroscopic realism.

7 An experimental bouquet

Several, often very ingenious, experiments have been
performed utilizing the weak measurement plus post-
selection scheme. From the way they apply the scheme –
and not primarily from the experimental methods used –
they can be very roughly divided into two categories.

The first category comprises experiments that in one
way or another test basic premises of the scheme or (some
of) the proposals that the proponents of the scheme have
suggested. They include tests of the so called Hardy’s
Paradox [35–38] and the Three-Box Paradox [7,8,39–41]
as well as some tests of the Leggett–Garg inequality
[21, 28, 32–34]. The experimental methods used here
are essentially based on the double-qubit scheme of sub-
section 4.3 in its photonic polarization version, but the
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use of solid state devices [34] for investigating weak val-
ues may also be placed in this category. I comment very
briefly on these experiments in subsection 7.1 below.

To the second category I count some very innovative
experiments [42–47], where the advantages of the weak
measurement plus post-selection scheme have brought
really new insight. They will be treated in somewhat more
detail, even if still sketchy, in sections 7.2, 7.3 and 7.4
below. Needless to say, the choice of these particularly
beautiful flowers in the experimental bouquet is highly
subjective.

From the outset, let me also say that I will not be
able to do justice to the often very intricate experimental
techniques developed. I will merely focus on how the ex-
periments in question throw light on the more theoretical
and principal questions.

7.1 Qubit measures qubit

In most case, the experimental realization of the qubit-
measures-qubit protocol of subsection 4.2 and subsec-
tion 5.5 has been through the use of entangled polarized
photons [28]. Two polarized photons in the initial state
are entangled, e.g., to give the CNOT gate of subsec-
tion 4.2 or some similar entanglement; this could be done
by a technique with a set of polarizing beam splitters
and so called half-wave plates [28]. The experiments
also rely on techniques to measure the polarization of a
photon without destroying it [47]. Here, I shall restrict
myself to this very brief sketch of the principles; in sub-
section 8.2 below, I shall comment on their relevance for
understanding what a weak value really means.

7.2 Amplification

We have seen in subsection 4.3 how post-selection opens
up the possibility of amplification, in particular if the
measurement is weak (subsection 5.5). In fact, the pio-
neering work [6] caught the interest of experimentalists.
The theoretical ideas were for the first time implemented
experimentally in a paper from 1991 by Richtie and col-
laborators [42].

Their experiment can be characterized as an optical
analog of a Stern-Gerlach set-up for electrons. They used
a birefringent crystal to give different directions to the
two linear-polarization components – to be identified with
the degrees of freedom of the object-system in my gen-
eral presentation – of a laser beam that passes through
the crystal. But the separation between the two emerging
beams is much too small to be detectable. So, with a
second polarization analyzer the experimenters make a
post-selection on the polarization of the beam. If this post-
selected state is almost orthogonal to the initial state, the

maximum mean value 〈Q̂〉max
f of the meter pointer vari-

able – in this case the (transverse) position of the beam
on a screen (actually a photo detector) – will be clearly
displaced from the beam position without the polarizer.
This amplification effect thus arises from the fact that the
expression for 〈Q̂〉 f , given by Equation 118, is propor-
tional to the weak value of the polarization, in particular
to the (small) denominator 〈 f |s〉. All this is consistent:

the imprecision ∆ky =
(
〈P̂2〉0

) 1
2 in the transverse mo-

mentum of the incoming laser beam can be made very
small, implying that the bound 〈Q̂〉 f <

~
∆ky

allows for

large experimental values of 〈Q̂〉 f (see also 5.6)
A remark in passing: note that here and in the next

experiments described, the meter and the system refer
to two properties – a photon’s (transverse) momentum
and its polarization, respectively – of one and the same
physical object.

A very similar idea lies behind the experiment by
Hosten and Kwiat from 2008 [43]. They investigated the
so called spin Hall effect for light. This effect amounts
to a (transverse) splitting of a well collimated laser beam
into two parallel beams of different circular polarizations,
when the beam under certain circumstances passes from
one material to another with different refractive indices.
The splitting effect is, however, tiny – a fraction of the
wavelength of the light – and requires amplification. To
generate the splitting, the experimenters sent a linearly
polarized laser beam at an angle through a glass-air in-
terface. To enhance the spin Hall effect for light, the
experimenters only analyzed outgoing photons polarized
almost at π

2 radians with respect to the incoming beam
(post-selection). In this way, the weak measurement plus
post-selection effect amplifies the original displacement,
in the actual case by four orders of magnitude, corre-
sponding to a sensitivity of ∼ 0.1 nm. Again, this agrees
with the general treatment in subsections 4.3 and 5.5.

Still another amplification effect exploiting the weak
measurement plus post-selection scheme was investigated
by Dixon and collaborators in 2009 [44]. They used a so
called Sagnac interferometer. Very roughly, in their set-up
light is sent into a channel formed as a square circuit. The
light enters the circuit in one corner through a 50/50 po-
larizing beam splitter, thus, depending on the polarization,
being directed into one of the two arms emanating from
that corner. The beam then reflects off (one of the) fixed
mirrors in the adjacent corners and off a tiltable mirror in
the diagonally opposite corner. The light continues and
reaches the other fixed mirror in the second adjacent cor-
ner, finally to make the full tour and return to the corner
of the circuit from where it entered. Moreover, one may
suitably insert into the circuit a polarization-dependent
device that shifts the phase for light travelling the circuit
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in one direction but not in the other. In this way, the
experimenters can vary the amount of light that leaves the
device through the bright port (leaves the beam-splitter
corner in the same direction as it entered) compared to
that which leaves through the dark port (the orthogonal
one). The experimentalists studied how a well-collimated
beam passing through the device shows up at a detec-
tor screen (actually a so called quadrant detector) placed
behind the dark port. The game is to (weakly) entangle
the direction of the beam (the meter) with the clockwise-
counterclock-wise, polarization-dependent direction of
the light through the device so that only a small amount
comes out in the dark port (post-selection). Slightly tilt-
ing the tiltable mirror results in different deflection of
the beam at the screen behind the dark port. The weak
measurement plus post-selection scheme implies a large
amplifying effect. In fact, in agreement with the theo-
retical predictions, the experimenters were able to detect
an angular deflection of the mirror by ∼ 1

2 picoradians,
corresponding to a linear displacement of the mirror by
∼ 10 femtometers!

7.3 Measuring the wave function

It has always been assumed that a direct measurement
of the wave function for a system is impossible. Only
indirect methods, such as tomographic techniques [48,49],
were thought to be feasible. Not so with weak values.
Here is the magic [45]. Suppose you want the x-space
wave function ψ(x) = 〈x|s〉 for the state |s〉. Simple in
theory! In the expression for the weak value S w given by
Equation 91, just choose Ŝ as the projector P̂x = |x〉〈x|
onto the position eigenstate |x〉. For the post-selected state
choose the momentum eigenstate, | f 〉 = |p〉. Then

S w = (P̂x)w =
〈p|x〉〈x|s〉
〈p|s〉

=
exp

(
ı
~ px

)
ψ(x)

ψ̃(p)
(141)

with ψ̃(p) the momentum space wave function. Finally,
choose p = 0 and you get

ψ(x) = k(P̂x)w (142)

with k a constant that can be determined later from the
normalization of ψ(x). This procedure can even be gen-
eralized to determine the density matrix for a mixed
state [50, 51].

What seems so easy from the theoretical point of view
is a challenging task experimentally. But in a paper by
Lundeen and collaborators from June 2011 [45], the task
has been accomplished, at least in the special case of the
transverse wave function for a photon. Very roughly, the
procedure is the following. The experimenters generated
photons of a well-defined wavelength by a process of

parametric down-conversion. Other optical devices put
the photons in the beam in the state whose wave func-
tion is to be determined. The weak measurement of the
transverse position, x, of the photons is accomplished
by a device that (slightly) changes the polarization at a
particular position, x, in the beam, differently for different
transverse positions of the beam. The post-selection on
zero (transverse) momentum is done by sending the beam
through a Fourier Transform lense and then selecting only
those photons that arrive at a central point, equivalent to
p = 0. The final step of reading the meter consists in mea-
suring the polarization of these selected photons. Suitable
polarization parameters constitute the pointer response in
the weak measurement plus post-selection scheme. From
these parameters one can determine both the real and the
imaginary part of the weak value of the transverse-space
projection operator, alias the transverse wave function.
In this experiment, note that it is the spatial properties –
the photon transverse coordinate x – that is to be identi-
fied with the system and the photon polarization with the
meter.

7.4 Determining the trajectories in a
two-slit experiment

In the first course on quantum mechanics we all learn that,
in a double slit experiment, it is impossible simultane-
ously to have an interference pattern on the screen and to
decide through which slit the particle went. But this con-
clusion only follows if you consider projective, i.e., strong
measurements. For weak measurements the unavoidable
disturbances due to the measurement are minimized. The
intriguing possibility opens up of observing both position
(which slit the particle went through) and momentum (the
interference pattern), if not for each individual particle so
in the sense of determining the average momentum for
those particles that arrive at a given position. This has in-
deed been shown to be feasible experimentally in a paper
by Kocsis and collaborators from June 2011 [46]. Single
photons were prepared in a double-slit-like situation by
an optical device containing a 50/50 beam splitter as an
essential ingredient. After exiting the (equivalent of a)
slit screen, the photons get polarized into a pure linear
polarization state – the diagonal state |D〉 = 1√

2
(|H〉+ |V〉)

where |H〉 and |V〉 are the horizontal and vertical polariza-
tion states, respectively. The weak measurement imparts
a small phase shift to the photonic state, different for
|H〉 and |V〉, and depending on the photons’ transverse
momentum. The post-selection is on the position of the
photon at a detection screen (actually, a CCD device)
which registers the photons’ transverse position, while
the circular polarization of these photons act as the pointer
variable. The photons registered at this screen build up
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an interference pattern, showing that the weak measure-
ment does not appreciably disturb them. In other words,
the experimenters can simultaneously determine both the
photons’ position and their momentum. By placing the
detection screen at different distances from the slit screen
the experimenters were able to map (at least statistically)
the full trajectory landscape.

8 Interpreting weak values

So far, I have kept to a rather operational approach. All
what I have treated follows from standard quantum me-
chanics. This includes all formulae which contain the
weak value S w, Equation 91, for an observable Ŝ of a
system, subject to a pre-selection in the state |s〉 and post-
selection in a state | f 〉, with 〈 f |s〉 , 0.

In this section I venture to move into the territory of
interpretation: What does a weak value really mean?
This is a mined territory; many physicists have expressed
strong opinions one way or another; see, in particular,
[7, 8] and references therein, as well as [52].

As the inventors of the weak measurement plus post-
selection protocol, Aharonov and collaborators are the
foremost advocates of the novelty, usefulness, and even
paradox-solving abilities, of the concept of weak value.
And they have been very successful in their endeavor.

Of course, I shall not aim for a verdict in this slightly
infected debate. What I will do is to present some argu-
ments, both pro and con, that have some bearing on the
issue. I shall not draw any final conclusion but leave a few
question-marks to be straightened-out by further debate.
I elaborate further on these matters in [54].

8.1 Basics

The weak value is a formally well-defined concept. Its
definition includes well-defined entities entirely referring
to an object-system’s Hilbert space.

There has been some criticism focused on mathemat-
ical deficiencies [52]. True, in the presentations in the
literature one may find some cavalier mathematics and
ditto logic. The derivations presented in this paper, deriva-
tions that are maybe a little stricter than other ones, are
of course still very cavalier from a mathematical point of
view. I think, though, that they can be made mathemati-
cally strict with more carefully introduced assumptions
and more attention to formal deduction; an effort in this
direction is in [53]. In other words, possible mathematical
imperfections cannot be used as objections to the weak
measurement plus post-selection approach..

In arguing about the weak value, one should particu-
larly bear in mind three circumstances.

Firstly, for a given system the weak value depends on
three entities: the pre-selected state |s〉, the observable
Ŝ , and the post-selected state | f 〉. There is sometimes a
tendency to forget, e.g., that the dependence on the post-
selected state is as important as the dependence on the
pre-selected state.

Secondly, the weak value occurs in, and is measured by,
the ancilla measurement scheme. It cannot be obtained in
a (projective) measurement on the system alone. In partic-
ular, it cannot be derived from the Aharonov–Bergmann–
Lebowitz rule Equation 17 for ideal measurements.

Thirdly, the weak value bears some analogy to an or-
dinary mean value of the observable in question. But
this analogy should not be driven too far. One sees in
the literature [55] descriptions like “the weak value of
an observable Ŝ (is) the average of a sufficiently large
number of identical . . . weak measurements of Ŝ . . .” and
“. . . the average for the sub-ensemble post-selected in the
state (| f 〉), i.e. the weak value, is given by (S w) . . .”. I
do not consider these statements to be adequate enough
descriptions of the actual way the weak value is arrived
at in the ancilla scheme.

8.2 What can experiments tell?

As is evident even from the short presentation in section 7,
experimentalists have found several ingenious ways of
using weak measurement to extract novel information
from quantum mechanical measurements. The idea of
interpreting a particular weak value as (essentially) the
wave function for the system [45], and the use of deli-
cately chosen post-selection to amplify an effect [42–44]
stand out as particularly striking examples. In this sense,
the introduction of the concept of weak value has meant
a real novelty.

Other uses of weak measurements concern experi-
mental tests [37, 38, 41] of some of the paradoxes that
Aharonov and collaborators have analyzed in terms of
weak values [36, 39, 40]. I shall comment on the inter-
pretation of these analyses below. Here, I just want to
emphasize that the fact that the experimental results in
these cases agree with the theoretical prediction cannot
be taken as an argument for any interpretation of the weak
values. In all these cases, the theoretical predictions fol-
low from conventional quantum mechanics as presented
in this article. What these experiments show is thus that
quantum mechanics indeed gives the correct description
of their particular experiment. And this is no small feat!
But as a matter of principle – not of experimental ingenu-
ity, technique or of anything else related to experiments
and experimentalists – what the experiments test is quan-
tum mechanics, nothing else. They can tell nothing about
the interpretation of the weak value.
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8.3 The meaning of weak value

The really touchy question concerns the very interpreta-
tion of a weak value. What property of the system under
study does it really represent?

The arguments from the proponents (see [7] and ref-
erences therein) have been multifarious and eloquently
presented and defended. It will take me much too far
to even list them. But a hopefully fair summary of the
essential ingredients seems to be the following.

For a strong ancilla measurement (which, as I remarked
in subsection 3.2, reproduces a projective measurement)
the meter reveals the conventional quantities – like (com-
binations of) eigenvalues and probabilities for them to oc-
cur – according to the usual rules in the theory-experiment
interface of quantum mechanics (see section 2 above).
There is no reason, so I think the argument goes, that
making measurements weak should change this basic
property. Consequently, since the transition from strong
to weak measurement is a continuous one, the weak value
in itself also represents some kind of (static, i.e., not refer-
ring to any transitions) property of the system. Vaidman
expresses this in his definition of an element of reality
thus:

If we are certain that a procedure for measuring
a certain variable will lead to a definite shift of
the unchanged probability distribution of the
pointer, then there is an element of reality: the
variable equal to this shift. [56]

But one may argue against this opinion. Firstly, from a
logical point of view the fact that an entity is measure-
able does not entail its interpretation. Secondly, in the
conventional interpretation of quantum mechanics, the
ancilla scheme constitutes a concrete realization of the
measurement process for determining, e.g., the possible
values of the observable under study. In other words, the
ancilla scheme rather requires that one takes the strong
interaction limit; anything else is only approximations to
the basic interpretational rules of quantum mechanics.

Against the interpretation of the weak value as an ele-
ment of reality also stands the immediate impression that
the weak value contains a matrix element 〈 f |Ŝ |s〉 between
different states. Such an entity is in conventional quan-
tum mechanics associated with a transition (probability)
amplitude. And an amplitude, so the quantum mechanics
rules say, must be squared to give a physically meaningful
quantity. This would contradict the view that the weak
value unsquared represents something physically. In fact,
interpreting a weak value to be on a par with, e.g., an or-
dinary mean value has no support in the basic postulates
of conventional quantum mechanics. I comment further
on this question in 9.

Also, one should realize that a weak value is a statistical
entity the way it is measured; there is no pointer pointing
to it. Rather, a full pointer position distribution is required
to deduce it experimentally, related as it is to a mean value
of a pointer variable.

8.4 The Three-Box Paradox and weak
values for number operators

In trying to illuminate the interpretational issue, let me
dwell on one particularly intriguing context, viz., one
where weak values have been invoked to throw light on
some quantum mechanics paradoxes. I think in particular
of the so called Hardy’s Paradox [35–38] and of the Three-
Box Paradox [7, 39–41]. Since the basic arguments to
explain these paradoxes by weak values have, in fact, a
similar structure, I shall even limit myself to looking at
the Three-Box Paradox, easier to explain as it is.

The argument goes as follows.
Imagine a single quantum mechanical particle in any

one of three boxes A, B and C, and described by the initial
(pre-selected) state

|s〉 =
1
√

3
(|A〉 + |B〉 + |C〉) (143)

Suppose further that the particle is later found in the (post-
selected) state

| f 〉 =
1
√

3
(|A〉 + |B〉 − |C〉) (144)

Moreover, consider an (intermediate in time) measure-
ment of the projection operator P̂A = |A〉〈A|. It is a num-
ber operator telling whether the particle is to be found in
box A or not. Likewise, P̂B = |B〉〈B| is the number opera-
tor telling if the particle is found in box B, and similarly
P̂C = |C〉〈C| is the number operator telling if the particle
is found in box C. One is interested in the probability
probA(in A) for finding the particle in box A when mea-
suring P̂A, as well as the corresponding probabilities for
B and C.

Consider first an ideal measurement of the respective
projection/number operator. The Aharonov–Bergmann–
Lebowitz rule Equation 17 applies and gives

probA(in A) = 1

probB(in B) = 1

probC(in C) =
1
5

(145)

At first, there seems to be a paradox here. Not only does
the total probability to find the particle in any box ex-
ceeds 1, it is with certainty – or at least with probability 1
– found both in box A and in box B. But the paradox disap-
pears when one realizes that the results apply to different,

Quanta | DOI: 10.12743/quanta.v2i1.12 May 2013 | Volume 2 | Issue 1 | Page 39

http://dx.doi.org/10.12743/quanta.v2i1.12


A B C

p 0

p 0

Ti
m

e
Meter particle

Object particle

ˆ
Cs s ( )ˆ

C w

|ϕ1|
2

|ϕ0|
2

Figure 2: Schematic illustration of the setup of the Three-Box
Paradox. Initially, the object particle in the boxes is pre-
selected in the state |s〉 = 1

√
3
(|A〉 + |B〉 + |C〉). A test particle

acting as a meter is shot near box C to interact weakly with the
object particle. After the meter particle has passed box C, its
probability distribution |ϕ|2 is recorded on a screen behind the
three boxes. For g = 1, the probability distribution is shifted
by the amount 〈s|P̂C |s〉 with respect to the initial probability
distribution. By selecting only a particular final state for the
object particle, | f (Θ)〉 = sin Θ 1

√
2
(|A〉 + |B〉) + cos Θ|C〉, one

effectively chooses only those positions for the meter particle
that lie in a small band of this probability distribution and
centered around the weak value (P̂C)w.

projective measurements, which certainly cannot all be
performed without each measurement heavily disturbing
(collapsing) the system and thereby creating totally new
conditions for the next one.

Could a weak measurement come to the rescue? At
least it does not collapse the system. In fact, nothing
forbids us to do all three (weak) measurements of the
number operators P̂A, P̂B and P̂C , successively on the
same pre-and post-selected states.

The corresponding weak values are

(P̂A)w = 1

(P̂B)w = 1 (146)

On the other hand

(P̂A)w + (P̂B)w + (P̂C)w = (P̂A + P̂B + P̂C)w = 1 (147)

which together imply

(P̂C)w = −1 (148)

Consequently, if one interprets also the weak value as a
bona fide value of a number operator, one arrives at the
mind-boggling result that there is minus one particle in
box C!

Let me see how this stands further scrutiny.
The strong values of a projection operator are its eigen-

values, 1 and 0. It is this that legitimizes the result of a
measurement of a projection operator to be interpreted
as the number of particles in the respective box, and its
mean value as the probability of finding the particle in
that box (see subsection 2.1). But how legitimate is it
to interpret the weak value of a projection operator as a
particle number or as a probability?

A clue to answering that question sits in the observation
that a weak value depends not only on the pre-selected
state, |s〉, but also on the post-selected one, | f 〉. And by
considering different combinations of the basis states |A〉,
|B〉 and |C〉 for | f 〉, one may get essentially any result for
the weak value of a number operator. I devote the rest of
this section to a more in-depth analysis of this issue.

Hereafter, I closely follow the treatment in [57, section
16.5]. The goal is to give a model of a physical mecha-
nism that could reveal some features in the measurement
of the projection/number operators involved.

Suppose we want to check whether there is a parti-
cle in box C, the one that had a weak value number
operator equal to −1 in the setting with a pre-selected
state |s〉 = 1√

3
(|A〉 + |B〉 + |C〉) and a post-selected state

| f 〉 = 1√
3
(|A〉 + |B〉 − |C〉). Following [57], assume the

particle one looks for is charged. One may then check
its presence by shooting other charged (test) particles
pass the box and see if they are deflected by the electric
field of the hidden particle. Interpreted in the language
I have used, the test particle is the meter and the hidden
particle the system. The system observable to look for
is its number operator P̂C . Furthermore, concentrate for
simplicity only on (one of) the transverse degree(-s) of
freedom, the transverse momentum p of the meter, which
is then chosen as the pointer variable (see section 3). A
suitable interaction Hamiltonian could then be [57]

Ĥint = γ P̂C ⊗ X̂ (149)

where X̂ is the (transverse) position of the meter parti-
cle; in effect this is a von Neumann protocol but with
momentum P̂ and position X̂(= Q̂) interchanged. So I
can take the relevant formulae from subsection 4.1 and
subsection 5.4. In particular, the meter wave function
ϕ1(p), after the particle has passed the box C – i.e., after
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Figure 3: Mean values of the meter particle position for
different post-selected states of the object particle parame-
terized by the parameter Θ. The plot is discontinuous at

Θ = π − arctan
(

1
√

2

)
, for which the post-selected | f (Θ)〉 is

orthogonal to the pre-selected |s〉, hence no ordinary weak
value is defined.

the pre-measurement – is given by ϕ0(p − 〈s|P̂C |s〉) (see
Equation 116) in the weak measurement approximation.
(For simplicity, I here set the effective coupling constant
g = 1; for those who do not like setting a small parameter
equal to 1, just think of dividing suitable quantities by g
and use these ‘renormalized’ values.) In fact, with the
choice made for |s〉, one has 〈s|P̂C |s〉 = 1

3 .
To study the effect of post-selection, let me assume a

more general post-selected state

| f (Θ)〉 = sin Θ
1
√

2
(|A〉 + |B〉) + cos Θ|C〉 (150)

parameterized by an angle Θ with 0 ≤ Θ < π. The
pre-selected state is as before

|s〉 =
1
√

3
(|A〉 + |B〉 + |C〉) (151)

The relevant entities are

〈 f (Θ)|P̂C |s〉 =
1
√

3
cos Θ (152)

〈 f (Θ)|s〉 =
1
√

3
(
√

2 sin Θ + cos Θ) (153)

So the weak value of the box particle number operator
becomes

(P̂C)w =
1

√
2 tan Θ + 1

(154)

In agreement with the general scheme of subsection 5.4
– remember the interchange P̂� Q̂ = X̂ and that I have
put g = 1 – this is then also the mean value 〈P̂〉 f of
the pointer/meter particle transverse momentum after the
post-selection of | f (Θ)〉.

From these formulae – I have also illustrated the gen-
eral situation in Figure 3 – I conclude that the post-
selected state | f (Θ)〉 acts as a kind of filter that selects
the pointer mean value 〈P̂〉 f after the post-selection. In
particular, by varying Θ one may obtain any (real) value
of 〈P̂〉 f and thus of the weak value (P̂C)w of the number
operator. Note also that values for (P̂C)w are allowed that
lie outside the interval [0, 1], which corresponds to the
allowed values for the mean value 〈s|P̂C |s〉 for any state
|s〉. Such values have been termed “strange values” (see
for example [7,8] and references therein), but here they
occur quite naturally as an effect of the dependence of the
weak value on the post-selected state.

The demonstrated dependence of the weak value (P̂C)w
on the post-selected state destroys, in my view, any inter-
pretation of (P̂C)w as an inherent property of the particle
in box C. In particular, trying to measure the content of
the box with the proposed method will fail: what you get
– the value of (P̂C)w – depends on what you select – the
state | f (Θ)〉.

The definition of a weak value, like (P̂C)w, does not
preclude it from taking complex values. This adds further
doubts to the interpretation of a weak value as a property
of the system. At least, there is a question mark on how to
interpret the weak value of a projection/number operator.
This question mark propagates to the meaning of the weak
value in general.

9 Discussion

I have given a rather detailed review of the measurement
process in quantum mechanics (section 2 and subsec-
tion 10.1 as well as section 3). The emphasis has been on
establishing the basic formalism starting only from the
fundamental assumptions of quantum mechanics. This
formalism can then be applied to any problem. I used it
first to show how post-selection may be used for amplifi-
cation (subsection 4.3). I then apply the general formulas
to the case of weak measurement (subsection 5.2), the
results of which I use to derive the master equation for
the density matrix of an open system (subsection 10.2).

The main application has been to the very interest-
ing and active field of weak measurement followed by
post-selection as developed by Aharonov and collabora-
tors [6–8, 17, 18] (subsections 5.3, 5.4 and 5.5), again
with emphasis on the basic results but with an applica-
tion to amplification (subsection 5.6). A further appli-
cation has been to (one of) the so called Leggett-Garg
inequalities [21] (section 6, subsection 10.3), showing
how quantum mechanics violates macroscopic realism.
I have also reviewed some of the beautiful experiments
that have been inspired by the weak measurement plus

Quanta | DOI: 10.12743/quanta.v2i1.12 May 2013 | Volume 2 | Issue 1 | Page 41

http://dx.doi.org/10.12743/quanta.v2i1.12


post-selection approach [25,28,32–34,37,38,41–47] (sec-
tion 7), experiments that show amplification in action or
relax some of the restrictions that are attached to the
standard, projective (strong) quantum mechanical mea-
surement scheme.

With respect to the weak measurement plus post-
selection approach, I have thus shown that it requires
no new features besides conventional quantum mechanics
to arrive at the main results. I have specially stressed the
essential role played by the post-selection component of
the scheme. This is particularly true in the applications
of the approach to some of the so called paradoxes of
quantum mechanics( [35, 36, 39, 40]). The crucial issue
here is the meaning of the weak value of a number or
projection operator: is it legitimate to interprete a weak
value like (P̂C)w of Equation 148 literally as a number?

Some arguments that have been put forward to support
such an interpretation can be disposed of. The fact that
experiments agree with the calculated value has no bear-
ing on the interpretation (subsection 8.2). Nor has the
fact that the weak value is a measureable quantity: the
mere fact that a quantity is measureable does not entails
its interpretation.

With the Three-Box Paradox as an example, I have
also shown concretely (subsection 8.4) that a literal in-
terpretation of the weak value of a number operator is
difficult to uphold: invoking the crucial dependence of
the weak value on the post-selected state, essentially any
(complex) value of the weak value (P̂C)wmay be obtained
(see also [54]).

Indeed, on a very fundamental level, it is difficult to
see how a literal interpretation of a weak value can be
deduced from the basic postulates of quantum mechanics.
In other words, it seems to me that Aharonov and collabo-
rators go beyond conventional quantum mechanics when
they do this: in some way or other, they have extended
the usual list of quantum mechanical postulates. I refrain
from an opinion on whether the outcome of this extension
is profitable. What I have shown is, anyhow, that it results
in complex values for what they interpret as a number, a
fact that I find awkward.
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10 Appendix

10.1 Some properties of measurement
operators and effects, alias POVM

The so called measurement operators are defined in terms
of the pre-measurement unitary evolution operator Û in
subsection 3.3. They play a relatively minor role in my
presentation. This is because I prefer to rely on more
explicit expressions for Û, and to derive the results I want
from the ensuing time-evolution of the density matrices.
However, in more general treatments of the measurement
process in quantum mechanics, they and the effects – to
be defined in point (7) below – play a much more central
role; see [5, section 1.4.1]. Therefore, it is of interest also
here to list and derive some of their properties, which I
do in this appendix, making heavy use of the notation and
the results from section 3.

10.1.1 Basic properties

1. A measurement operator is defined by

Ω̂k = 〈mk|Û |m(0)〉 (155)

It is an operator in the Hilbert spaceHS of the sys-
tem.

2. Some elementary relations are

Ω̂k = 〈mk|Û |m(0)〉

=
∑

i

〈mk|m(i)〉|si〉〈si|

=
∑

i

〈mk|m(i)〉P̂si (156)

3. If one compares the expression

σ̂1(|mk) =
Ω̂kσ̂0Ω̂

†

k

prob (mk)
(157)

to the Lüders’ rule

σ̂1(|si) =
P̂siσ̂0P̂si

prob(si|σ̂0)
(158)

in a projective measurement, one sees that the mea-
surement operators Ω̂k play the role of a kind of
generalized projectors. However, they do obey dif-
ferent rules from ordinary projectors.

4. Projectors obey

P̂†si
= P̂si (159)

P̂si P̂s j = δi, jP̂si (160)
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For measurement operators such rules, in general,
are not valid

Ω̂
†

k =
∑

i

〈m(i)|mk〉P̂si , Ω̂k (161)

and

Ω̂
†

kΩ̂l = (
∑

i

〈m(i)|mk〉P̂si)
† × (

∑
j

〈ml|m( j)〉P̂s j)

=
∑

i

〈m(i)|mk〉P̂si〈ml|m(i)〉 (162)

which in general has no simple relation to either Ω̂k

or Ω̂l; remember that the states |m(i)〉 in general do
not form a complete set inHM.

5. Note however that

Ω̂
†

kΩ̂k =
∑

i

〈m(i)|mk〉P̂si〈mk|m(i)〉

=
∑

i

|〈m(i)|mk〉|
2P̂si (163)

implying that ∑
k

Ω̂
†

kΩ̂k = ÎS (164)

with ÎS the unit operator in the system Hilbert space
HS; in deriving this relation I have used the facts
that the basis states |mk〉 in the meter Hilbert space
HM form a complete set, and that the states |m(i)〉

are normalized. This relation could be compared to
the completeness relation∑

i

P̂si = ÎS (165)

for usual projectors.

6. The measurement operators also enter into the ex-
pression for the probability prob(mk) to obtain the
value mk:

TrS
(
Ω̂kσ̂0Ω̂

†

k

)
= TrS

(
Ω̂
†

kΩ̂kσ̂0
)

=
∑

j

∑
i

∣∣∣∣∣〈m(i)|mk〉

∣∣∣∣∣2〈s j|P̂siσ̂0|s j〉


=

∑
i

∣∣∣∣∣〈m(i)|mk〉

∣∣∣∣∣2〈si|σ̂0|si〉

= prob(mk) (166)

In fact, this is a consistency condition, since it is
equivalent to the normalization condition

TrS σ̂1(|mk) = 1 (167)

7. The product Ω̂
†

kΩ̂k = Êk, appearing naturally in
this expression for prob(mk), has many names. It
is called effect or probability operator, sometimes
alternatively positive-operator valued measure (ab-
breviated POVM). With this notation, the relation
given by Equation 164 reads∑

k

Êk = ÎS (168)

It is an expression of the fact that probabilities

prob(mk) = TrS
(
Êkσ̂0

)
(169)

sum to unity. Thus not only the measurement opera-
tors Ω̂k but also the effects Êk have properties similar
to projectors. The effects are Hermitian

Ê
†

k = Êk (170)

but in general not idempotent

ÊkÊl , δk,lÊk (171)

8. A more realistic model of the ancilla scheme takes
into account the fact that the measurement process
could involve more degrees of freedom than the
pointer observable M̂ and the one, Ŝ , to be mea-
sured for the system. So let me suppose that the
added degrees of freedom, referred to as D̂, are
described in a Hilbert space HD with basis states
|dr〉, r = 1, 2, . . . , dD = dim(HD). The initial state
is |d(0)〉. The pre-measurement prescription Equa-
tion 25 of subsection 3.2 is replaced by:

|si〉 ⊗ |d(0)〉 ⊗ |m(0)〉
Û
−→ Û(|si〉 ⊗ |d(0)〉 ⊗ |m(0)〉)

= |si〉 ⊗ |d(i)〉 ⊗ |m(i)〉 (172)

Thus, the measurement process is supposed to influ-
ence also the new degrees of freedom. The differ-
ence is that they are of no interest for that process
and must consequently be summed over. In partic-
ular, when forming the conditional density matrix
σ̂1(|mk) after the read out of M̂ with the result mk,
one must trace out also the D̂ degrees of freedom
(see subsection 3.3), resulting in

σ̂1(|mk) = TrM,D (τ̂1(|mk))

=
TrM,D

[(
ÎS ⊗ ÎD ⊗ Ômk

)
τ̂1

(
ÎS ⊗ ÎD ⊗ Ômk

)]
prob(mk)

=

∑
r

(
〈dr |〈mk|Û |d(0)〉|m(0)〉σ̂0〈m(0)|〈d(0)|Û†|mk〉|dr〉

)
prob(mk)

=
1

prob(mk)

∑
r

Ω̂k,rσ̂0Ω̂
†

k,r (173)
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with

Ω̂k,r = 〈dr |〈mk|Û |d(0)〉|m(0)〉

=
∑

i

〈mk|m(i)〉〈dr |d(i)〉P̂si (174)

The probability becomes

prob(mk) = TrS(
∑

r

Ω̂k,rσ̂0Ω̂
†

k,r)

=
∑

r

TrS(Ω̂†k,rΩ̂k,rσ̂0) (175)

implying that the effects read

Êk =
∑

r

Ω̂
†

k,rΩ̂k,r (176)

The expressions for the relations between the density
matrix σ̂1(|mk), the measurement operators Ω̂k,r, and
the effects Êk derived here are the most general ones
in the general theory of measurement (see [5, section
1.4.1]).

10.1.2 Realization in the von Neumann protocol

The von Neumann protocol of subsection 4.1 lives in the
q-basis. This means the following concrete realizations
of the measurement operators

Ω̂k =
∑

i

〈mk|m(i)〉P̂si

→ Ω̂q =
∑

i

ϕi(q)P̂si

=
∑

i

ϕ0(q − gsi)P̂si (177)

For the effects

Êk =
∑

i

|〈m(i)|mk〉|
2P̂si

→ Êq =
∑

i

|ϕ0(q − gsi)|2P̂si (178)

10.1.3 Realization in the double qubit protocol

In the double qubit protocol of subsection 4.2, there are
two measurement operators, Ω̂0 and Ω̂1. They take the
form (recall what I said in subsection 4.2 concerning the
switch to a computational basis notation!)

Ω̂0 = 〈0|M|m(si=+1)〉MP̂si=+1 + 〈0|M|m(si=−1)〉MP̂si=−1

= cos
ϑ

2
|0〉S〈0|S + sin

ϑ

2
|1〉S〈1|S

=

(
cos ϑ

2 0
0 sin ϑ

2

)
(179)

Ω̂1 = 〈1|M|m(si=+1)〉MP̂si=+1 + 〈1|M|m(si=−1)〉MP̂si=−1

= sin
ϑ

2
|0〉S〈0|S + cos

ϑ

2
|1〉S〈1|S

=

(
sin ϑ

2 0
0 cos ϑ

2

)
(180)

where I explicitly introduced the matrix representations.
The effects then become

Ê0 = Ω̂
†

0Ω̂0 =

(
cos2 ϑ

2 0
0 sin2 ϑ

2

)
(181)

Ê1 = Ω̂
†

1Ω̂1 =

(
sin2 ϑ

2 0
0 cos2 ϑ

2

)
(182)

10.2 Continuous measurements, the
quantum Zeno effect, and the master
equation for an open system

The treatment of weak measurement in the ancilla scheme
in subsection 5.2 is a convenient starting point for treating
continuous measurements and for handling the influence
of interaction with an environment for an open system.
The transition to a continuous measurement is accom-
plished by performing a limit in which the time duration
δtU of the pre-measurement interaction between the sys-
tem and the meter tends to zero. It is not straight-forward,
though, just to take the limit δtU → 0; some efforts are
required in order to overcome a few stumbling blocks. In
this appendix I give a broad outline of how this can be
done.

10.2.1 The quantum Zeno effect

I will consider a continuous measurement as the limit
of a sequence of consecutive measurements, carried out
at regular time intervals of a duration δtU , which tend
to zero. Thus, I model it by assuming the system to be
subjected to n consecutive, identical measurements in
time intervals between fixed times t = t0 and t = t f = tn.
The difference tr−tr−1 between any two consecutive times
is assumed to tend to zero as n → ∞. Indeed, I assume
each pre-measurement Û = exp(− ı

~γ Ŝ ⊗ P̂ δtU) to be of
duration δtU and to occur in the time interval between
the indicated times so that tr − tr−1 = δtU , r = 1, 2, . . . , n.
The limit to be taken is then δtU → 0, n → ∞ but such
that n × δtU = t f − t0 remains finite and non-vanishing.
Consequently, a weak interaction approximation for Û
applies.

It follows from Equation 39 of subsection 3.4 that the
system density matrix σ̂n, after n such identical, consecu-
tive measurements, reads

σ̂n =
∑
i, j

P̂siσ̂0P̂s j

(
〈m( j)|m(i)〉

)n
(183)
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Here, in the approximation outlined above (see Equa-
tion 100)

〈m( j)|m(i)〉 ≈ 1 −
1

2~2γ
2δt2

U〈N̂
2〉0(si − s j)2

= 1 − δt2
U Ai j (184)

with for simplicity an obvious abbreviation. Now, assume
all entities except δtU and n to remain finite and non-
vanishing. Then

lim
n→∞

(
〈m( j)|m(i)〉

)n
= lim

n→∞

(
1 − δt2

U Ai j
)n

= lim
n→∞

(
1 −

1
n
δtU t f Ai j

)n

= lim
δtU→0

exp
(
−δtU t f Ai j

)
= 1 (185)

This is the quantum Zeno effect: performing multiple
identical measurements in short time intervals leave the
system so to speak frozen in its initial state

lim
n→∞

σ̂n =
∑
i, j

P̂siσ̂0P̂s j = σ̂0 (186)

and no changes seem possible in such a continuous mea-
surement ( [20, section 12-5] and [58]).

10.2.2 Open system with smoothened
environmental interaction

There is, however, a way out: some other factor besides
δtU in the expression for Û could also vary with time.
For example, one could assume the effective coupling
constant g = γ δtU to really be constant and instead let
∆Q̂2

0 ∝ δt
−1
U [59, 60]. Equivalently, I find it more natural

to assume that the (squared) spread 〈N̂2〉0 in the meter
variable is such that 〈N̂2〉0 δtU tends to a finite value for
δtU → 0. In case N̂ = P̂, as in the von Neumann protocol,
this would mean a momentum variance for the meter
∆P̂2

0 ∝ δt
−1
U so that the conjugate variable Q̂ would have a

variance ∆Q̂2
0 ∝ δtU i.e., a more and more precise location

of the pointer variable in the initial meter state the shorter
the time duration gets. Anyhow, it is an assumption of this
kind that is necessary for avoiding the quantum mechanics
Zeno effect [59, 60].

Before I enter on the nitty-gritty of the limiting proce-
dure, let me widen the scope slightly. I shall not primarily
consider any particular observable Ŝ of the system. In-
stead, I shall be interested in the evolution of the system,
in terms of its density matrix, under a continuous moni-
toring by an environment, i.e., essentially anything that
gently influences the system. I shall model this monitor-
ing by assuming the interaction Hamiltonian Ĥint to be of

the form
Ĥint = γ

∑
a

(T̂a ⊗ N̂a) (187)

with the operators T̂a acting in the Hilbert space HS of
the system and N̂a in the meter Hilbert spaceHM. In fact,
this is about the most general interaction Hamiltonian one
may have for two interacting systems. I shall furthermore
assume that all the operators N̂a have vanishing first mo-
ments in the initial state of the meter: 〈N̂a〉0 = 0, for all
a. The second moments shall obey 〈N̂aN̂b〉0 = δa,b〈N̂2

a〉0,
for all a, b, i.e., there should be no correlations between
the different N̂a at this level.

Invoking some of the results derived in subsection 5.2,
assuming as before that the intrinsic Hamiltonians ĤS
and ĤM vanish, and using the short-hand notation X̂ =∫

dtĤint, one finds for the last step in the time-series that

σ̂(t f ) = σ̂n (188)

≈ σ̂n−1 + TrM

(
ı

~

[
τ̂n−1, X̂

]
−

1
2~2

[[
τ̂n−1, X̂

]
, X̂

])
One more assumption is needed before I can get to the
final result: The total system density matrix τ̂r at any time
tr is assumed to be updated at each measurement, so that
τ̂r = σ̂r ⊗ µ̂0 with one and the same µ̂0 at all times. The
motivation is that a new, but identical, meter is involved
at each time.

Putting all pieces together, and using the notation
σ̂(t f − δtU) = σ̂n−1, results in

σ̂(t f ) − σ̂(t f − δtU) ≈

≈ −
1

2~2 δt
2
Uγ

2
∑

a

〈N̂2
a〉0

[[
σ̂(t f − δtU), T̂a

]
, T̂a

]
(189)

Note in particular that there is no term linear in γ, since
I assumed all 〈N̂a〉0 to vanish. The last step consists in
invoking

lim
δtU→0

1
2
γ2〈N̂2

a〉0 δtU = η2
a , 0 (190)

to derive, in the limit δtU → 0:

∂σ̂

∂t
(t f ) = −

1
~2

∑
a

η2
a

[[
σ̂(t f ), T̂a

]
, T̂a

]
(191)

This is the so called ‘master equation’ in the ‘Lindblad
form’ for a system in touch with an environment. At least
almost. What remains is to generalize it to the case of a
non-vanishing intrinsic Hamiltonian ĤS. This is easily
done. So here is the very final result of this subsection (the
time argument in the density matrix is now suppressed)

∂σ̂

∂t
=
ı

~
[σ̂, ĤS] −

1
~2

∑
a

η2
a

[[
σ̂, T̂a

]
, T̂a

]
(192)
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One may question some of the assumptions made in
deriving this master equation. Indeed, other less pedes-
trian methods must be applied in a stricter derivation. The
poor man’s derivation presented here may anyhow be mo-
tivated by its comparative simplicity. See, e.g., [5, chapter
3], and [61, 62] for more basic approaches. I shall not
dwell upon applications of the master equation but refer
to the literature. Let me only mention that one impor-
tant such application is the study of decoherence due to
interaction with the environment [5, chapter 3], and [62].

10.3 The Leggett–Garg inequality

From a few reasonable assumptions on what character-
izes the macro world, Leggett and Garg [21] were able to
deduce inequalities involving (in general different) mea-
surements performed at successive times but on one and
the same object-system. These inequalities are then gen-
eralized to the micro domain. In this appendix, I sketch
the derivation of (one of) these inequalities, the one used
in section 6.

The assumptions invoked by Leggett and Garg are,
slightly reformulated

• Macroscopic realism: A macroscopic system will at
all times be in one or the other of the states available
to it.

• Noninvasive detection: It is possible to determine the
state of the system with arbitrary small perturbations
on its subsequent dynamics.

The set-up for Leggett–Garg inequality consists of three
successive measurements of the observables Â0, Â1 and
Â2. For purely simplifying purposes, I shall assume that
there is no time evolution in between the appropriate
measurements.

Consider first how the argument based on macroscopic
reasoning goes. Suppose the result of a measurement of
the observable Ai is ai, i = 0, 1, 2. Suppose also that all
the ai lie in the interval [−1,+1]. Leggett and Garg then
consider the combination

B = a0a1 + a1a2 − a2a0 (193)

It is straight-forward to show the inequality

− 3 ≤ B ≤ 1 (194)

Averaging B over the probability distributions for obtain-
ing the respective values does not destroy the inequality
– there are some subtleties involved, and one must of
course use the fact that probabilities lie between 0 and +1
as well as the assumptions of macroscopic realism and
noninvasive detection in the derivation – so with

〈B〉 = 〈A0A1〉 + 〈A1A2〉 − 〈A2A0〉 (195)

(bra-kets 〈. . .〉 denote averages over the respective proba-
bility distributions), one arrives at

− 3 ≤ 〈B〉 ≤ 1 (196)

This inequality is then taken over to the micro domain
by interpreting classical averages, like 〈A0A1〉 , as quan-
tum mechanical expectation values 〈Â0Â1〉 etc. of the
corresponding operators in an initial state prepared be-
fore the measurement of A0 takes place. It constitutes
one of the Leggett–Garg inequalities; other inequalities
may be obtained by invoking more than three consecutive
measurements.

The Leggett–Garg framework is aptly suited for studies
using weak measurement: For a weak measurement, the
condition of noninvasive measurement can be considered
(approximately) fulfilled. Therefore, with weak measure-
ment, the Leggett–Garg inequality effectively only tests
the macrorealism assumption. One may even relax a bit
on the requirement of weak measurements. In fact, the
main steps in the derivation of the Leggett–Garg inequal-
ity really only require the middle measurement, that of Â1,
to be weak. Both initially and finally, for Â0 respectively
Â2, the measurement could be projective.

The actual applications [28, 32–34] even choose Â0 =

|s〉〈s|, the projection operator on the initial (‘pre-selected’)
state. The Leggett–Garg entity 〈B̂〉 then reads

〈B̂〉 = 〈s|Â1|s〉 + 〈s|Â1Â2|s〉 − 〈s|Â2|s〉 (197)

where, as remarked, Â2 may be measured projectively
and only Â1 is required to be measured weakly. In the
experimental realizations, different choices for Â1 and Â2
have been investigated [32–34].

One could fit the Leggett–Garg inequality even more
closely to the theme of this article by considering a weak
measurement plus post-selection situation. By this I mean
making the substitutions

Â0 → σ̂0 = |s〉〈s| (198)

Â1 → Ŝ (199)

Â2 → | f 〉〈 f | (200)

which for 〈 f |s〉 , 0 result in

〈B̂〉 = 〈s|Ŝ |s〉 + 〈s|Ŝ | f 〉〈 f |s〉 − 〈s| f 〉〈 f |s〉

= 〈s|Ŝ |s〉 + |〈 f |s〉|2(S w − 1) (201)

This expression involves the weak value S w, given by
Equation 91, of the observable Ŝ .

Note, however, that there is an inherent order ambiguity
in translating a classical mean value of a product of two
observables into a quantum mechanical expectation value
when the two corresponding operators do not commute.
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In the last example, this is reflected in the fact that S w, a
complex number in general, appears in 〈B̂〉. I propose to
solve the ambiguity by replacing an operator product, say
Â1Â2, by the symmetrized one, 1

2 (Â1Â2 + Â2Â1).
Then, provided all the eigenvalues si of Ŝ lie in the

interval [−1,+1], the final expression for the Leggett–
Garg inequality becomes in this case

−3 ≤ 〈B̂〉 ≤ 1 (202)

〈B̂〉 = 〈s|Ŝ |s〉 + |〈 f |s〉|2 [Re(S w) − 1] (203)

I devote section 6 of the main text to an analysis of this
particular version of Leggett–Garg inequality in the dou-
ble qubit setup.

Summing up, the weak ancilla protocol has the advan-
tage in connection with Leggett–Garg inequality that it
obeys the non-invasive detection assumption, in the limit
of a very weak pre-measurement interaction, g → 0. In
particular, any violation of the Leggett–Garg inequality
can then be blamed on the violation of the macroscopic
realism assumption.
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