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Apure state of a physical system can be prepared
in an infinite number of ways. Quantum the-
ory dictates that given a pure state of a phys-

ical system it is impossible to distinguish two prepa-
ration procedures. Here, we show that the impossi-
bility of distinguishing two preparation procedures
for the same pure state follows from the no-signaling
principle. Extending this result for a pure bipartite
entangled state entails that the impossibility of dis-
tinguishing two preparation procedures for a mixed
state follows from the impossibility of distinguishing
two preparations for a pure bipartite state.
Quanta 2020; 9: 16–21.

1 Introduction

Quantum mechanics is one of the most successful the-
ory that was developed in the last century. In early days
of quantum mechanics, it was known in two different
mathematical formulations, one is the matrix mechanics
due to Heisenberg and the other is the wave mechanics
due to Schrödinger. Later, it was shown that both these
formulations are equivalent. Subsequently, von Neumann
provided a natural framework using the axiomatic theory
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of Hilbert spaces and linear operators [1]. This mathemat-
ical formulation of quantum mechanics greatly influenced
later developments. von Neumann’s formulation of quan-
tum mechanics in terms of vectors and operators in the
abstract Hilbert space provided a general framework for
the interpretation of quantum theory. Most notably, von
Neumann’s projection postulate is crucial when one tries
to describe quantum measurement process in a physical
system.

Unlike a classical system, a quantum system needs a
different description of its state. In quantum mechanics,
the state of a physical system, be it pure or mixed, is
supposed to capture the complete description of a system
[2]. If a system is described by a wavefunction, then we
can denote it also by a pure state density operator. If a
system is not prepared in a definite pure state, then we
denote that by a mixed state density operator. The mixed
state was introduced by von Neumann as the concept of
statistical matrix for the description of an ensemble of
systems which are not necessarily all in the same quantum
state [3]. It is known that if we describe the system by a
mixed state, then the same mixed state can be prepared
in an infinite number of ways by probabilistic mixing
of different pure states. Once the state is prepared, it
is impossible in principle to distinguish two (or more)
preparation procedures for a mixed state. In fact, if we
can distinguish two preparations for a mixed state, then
we could have signaling and we could violate the second
law of thermodynamics [4].
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Let us consider a system in a finite dimensional Hilbert
space HN which is separable, i.e., it admits a count-
able orthonormal basis. Every countable orthonormal
basis set will represent eigenbasis of some Hermitian
observables and correspondingly a possible preparation
procedure (as explained in the sequel). If a physical
system is in a pure state, that can also be prepared in
an infinite number of ways. Since a Hilbert space H
can have an infinite number of orthonormal basis sets,
we can expand a pure state using any orthonormal ba-
sis. Consider two observables A and B with eigenbasis
sets {|an〉} and {|bn〉}, respectively. Then, we know that
we can express the pure state using the eigenbasis of
the observables A, i.e., |ψ〉 =

∑N
n=1 αn|an〉 or we could

also expand the pure state using the eigenbasis of the
observables B, i.e., |ψ〉 =

∑N
m=1 βm|bm〉. Each one of

these possible expansions represents one possible prepa-
ration procedure. In quantum mechanics, we can prepare
a pure state starting from a fiducial pure state either by
a unitary transformation, or by a general quantum op-
eration such as a completely positive trace preserving
(CPTP) map. Since this has to be a physical operation,
and any physical operation can be realized by a unitary
transformation of the fiducial state along with an ancil-
lary state, without loss of generality, we consider here
only unitary operation as a physically realizable process
to prepare a pure state. For example, we can prepare
|ψ〉 ∈ HN by choosing the initial state of the system as
one of the eigenstates of the observable A, i.e., |a0〉 and
then we apply a unitary U to obtain |ψ〉. In this case, we
have |ψ〉 = U |a0〉 =

∑
n |an〉〈an|U |a0〉 =

∑
n αn|an〉, where

αn = 〈an|U |a0〉. Similarly, the other preparation proce-
dure can be realized by choosing the initial state of the sys-
tem as one of the eigenstates of the observable B, i.e., |b0〉

and then we apply a unitary V to obtain |ψ〉. In this case,
we have |ψ〉 = V |b0〉 =

∑
m |bm〉〈bm|V |b0〉 =

∑
m βm|bm〉,

where βm = 〈bm|V |b0〉. However, once |ψ〉 is given to us,
we cannot determine how this state has been prepared.
What we ask in the next section is can this be formalized
and this impossibility result obtained from no-signaling
condition which is another fundamental tenet of any phys-
ical theory.

2 Distinguishing two preparations

In this section, we formalize the question what it means
to distinguish two preparation procedures for a pure state.
To convey the main result, we consider a quantum sys-
tem in a two-dimensional Hilbert space, i.e., a qubit in
a state |ψ〉 = α|0〉 + β|1〉 ∈ H2. This can be prepared
starting from an initial state |0〉 (say along up-z-axis of
a spin-half particle) and by applying a unitary U(α, β),

i.e., |ψ〉 = U(α, β)|0〉. The same state can also be pre-
pared starting from an initial state |+〉 (say up-x-axis of
a spin-half particle) and by applying a different unitary
V(α, β), i.e., |ψ〉 = V(α, β)|+〉. Now, quantum mechanics
demands that if a pure state is a complete description of
a physical system, then there is no way to distinguish
different preparations. Otherwise, one may argue that
the description is not complete. The question we address
is whether the impossibility of distinguishing two prepa-
ration procedures for a pure state can be derived from
some other known principle. To our surprise, we found
that the impossibility of distinguishing two preparation
procedures for a pure state has never been discussed in
the literature, not to mention about how that follows from
the no-signaling. Here, we show that the impossibility of
distinguishing two (or more) preparations for a pure state
actually follows from the no-signaling. We prove this by
contradiction, i.e., we prove that if we can distinguish
two different preparations for a pure state, then one can
have signaling. But we know that we have to respect the
no-signaling and hence it must be impossible to distin-
guish two different preparations for a pure state. Also, we
argue that this impossibility result has a different status
compared to other no-go theorems such as the impossibil-
ity of measuring without disturbance [5], the no-cloning
in quantum information [6, 7] and the no-deleting theo-
rem [8]. Towards the end, we prove that the impossibility
of distinguishing two preparation procedures for a mixed
state follows from the impossibility of distinguishing two
preparations for a pure bipartite entangled state.

Suppose that there is a machine which can distinguish
two preparation procedures for a pure state. If the ma-
chine respects quantum mechanics, then that has to be
represented by a physical operation. We can always re-
alize a physical operation as a unitary evolution on a
larger Hilbert spaceH2 ⊗H2. Imagine that the physical
operation is a unitary operation on the system and the
machine state. Now, assume that the machine somehow
knows the preparation procedure and the final state of the
machine changes according to the preparation procedure.
Thus, the unitary transformation that may distinguish two
preparations for a qubit state is given by

U |0〉 ⊗ |A〉 → |ψ0〉 ⊗ |AU0〉,

V |+〉 ⊗ |A〉 → |ψ+〉 ⊗ |AV+
〉, (1)

where |A〉 is the initial state of the machine, |AU0〉 is the
final state of the machine if the pure state is prepared via
U |0〉 and |AV+

〉 is the final state of the machine if the pure
state is prepared via V |+〉. The states |ψ0〉 and |ψ+〉 denote
the fact that the pure state has been prepared starting from
two different initial states |0〉 and |+〉, respectively. The
‘preparation-distinguishing’ machine, if it exists, then
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will change the final state of the machine according to
the preparation procedure. Note that we need the states
|AU0〉 and |AV+

〉 to be different, so that we can obtain
information about the preparation procedures of the pure
state. However, if this is to hold, then we have 1 =

〈ψ0|ψ+〉〈AU0 |AV+
〉. This implies that |AU0〉 and |AV+

〉 can
never be different and hence there is no way to distinguish
two preparation procedures for a pure state.

Note that the machine that we have defined above is
distinct one compared to the machine that is supposed
to measure two non-orthogonal quantum states without
disturbance. In this case, the transformation is defined as

|0〉 ⊗ |A〉 → |0〉 ⊗ |A0〉

|+〉 ⊗ |A〉 → |+〉 ⊗ |A+〉. (2)

That this process is also impossible follows from the uni-
tarity, because we can never be able to satisfy 1 = 〈A0|A+〉.
This is paraphrased by saying that ‘it is impossible to dis-
tinguish two non-orthogonal states without disturbance’.
However, note that these two machines are completely
different. This is because there is no way that we can go
from (1) to (2) as the unitaries U and V in general will
not commute with the global operation that realizes the
process given in (1). Therefore, the hypothetical machine
that can distinguishing two preparation procedures for a
pure state is fundamentally different than the machine that
is supposed to distinguish two non-orthogonal quantum
states without disturbance. Therefore, this impossibility
result is independent of the earlier one. We can also ar-
gue that it is independent of the no-cloning theorem [6,7].
First, note that if we know the complete preparation proce-
dure, then we know the state of a qubit. But the converse
is not true, i.e., knowing the state of a qubit is not same as
knowing the preparation procedure. If we know the state
of a qubit, then we can clone it, whereas here, even if we
know the state we cannot distinguishing two preparation
procedures. This shows that the present no-go theorem
is different from the other no-go theorems such as the
no-cloning [6, 7, 9] and the no-deleting theorems [8].

3 Distinguishing two preparations
and signaling

Here, we will show that distinguishing two different
preparations for a pure state can actually lead to signaling.
Imagine that Alice and Bob share an entangled Einstein–
Podolsky–Rosen (EPR) pair [10, 11] as given by

|Ψ−〉 =
1
√

2
(|0〉|1〉 − |1〉|0〉). (3)

The EPR state satisfies the property

|Ψ−〉 = U(α, β) ⊗ U(α, β)|Ψ−〉

=
1
√

2
(|ψ〉|ψ̄〉 − |ψ̄〉|ψ〉), (4)

where

|ψ〉 = α|0〉 + β|1〉 = U(α, β)|0〉,

|ψ̄〉 = α∗|1〉 − β∗|0〉 = U(α, β)|1〉.

This invariance property of singlet is equivalent to

U†(α, β) ⊗ I|Ψ−〉 = I ⊗ U(α, β)|Ψ−〉

=
1
√

2
(|0〉U |1〉 − |1〉U |0〉). (5)

Physically, this means that if Alice applies U†(α, β) on
her particle this is equivalent to applying U(α, β) on Bob’s
particle. Similarly, the invariance property for the singlet
implies that we have

V†(α, β) ⊗ I|Ψ−〉 = I ⊗ V(α, β)|Ψ−〉

=
1
√

2
(|+〉V |−〉 − |−〉V |+〉), (6)

with the notion that |ψ〉 = V(α, β)|+〉 and |ψ̄〉 = V(α, β)|−〉.
Now, let us encode one classical bit in Alice’s action,
i.e., if she receives 0, then she applies U†(α, β) on her
particle and if she receives 1, then she applies V†(α, β)
on her particle. These two choices by Alice allow us to
have the possibility of two different preparations at Bob’s
end. Now assume that Bob has a hypothetical machine
which can distinguish two preparation procedures for
a pure state. Bob attaches the machine and allows the
transformation as given by

U |0〉|A〉 → |ψ0〉|AU0〉, V |+〉|A〉 → |ψ+〉|AV+
〉,

U |1〉|A〉 → |ψ̄1〉|AU1〉, V |−〉|A〉 → |ψ̄−〉|AV−〉. (7)

Then, depending on the two choices of preparations of a
pure state, we have

1
√

2
(|0〉U |1〉|A〉 − |1〉U |0〉|A〉)→

1
√

2
(|0〉|ψ̄1〉|AU1〉 − |1〉|ψ0〉|AU0〉),

1
√

2
(|+〉V |−〉|A〉 − |−〉V |+〉|A〉)→

1
√

2
(|0〉|ψ̄−〉|AV−〉 − |1〉|ψ+〉|AV+

〉). (8)

Now, the two preparation procedures give two different
density matrices at Bob’s end. These are given by

ρ0
B =

1
2

[|ψ̄1〉〈ψ̄1| ⊗ |AU1〉〈AU1 | + |ψ0〉〈ψ0| ⊗ |AU0〉〈AU0 |],

ρ+
B =

1
2

[|ψ̄−〉〈ψ̄−| ⊗ |AV−〉〈AV− | + |ψ+〉〈ψ+| ⊗ |AV+
〉〈AV+

|],

(9)
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where ρ0
B is the result of one preparation procedure and

ρ+
B is the result of the other preparation procedure. Since

these two density matrices are different, Bob can infer
Alice’s action, thus revealing one bit of information with-
out any communication from Alice. This would lead to
signaling. Therefore, from the no-signaling, we can argue
that it is impossible to distinguish two preparation proce-
dures for a pure state. This is in the same spirit as proving
the no-cloning and the no-deleting from the no-signaling
principle [7, 12, 13].

This means that any device that can distinguish two
or more preparation procedures for a pure quantum state
has to be outside the realm of quantum theory. Thus, the
fundamental description of a physical system by a pure
state is intimately connected to the no-signaling condition.
For another perspective on distinguishing and signaling,
interested readers can see the recent work by Srivastava
et al. [14]. Both proofs, the one by us and the one given
by Srivastava et al. [14] were obtained in parallel.

4 Impossibility of distinguishing
two preparations for a mixed
state

In quantum mechanics, a density matrix can have infinite
number of decompositions (proper mixtures) and it is im-
possible to distinguish two preparation procedures. Also,
we know that a mixture (improper) occurs when we trace
out one of the subsystem of an entangled state. First, note
that a pure bipartite entangled state can also be prepared
in an infinite number of ways and quantum theory dictates
that it is impossible to distinguish two or more prepara-
tions for a pure entangled state. Now, suppose, we ask
the question: which one is more fundamental in nature,
i.e., (i) impossibility of distinguishing two preparations
for a pure bipartite entangled state or (ii) impossibility
of distinguishing two preparations for a mixed state? To
be more specific, does (ii) follow from (i) or vice versa?
In what follows, we show that the impossibility to dis-
tinguish two preparations for a pure bipartite entangled
state indeed implies the impossibility of distinguishing
two preparation procedures for a mixed state.

Consider two preparation procedures of a pure bipar-
tite state |Ψ〉AB ∈ H

N ⊗ HN which are expressed as∑
nm Cnm|ψn〉⊗ |φm〉 and

∑
µν αµν|aµ〉⊗ |bν〉. Extending our

earlier result to a pure bipartite state, we can show that it is
also impossible to distinguish two different preparations.
Now, these two preparation procedures for a pure state
will result in two possible preparations for the density
matrix of either subsystem [15]. For example, if we trace
out the second subsystem, we will have density matrix
ρA =

∑
m |ψ̃m〉〈ψ̃m|, where |ψ̃m〉 =

∑
n Cnm|ψn〉 are unnor-

malized and non-orthogonal states with
∑

m ||ψ̃m||
2 = 1.

Similarly, for the other preparation procedure, if we
trace out the second subsystem, then the density matrix
ρA =

∑
ν |ãν〉〈ãν|, where |ãν〉 =

∑
µ αµν|aµ〉 are unnormal-

ized and non-orthogonal states with
∑
ν ||ãν||2 = 1.

Now, suppose that there is a physical operation that can
perfectly distinguish two preparations for the same mixed
state. This means that the ‘preparation-distinguishing’
machine can result in two different states of the sys-
tem and the machine as ρ(1)

AE and ρ(2)
AE corresponding to

two different preparation procedures, respectively, with
D(ρ(1)

AE , ρ
(2)
AE) = 1. Here D is a measure of distinguishing

two different preparations which are labeled as ‘1’ and ‘2’.
This physical operation can also be realized on a purified
Hilbert space that results in two possible states |Ψ(1)

ABE〉

and |Ψ(2)
ABE〉 according to two different preparation proce-

dures. Note that the distinguishabilty measure decreases
under partial tracing [16]. Therefore, we have

D(ρ(1)
AE , ρ

(2)
AE) ≤ D(Ψ(1)

ABE ,Ψ
(2)
ABE). (10)

Since we have already assumed that D(ρ(1)
AE , ρ

(2)
AE) = 1,

this then implies that D(Ψ(1)
ABE ,Ψ

(2)
ABE) ≥ 1. If the distin-

guishable measure satisfies 0 ≤ D ≤ 1, then it must be
true that D(Ψ(1)

ABE ,Ψ
(2)
ABE) = 1, i.e., we can distinguish two

preparations for a pure bipartite entangled state perfectly.
But we know that we cannot distinguish two different
preparations for the same pure entangled state and hence
it is impossible to distinguish two preparations for the
same mixed state.

It may be noted that we cannot prove the opposite, i.e.,
we cannot prove that the impossibility of distinguishing
two preparations for a pure bipartite entangled state fol-
lows from the impossibility of distinguishing two prepa-
rations for a mixed state. Thus, our result is a stronger
than impossibility of distinguishing two preparations for
a mixed state—which is central to quantum information.

5 Conclusion

In the context of mixed states, one can have manifestly
distinct ensemble realizations of the same mixed state.
Thus, it is a non-trivial observation that different prepara-
tions of the same mixed state cannot be distinguished. By
contrast, in the context of a pure state, although there can
be infinitely many representations in different bases, still
since a pure state can have only one ensemble realization,
it may appear that the idea of indistinguishability of dif-
ferent preparations of the same pure state is not on the
same footing. Here, we argue that this is not the case. Be-
cause, even in the case of pure ensemble, we can imagine
that we divide the ensemble to two sub-ensembles, where
one sub-ensemble has been prepared using one procedure
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and the other sub-ensemble has been prepared using a
different preparation procedure. Then, the question is can
we retrace back and ‘somehow’ know how those two pure
sub-ensembles have been prepared. One may say that if
two preparations could be distinguished, we would simply
say that they correspond to distinct pure states, rather than
recognize it as a case of distinguishing two preparations.
Again, one should remember that the question we address
is two different preparations are not giving rise to two
distinct pure states, rather they result in the same pure
states starting from two different pasts. Here, we ask can
the no-signaling has some implication on the fact that a
pure state is an equivalence class of different preparations
that behave identically under all possible measurements.
Then, we have shown that if there is a hypothetical device
that can distinguish two or more preparations for the same
pure state then that can lead to signaling.

In quantum theory, the preparation of a physical system
and the measurement procedure play fundamental role.
As von Neumann would emphasize, the measurement
process though always entails an outcome which may be
random, an experimentalist must be able to reproduce
the preparation and measurement procedures. A repro-
ducible preparation of a physical system is represented
by a pure state (in the case of closed system) or by a
density operator (in the case of open system). There are
infinite number of ways in which a given pure state can
be prepared and hence there is an infinite number of pasts
associated to a present pure state of a physical system.
Quantum theory tells us that once the state is prepared in
a pure state, then there is no way to reveal its preparation
procedure. The new impossibility theorem says that even
if we know the present state it is impossible for us to
know its past, namely, from where it has started and how
it has reached the present state. We have strengthened
this impossibility result and have shown that the impos-
sibility of distinguishing two different preparations for a
pure state follows from the no-signaling principle. Re-
markably, we have also proved that the impossibility of
distinguishing two preparations for the same mixed state
follows from a more fundamental result that it is impossi-
ble to distinguish two different preparations for the same
pure bipartite entangled state. This is another non-trivial
implication of our result. This impossibility result has a
different status compared to other no-go theorems such as
the no-cloning and the no-deleting theorems in quantum
information. The latter two no-go theorems do not hold
if we know the state. However, the new impossibility
result is truly quantum in origin without any classical
counterpart.
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