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This article presents the basis of a theory of
entanglement. We begin with a classical the-
ory of entangled discrete measures. Then, we

treat quantum mechanics and discuss the statistics
of bounded operators on a Hilbert space in terms of
context coefficients. Finally, we combine both top-
ics to develop a general theory of entanglement for
quantum states. A measure of entanglement called
the entanglement number is introduced. Although
this number is related to entanglement robustness, its
motivation is not the same and there are some differ-
ences. The present article only involves bipartite sys-
tems and we leave the study of multipartite systems
for later work.
Quanta 2020; 9: 7–15.

1 Entangled Probability Measures

Entangled states are considered to be an important re-
source for quantum computation and information pro-
cesses [1–5]. Various authors have developed theories
of entanglement [6–9] and this article is another attempt.
Our motivation is a bit different and we hope this work
will be useful.

It is frequently stated that entanglement is a strictly
quantum phenomenon and it is not present in a classical
theory. We do not believe this is actually true and begin
with a classical theory of entangled measures. This theory
is quite simple and does not have the depth of its quantum
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counterpart. However, we believe that it can be instructive
and give insights into the quantum theory.

Classical statistical systems are described by proba-
bility measures in a measure space. For simplicity we
consider the set of probability measures M on the set of
natural numbers N. We consider u ∈ M as a probability
vector u = {ui : i ∈ N}, ui ≥ 0,

∑
ui = 1. Thinking of M

as a subset of the real Hilbert space

`2 =
{
f : N→ R,

∑
| f (i)|2 < ∞

}
we write

∣∣∣∣∣∣u∣∣∣∣∣∣2 =
∑

u2
i and 〈u, v〉 =

∑
uivi. The support of

u is defined by

supp (u) = {i ∈ N : ui , 0} .

The entanglement index of u is the cardinality of supp (u)
and is denoted by n(u). We define the entanglement num-

ber of u by e(u) =

(
1 −

∣∣∣∣∣∣u∣∣∣∣∣∣2)1/2
. We can also write

e(u) =

∑
i, j

uiu j


1/2

=

∑
i

ui(1 − ui)

1/2

. (1)

Notice that
∣∣∣∣∣∣u∣∣∣∣∣∣2 is the expectation of the random variable

ui relative to the measure u and that by (1), e(u)2 is the
expectation of the random variable 1 − ui. That is, e(u)2

is the average distance of u from unity. This is our first
(among many) interpretations of e(u). We say that u is
a point (or Dirac) measure if ui = 1 for some i ∈ N. Of
course, it follows that u j = 0 for j , i. We say that u is
uniform if ui = u j whenever ui, u j , 0. If u is uniform,
then n(u) < ∞ and ui = 1/n(u) whenever ui , 0. The
proof of the following result is standard.
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Theorem 1. (a) e(u) = 0 if and only if u is a point mea-

sure. (b) If n(u) < ∞, then e(u) ≤
[(

n(u) − 1
)
/n(u)

]1/2

and equality is achieved if and only if u is uniform.

If u is uniform and n(u) , 1 (equivalently e(u) , 0),
we say that u is maximally entangled with index n(u). We
conclude that there is precisely one maximally entangled
probability measure for each nonsingleton finite support
in N. Moreover, u is maximally entangled if and only if
n(u) , 1 and

∣∣∣∣∣∣u∣∣∣∣∣∣2 = 1/n(u). Of course, in this case u
has the largest entanglement number of any v ∈ M with
n(v) = n(u). We also see that 0 ≤ e(u) < 1 and since∣∣∣∣∣∣u∣∣∣∣∣∣ > 0, there is no u ∈ M with e(u) = 1.

Example 1. (a) If u1 = u2 = 1/2, then e(u) = 1/
√

2
and u is maximally entangled with index 2. (b) If u1 =

u2 = u3 = 1/3, then e(u) =
√

2/3 and u is maximally
entangled with index 3 so the entanglement is larger than
in (a). (c) If u1 = 1/2, u2 = 1/3, u3 = 1/6, then e(u) =
√

11/18 and √
1
2
<

√
11
18

<

√
2
3
.

(d) If u1 = 1/9, u2 = 1/9, u3 = 7/9, then e(u) =√
30 /9 < 1/

√
2 . This gives the smallest entanglement of

the four. �

If u, v ∈ M and λ ∈ [0, 1], then λu + (1 − λ)v ∈ M is
called a mixture of u and v. It is easy to check that

n
[
λu + (1 − λ)v

]
= n(u) + n(v)

when λ ∈ (0, 1), supp (u) ∩ supp (v) = ∅ and

n
[
λu + (1 − λ)v

]
≤ n(u) + n(v)

in general. However, we have that

n
[
λu + (1 − λ)v

]
≥ λn(u) + (1 − λ)n(v).

This last inequality says that the function n is concave.
We interpret this as saying that mixtures increase the
entanglement index. We now show that the entanglement
number is concave.

Theorem 2. For all u, v ∈ M, λ ∈ [0, 1] we have that

e
[
λu + (1 − λ)v

]
≥ λe(u) + (1 − λ)e(v).

Moreover, if λ ∈ (0, 1) we have equality if and only if
u = v.

Proof. We begin with the inequality∣∣∣∣∣∣u∣∣∣∣∣∣2 +
∣∣∣∣∣∣v∣∣∣∣∣∣2 ≥ 2

∣∣∣∣∣∣u∣∣∣∣∣∣ ∣∣∣∣∣∣v∣∣∣∣∣∣ .
Hence,

1 +
∣∣∣∣∣∣u∣∣∣∣∣∣2 ∣∣∣∣∣∣v∣∣∣∣∣∣2 − 2

∣∣∣∣∣∣u∣∣∣∣∣∣ ∣∣∣∣∣∣v∣∣∣∣∣∣ ≥ 1 −
∣∣∣∣∣∣u∣∣∣∣∣∣2 − ∣∣∣∣∣∣v∣∣∣∣∣∣2 +

∣∣∣∣∣∣u∣∣∣∣∣∣2 ∣∣∣∣∣∣v∣∣∣∣∣∣2 =

(
1 −

∣∣∣∣∣∣u∣∣∣∣∣∣2) (1 − ∣∣∣∣∣∣v∣∣∣∣∣∣2) = e(u)2e(v)2.

Taking the square root gives
1 −

∣∣∣∣∣∣u∣∣∣∣∣∣ ∣∣∣∣∣∣v∣∣∣∣∣∣ ≥ e(u)e(v).

It follows that

1 − 2λ(1 − λ)
∣∣∣∣∣∣u∣∣∣∣∣∣ ∣∣∣∣∣∣v∣∣∣∣∣∣ ≥ 1 − 2λ(1 − λ) + 2λ(1 − λ)e(u)e(v) = λ2 + (1 − λ)2 + 2λ(1 − λ)e(u)e(v).

Hence,

1 −
[
λ
∣∣∣∣∣∣u∣∣∣∣∣∣ + (1 − λ)

∣∣∣∣∣∣v∣∣∣∣∣∣]2
= 1 − λ2

∣∣∣∣∣∣u∣∣∣∣∣∣2 − (1 − λ)2
∣∣∣∣∣∣v∣∣∣∣∣∣2 − 2λ(1 − λ)

∣∣∣∣∣∣u∣∣∣∣∣∣ ∣∣∣∣∣∣v∣∣∣∣∣∣
≥ λ2

(
1 −

∣∣∣∣∣∣u∣∣∣∣∣∣2) + (1 − λ)2
(
1 −

∣∣∣∣∣∣v∣∣∣∣∣∣2) + 2λ(1 − λ)e(u)e(v) =
[
λe(u) + (1 − λ)e(v)

]2
.

Taking the square root and applying Schwarz’s inequality gives

e
[
λu + (1 − λ)v

]
=

[
1 −

∣∣∣∣∣∣λu + (1 − λ)v
∣∣∣∣∣∣2]1/2

=

[
1 − λ2

∣∣∣∣∣∣u∣∣∣∣∣∣2 − (1 − λ)2
∣∣∣∣∣∣v∣∣∣∣∣∣2 − 2λ(1 − λ)〈u, v〉

]1/2

≥

[
1 − λ2

∣∣∣∣∣∣u∣∣∣∣∣∣2 − (1 − λ)2
∣∣∣∣∣∣v∣∣∣∣∣∣2 − 2λ(1 − λ)

∣∣∣∣∣∣u∣∣∣∣∣∣ ∣∣∣∣∣∣v∣∣∣∣∣∣]1/2
=

[
1 −

(
λ
∣∣∣∣∣∣u∣∣∣∣∣∣ + (1 − λ)

∣∣∣∣∣∣v∣∣∣∣∣∣)2
]1/2

≥ λe(u) + (1 − λ)e(v).
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If we have equality, there is equality in Schwarz’s in-
equality. This implies that u = av for some a ∈ R. It
follows that u = v. �

Corollary 3. If u, v ∈ M, λ ∈ (0, 1) and u , v then

e
[
λu + (1 − λ)v

]
> λe(u) + (1 − λ)e(v).

We define M × M to be the set of probability measures
on N ×N. Thus u ∈ M × M if u =

{
ui j : i, j ∈ N

}
, ui j ≥ 0,∑

ui j = 1. As before, the entanglement number of u is
defined by

e(u) =

(
1 −

∣∣∣∣∣∣u∣∣∣∣∣∣2)1/2
=

(
1 −

∑
u2

i j

)1/2
.

We also have that e(u) = 0 if and only if u is a point
measure with ui j = 1 for some i, j ∈ N. If v, w ∈ M we
define u = v × w ∈ M × M by ui j = viw j. We say that
u ∈ M × M is factorized if u = v × w for some u, v ∈ M.
If u is not factorized, we say that u is entangled. It is easy
to check that u is factorized if and only if for all i, j ∈ N
we have [10]

ui j =
∑

j

ui j

∑
i

ui j. (2)

Note that if e(u) = 0, then u is factorized. However, the
converse does not hold because there are factorized u
that are not point measures. For a quantum state ψ, we
shall show that e(ψ) = 0 if and only if ψ is factorized and
this will be an important difference between the quantum
theory and this classical theory. It should be pointed
out that e(ψ) and factorization of ψ are different in the
quantum case, however, the analogy is similar.

Example 2. (a) Let u ∈ M ×M be defined by u11 = 1/2,
u12 = 1/2. Then e(u) = 1/

√
2 and u = v × w where

v1 = 1, w1 = 1/2, w2 = 1/2. Thus, u is factorized.
(b) Let u ∈ M × M be defined by u11 = 1/3, u12 = 1/3,
u22 = 1/3. Then

∑
u1 j = 2/3,

∑
ui1 = 1/3 and 1

3 ,
2
9

so (2) does not hold. Hence, u is entangled and we have
e(u) =

√
2/3 . �

2 Context Coefficients

This section discusses the quantum statistics of operators.
The basic framework for traditional quantum mechanics
is a complex Hilbert space H. For simplicity, we shall
assume that dim H < ∞. Although this is a restriction,
it is adequate for descriptions of quantum computation
and information theory [1–3]. A pure state is represented
by a one-dimensional projection P on H. Since P is one-
dimensional, we can describe P by a unit vector φ in its
range and write P = Pφ = |φ〉〈φ|. We also call φ a vector
state (or state vector). A context for a quantum system

is a set of mutually orthogonal projections Pφi on H such
that

∑
Pφi = I. Equivalently, a context can be described

by the corresponding orthonormal basis {φi} of vector
states. A context can be thought of as a complete set
of minimal sharp events. We then see that there are an
infinite uncountable number of contexts for a quantum
system. This is in contrast to the classical systems de-
scribed by N in Section 1. In that case, the minimal sharp
events are just the points in N so the only context is N
itself.

Let L(H) be the set of linear operators on H. The
elements of L(H) are used to describe states, observables,
symmetries and dynamics of the quantum system. If
A ∈ L(H), we define the positive operator |A| by |A| =
(A∗A)1/2. A state is an operator ρ ∈ L(H) such that ρ ≥ 0
and tr (ρ) = 1. Of course, a pure state is a specific type
of state. We denote the set of states on H by S(H). Any
state has a spectral resolution ρ =

∑
λiPi where Pi are

mutually orthogonal pure states, λi ≥ 0,
∑
λi = 1. If

ρ ∈ S(H) and A ∈ L(H), then the ρ-expectation of A is
Eρ(A) = tr (ρA) and the ρ-variance of A is

Vρ(A) = Eρ

[∣∣∣A − Eρ(A)I
∣∣∣2] .

In particular, for a pure state Pφ we have that

Eφ(A) = EPφ(A) = 〈φ, Aφ〉

and

Vφ(A) = VPφ(A) = 〈φ, |A − 〈φ, Aφ〉I|2 φ〉.

The complex vector space L(H) becomes a Hilbert
space under the Hilbert–Schmidt inner product 〈A, B〉 =

tr (A∗B) [2, 3]. The Hilbert–Schmidt norm becomes

||A|| =
[
tr (A∗A)

]1/2
=

[
tr (|A|2)

]1/2
.

Theorem 4. (a) Vρ(A) = Eρ(|A|2) −
∣∣∣Eρ(A)

∣∣∣2.

(b)
∣∣∣Eρ(A)

∣∣∣2 ≤ Eρ(|A|2) and Vρ(A) = 0 if and only if
Aρ1/2 = cρ1/2 for some c ∈ C.

Proof. The following computation proves (a).

Vρ(A) = tr
[
ρ
(
A − Eρ(A)I

)∗ (
A − Eρ(A)I

)]
= tr

[
ρ
(
A∗ − Eρ(A)I

) (
A − Eρ(A)I

)]
= tr

[
ρ
(
|A|2 − Eρ(A)A − Eρ(A)A∗ +

∣∣∣Eρ(A)
∣∣∣2 I

)]
= Eρ

(
|A|2

)
− 2

∣∣∣Eρ(A)
∣∣∣2 +

∣∣∣Eρ(A)
∣∣∣2

= Eρ

(
|A|2

)
−

∣∣∣Eρ(A)
∣∣∣2 .

(b) Since Vρ(A) ≥ 0 we have that
∣∣∣Eρ(A)

∣∣∣2 ≤ Eρ

(
|(A)|2

)
.

By (a) we have Vρ(A) = 0 if and only if

Quanta | DOI: 10.12743/quanta.v9i1.115 July 2020 | Volume 9 | Issue 1 | Page 9

http://dx.doi.org/10.12743/quanta.v9i1.115


∣∣∣Eρ(A)
∣∣∣2 = Eρ

(
|A|2

)
. In terms of the Hilbert–Schmidt

inner product, we have that Vρ(A) = 0 if and only if∣∣∣∣∣∣Aρ1/2
∣∣∣∣∣∣2 = tr

[
(Aρ1/2)∗Aρ1/2

]
= tr (ρ1/2A∗Aρ1/2)

= tr (ρA∗A)

= Eρ
(
|A|∗

)
=

∣∣∣Eρ(A)
∣∣∣2

= |tr (ρA)|2

=
∣∣∣tr (ρ1/2Aρ1/2)

∣∣∣2
=

∣∣∣〈ρ1/2, Aρ1/2〉
∣∣∣2 .

Since tr (ρ) = 1 we have that
∣∣∣∣∣∣ρ1/2

∣∣∣∣∣∣ = 1. Hence,∣∣∣〈ρ1/2, Aρ1/2〉
∣∣∣ =

∣∣∣∣∣∣ρ1/2
∣∣∣∣∣∣ ∣∣∣∣∣∣Aρ1/2

∣∣∣∣∣∣ .
Since we have equality in Schwarz’s inequality, we con-
clude that Aρ1/2 = cρ1/2 for some c ∈ C. �

Corollary 5. If φ is a vector state, then

Vφ(A) = 〈φ, |A|2 φ〉 − |〈φ, Aφ〉|2

and Vφ(A) = 0 if and only if Aφ = cφ for some c ∈ C;
that is, φ is an eigenvector of A with eigenvalue c.

A context given by an orthonormal basis A = {φi}

can be thought of as giving a partial view of a quantum
system. In order to obtain a total view we must con-
sider various contexts [11, 12]. We say that A ∈ L(H)
is measurable with respect to A if APφi = Pφi A for
every i. In this case, φi is an eigenvector of A with eigen-
value 〈φi, Aφi〉 = Eφi(A). The only operators accurately
described byA are the operators that are measurable with
respect toA [11, 12]. We define the context coefficient of
A with respect toA by

cA(A) =
[∑

Vφi(A)
]1/2

. (3)

It follows from Corollary 5 that cA(A) = 0 if and only if
A is measurable with respect toA. We can consider cA(A)
as an indicator of how close A is to being measurable with
respect toA. We also see that A is normal (AA∗ = A∗A)
if and only if cA(A) = 0 for some context A. For any
A ∈ L(H) and contextA = {φi} we can write

A =
∑

i

〈φi, Aφi〉|φi〉〈φi| +
∑
i, j

〈φi, Aφ j〉|φi〉〈φ j|.

We define the linear maps LA,RA : L(H)→ L(H) by

LA(A) =
∑

i

〈φi, Aφi〉|φi〉〈φi|

RA(A) =
∑
i, j

〈φi, Aφ j〉|φi〉〈φ j|

and call LA the context map and RA the residual map.
Thus, A = LA(A) + RA(A). Notice that LA maps self-
adjoint operators to self-adjoint operators, positive opera-
tors to positive operators and states to states. In fact, LA
is a completely positive map [2, 3, 12] and is an example
of a quantum channel [2, 3]. Also LA(A) is measurable
with respect toA and A is measurable with respect toA
if and only if LA(A) = A or equivalently RA(A) = 0. We
remind the reader that ||B|| stands for the Hilbert–Schmidt
norm of B ∈ L(H).

Theorem 6. For every A ∈ L(H) and context A = {φi}

we have that ||RA(A)|| = cA(A).

Proof. Since

RA(A)∗RA(A) =
∑
i, j

〈Aφ j, φi〉|φ j〉〈φi| ·
∑
r,s

〈φr, Aφs〉|φr〉〈φs|

=
∑
i, j,s
i,s, j

〈Aφ j, φi〉〈φi, Aφs〉|φ j〉〈φs|

we conclude that

||RA(A)||2 = tr
[
RA(A)∗RA(A)

]
=

∑
i,k

〈Aφk, φi〉〈φi, Aφk〉

=
∑
i,k

〈Aφk, φi〉〈φi, Aφk〉 −
∑

i

〈Aφi, φi〉〈φi, Aφi〉

=
∑

k

〈Aφk, Aφk〉 −
∑

i

|〈φi, Aφi〉|
2

=
∑

k

(
〈φk, |A|2 φk〉 − |〈φk, Aφk〉|

2
)

=
∑

k

Vφk (A) = cA(A)2. �

It follows from Theorem 6 that cA(A) = ||A − LA(A)||
so that cA(A) is a measure of the closeness of A to LA(A).
Of course, cA(A) = 0 if and only if A = LA(A), cA(αA) =

|α| cA(A) and

cA(A + B) ≤ cA(A) + cA(B).

Observe that LA(A) is always normal with eigenvalues
〈φi, Aφi〉 and corresponding eigenvectors φi. In general
RA(A) need not be normal and even when it is, its eigen-
structure can be difficult to analyze except in two simple
but important cases. One is when dim H = 2 and the
other when 〈φi, Aφ j〉 = α for all i , j.

Example 3. Suppose dim H = 2 and RA(A) is normal.
We can write

RA(A) = 〈φ1, Aφ2〉|φ1〉〈φ2| + 〈φ2, Aφ1〉|φ2〉〈φ1|

= a|φ1〉〈φ2| + b|φ2〉〈φ1|.
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We assume that a, b , 0 because otherwise the situation is
trivial. It is easy to check that RA(A) is normal if and only
if |a| = |b| in which case a = |a| eiθ, b = |a| eiφ, θ, φ ∈ R.
Then the eigenvalues of RA(A) are

λ1 = |a| ei(θ+φ)/2, λ2 = − |a| ei(θ+φ)/2

with corresponding eigenvectors

ψ1 = 1√
2

[
φ1 + ei(φ−θ)φ2

]
,

ψ2 = 1√
2

[
−ei(θ−φ)/2φ1 + φ2

]
. �

Example 4. Suppose dim H = n and 〈φi, Aφ j〉 = α , 0,
i, j = 1, . . . , n. We then have that

RA(A) = α
∑
i, j

|φi〉〈φ j|.

It follows that RA(A)∗ = α
α RA(A) so Rα(A) is normal. For

the rest of this example, we assume that α = 1 and α can
be multiplied later if needed. First note that RA(A)φk =∑

i,k φi. Letting ψ = 1√
n

∑n
k=1 φk, it follows that

RA(A)ψ = 1√
n

∑
i, j

|φi〉〈φk|

n∑
k=1

φk

= 1√
n

n∑
k=1

∑
i,k

φi

= n−1√
n

n∑
k=1

ψk = (n − 1)ψ.

Hence, ψ is a normalized eigenvector of RA(A) with
eigenvalue n − 1. We will show that the other n − 1
eigenvectors of RA(A) all have eigenvalue –1 so –1 has
multiplicity n − 1. The simplest way to show this is to
examine the first few cases and to observe the resulting
pattern. When n = 2, we have that 1√

2
(φ1 − φ2) is an

eigenvector with eigenvalue –1. When n = 4, 1√
2

(φ1−φ2),
1√
2

(φ3 − φ4), 1
2 (φ1 + φ2 − φ3 − φ4) are eigenvectors with

eigenvalue –1. When n = 6, 1√
2

(φ1 − φ2), 1√
2

(φ3 − φ4),
1√
2

(φ5 − φ6), 1
2 (φ3 + φ4 − φ5 − φ6), 1√

8
(2φ1 + 2φ2 − φ3 −

φ4 − φ5 − φ6) are eigenvectors with eigenvalue –1. When
n = 3, 1√

2
(φ1−φ2), 1

2 (φ1+φ2−2φ3) are eigenvectors with

eigenvalue –1. When n = 5, 1√
2

(φ1 − φ2), 1√
2

(φ3 − φ4),
1
2 (φ1 + φ2 − φ3 − φ4), 1√

8
(φ1 + φ2 + φ3 + φ4 − 4φ5) are

eigenvectors with eigenvalue –1. In summary, we have
the following result. �

Theorem 7. Let RA(A) =
∑

i, j |φi〉〈φ j| and let dim H = n.
Then RA(A) has eigenvalue n − 1 with corresponding
eigenvector ψ = 1√

n

∑n
k=1 φk and RA(A) has eigenvalue

–1 with multiplicity n− 1 and the corresponding eigenvec-
tors form an orthonormal basis for {ψ}⊥.

3 Entanglement

We now incorporate the two previous sections to develop
a general theory of quantum entanglement. We restrict
attention to bipartite systems and leave multipartite sys-
tems for later work. Let H1,H2 be finite dimensional
complex Hilbert spaces and let H = H1 ⊗ H2. A state
ρ ∈ S(H) is factorized if there exist states ρ1 ∈ S(H1),
ρ2 ∈ S(H2) such that ρ = ρ1 ⊗ ρ2. A state ρ ∈ S(H) is
separable if ρ can be written as a convex combination
ρ =

∑
λiρi ⊗ σi of factorized states. If ρ is not separable,

it is entangled. Also, we say that a vector state ψ ∈ H is
factorized if there exist vector states φ1 ∈ H1, φ2 ∈ H2
such that ψ = φ1 ⊗ φ2. If ψ is not factorized, then ψ is en-
tangled. The following lemma summarizes some known
properties of factorized states [2]. We include the proofs
for completeness.

Lemma 8. (a) A pure state |η〉〈η| ∈ S(H) is factorized
if and only if the vector state η is factorized (b) A pure
state |η〉〈η| ∈ S(H) is separable if and only if |η〉〈η| is
factorized.

Proof. (a) If η ∈ H is factorized, then η = η1 ⊗ η2,
ηi ∈ Hi, i = 1, 2. Hence,

|η〉〈η| = |η1 ⊗ η2〉〈η1 ⊗ η2| = |η1〉〈η1| ⊗ |η2〉〈η2|

so |η〉〈η| is factorized. Conversely, if |η〉〈η| is factorized,
then |η〉〈η| = ρ1 ⊗ ρ2, ρi ∈ S(H), i = 1, 2. Since

ρ2
1 ⊗ ρ

2
2 = (ρ1 ⊗ ρ2)2 = ρ1 ⊗ ρ2

we have that ρ2
1 = ρ1 and ρ2

2 = ρ2 so ρ1 and ρ2 are
projections. Since

tr (ρ1)tr (ρ2) = tr (ρ1 ⊗ ρ2) = 1

we have that tr (ρ1) = tr (ρ2) = 1 so ρ1 and ρ2 are pure
states. Hence, ρ1 = |φ1〉〈φ1|, ρ2 = |φ2〉〈φ2|, φi ∈ Hi,
i = 1, 2 and we have that

|η〉〈η| = |φ1〉〈φ1| ⊗ |φ2〉〈φ2| = |φ1 ⊗ φ2〉〈φ1 ⊗ φ2|.

Thus, η = φ1 ⊗ φ2 so η is factorized.
(b) If |η〉〈η| is factorized, then clearly |η〉〈η| is separable.
Conversely, if |η〉〈η| is separable, then there are λi > 0
with

|η〉〈η| =

n∑
i=1

λiρi ⊗ σi.

We concluded that λiρi ⊗ σi ≤ |η〉〈η| and since |η〉〈η| is
one-dimensional we have that λiρi⊗σi = λ|η〉〈η| for some
λ ∈ [0, 1]. Taking the trace gives λi = λ so |η〉〈η| = ρi⊗σi,
i = 1, . . . , n. Therefore, |η〉〈η| = ρ1 ⊗ σ1 so |η〉〈η| is
factorized. �
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LetA = {φi}, B = {ψi} be orthonormal bases (contexts)
for H1 and H2, respectively. If λ ∈ M is a probability
measure, we call (λ,A,B) an entanglement and we call
(M,A,B) an entanglement system. We assume without
loss of generality that dim H1 = dim H2 = n. We can
do this because if dim H1 < dim H2, say, then we can
enlarge H1 to dim H2 and no harm is done. Moreover, we
assume that supp (λ) ⊆ {1, 2, . . . , n}. Corresponding to an
entanglement E = (λ,A,B) we have a vector state

ψE =
∑ √

λi φi ⊗ ψi ∈ H1 ⊗ H2

a pure state PE = PψE , a separable state

ρE =
∑

λiPφi⊗ψi =
∑

λiPφi ⊗ Pψi

and an entanglement operator

BE =
∑
i, j

√
λiλ j |φi ⊗ ψi〉〈φ j ⊗ ψ j|

=
∑
i, j

√
λiλ j |φi〉〈φ j| ⊗ |ψi〉〈ψ j|.

From Section 1, since λ ∈ M we have the entanglement
number e(λ). We use this to define the entanglement
number

e(ψE) = e(PE) = e(λ).

Conversely, if ψ ∈ H1 ⊗ H2 is a vector state, then
there exists a Schmidt decomposition consisting of an
entanglement (λ,A,B) where λ ∈ M is unique and ψ =∑ √

λi φi ⊗ ψi [2, 3, 6]. In this way, any vector state ψ
determines an entanglement E = (λ,A,B) so that ψ = ψE

althoughA and B need not be unique. It is easy to check
that

PE = |ψE〉〈ψE | = ρE + BE

and BE is a self-adjoint, traceless operator. We consider
ρE as the non-entangled part of PE and BE as describing
the entangled part. Letting D = A ⊗ B =

{
φi ⊗ ψ j

}
be

the corresponding orthonormal basis (context) for H =

H1 ⊗ H2 we have that ρE = LD(PE) and BE = RD(PE)
where LD and RD are the context map and residual map
of Section 2.

Considering the Hilbert–Schmidt norm ||BE || we see
that ||BE || = ||PE − ρE || gives a measure of the entangle-
ment of PE . Thus, if ||BE || is small, then PE is close to
ρE and is less entangled and when ||BE || is large, then PE

is more entangled. The next result shows that our three
entanglement measures coincide.

Theorem 9. cD(BE) = ||BE || = e(ψE)

Proof. It follows from Theorem 6 that cD(BE) = ||BE ||.
To show that ||BE || = e(ψE) we have that

B2
E =

∑
i, j

√
λiλ j |φi ⊗ ψi〉〈φ j ⊗ ψ j|


∑

r,s

√
λrλs |φr ⊗ ψr〉〈φs ⊗ ψs|


=

∑
i, j

∑
s

√
λiλs |φi ⊗ ψi〉〈φs ⊗ ψs| =

∑
i,s

(1 − λi)
√
λiλs |φi ⊗ ψi〉〈φs ⊗ ψs|.

Hence,

tr (B2
E) =

∑
(1 − λi)λi = 1 −

∑
λ2

i = 1 −
∣∣∣∣∣∣λ∣∣∣∣∣∣2 .

We conclude that

||BE || =
[
tr (B2

E)
]1/2

=

√
1 −

∣∣∣∣∣∣λ∣∣∣∣∣∣2 = e(λ) = e(ψE). �

Let E = (α,A,B) and F = (β,A,B) be entanglements
belonging to the same entanglement system (M,A,B).
We have the corresponding vector states ψE =

∑ √
αi φi⊗

ψi, ψF =
∑ √

βi φi ⊗ ψi. For λ ∈ (0, 1) we have the
entanglement

G =
(
λα + (1 − λ)β,A,B

)
and vector state

ψG =
∑ √

λαi + (1 − λ)βi φi ⊗ ψi.

By Theorem 2 we have that

e(ψG) = e
[
λα + (1 − λ)β

]
≥ λe(α) + (1 − λ)e(β)

= λe(ψE) + (1 − λ)e(ψF).

Our entanglement number is related to entanglement
robustness [6, 8, 9, 13–16], but there are important dif-
ferences and the motivation is not the same. We leave a
detailed comparison to later work.

Example 5. Let H = C2 ⊗ C2 and let ψ ∈ H be a vector
state. By the Schmidt decomposition, there are numbers
λ1, λ2 ≥ 0 with λ1 + λ2 = 1 and bases A = {φ1, φ2},
B = {ψ1, ψ2} of C2 such that

ψ =
√
λ1 φ1 ⊗ ψ1 +

√
λ2 φ2 ⊗ ψ2.
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We have that Pψ = ρψ + Bψ where

ρψ = λ1|φ1 ⊗ ψ1〉〈φ1 ⊗ ψ1| + λ2|φ2 ⊗ ψ2〉〈φ2 ⊗ ψ2|,

Bψ =
√
λ1λ2

[
|φ1 ⊗ ψ1〉〈φ2 ⊗ ψ2| + |φ2 ⊗ ψ2〉〈φ1 ⊗ ψ1|

]
.

We see that ρψ is a separable state and the entanglement
operator Bψ is self-adjoint and traceless. The eigenval-
ues of Bψ are 0, 0,

√
λ1λ2 ,−

√
λ1λ2 . The corresponding

eigenvectors are φ1 ⊗ ψ2, φ2 ⊗ ψ1 which are factorized
and

1√
2

(φ1 ⊗ ψ1 + φ2 ⊗ ψ2), 1√
2

(φ1 ⊗ ψ1 − φ2 ⊗ ψ2)

which are entangled. The Hilbert–Schmidt norm of Bψ is∣∣∣∣∣∣Bψ∣∣∣∣∣∣ =
√

2λ1λ2 = e(ψ). �

Example 6. Let E = (M,A,B) be an entanglement sys-
tem with A = {φi}, B =

{
ψ j

}
. Consider the following

vector states in E

α = 1√
2
φ1 ⊗ ψ1 + 1√

2
φ2 ⊗ ψ2

β = 1√
3
φ1 ⊗ ψ1 + 1√

3
φ2 ⊗ ψ2 + 1√

3
φ3 ⊗ ψ3

γ = 1√
2
φ1 ⊗ ψ1 + 1√

3
φ2 ⊗ ψ2 + 1√

6
φ3 ⊗ ψ3

δ = 1
3 φ1 ⊗ ψ1 + 1

3 φ2 ⊗ ψ2 +

√
7
9 φ3 × ψ3.

All of these states are entangled and as in Example 1
we have e(α) = 1/

√
2, e(β) =

√
2/3 , e(γ) =

√
11/18 ,

e(δ) =
√

30 /9 and we have that

e(δ) < e(α) < e(γ) < e(β). �

Example 7. If A = {φi} is an orthonormal
basis for H, the corresponding symmetric-
antisymmetric basis for H ⊗ H is

AS A =

{
φi ⊗ φi,

1√
2

(φi ⊗ φ j + φ j ⊗ φi), 1√
2

(φi ⊗ φ j − φ j ⊗ φi), i < j
}
.

The first two types are symmetric and the last type are antisymmetric. There are n(n + 1)/2 symmetric and n(n− 1)/2
antisymmetric states. The entanglement number for the first type is 0 and the others are 1/

√
2 . We have that

Pφi⊗φi = Pφi ⊗ Pφi is factorized and

P 1√
2

(φi⊗φ j+φ j⊗φi)
= 1

2 |φi〉〈φi| ⊗ |φ j〉〈φ j| +
1
2 |φ j〉〈φ j| ⊗ |φi〉〈φi| +

1
2 |φ j〉〈φi| ⊗ |φi〉〈φ j| +

1
2 |φi〉〈φ j| ⊗ |φ j〉〈φi|

= 1
2 Pφi ⊗ Pφ j + 1

2 Pφ j ⊗ Pφi + Re
(
|φ j〉〈φi| ⊗ |φi〉〈φ j|

)
.

We can write this as A + B where A is the separable
state

A = 1
2 Pφi ⊗ Pφ j + 1

2 Pφ j ⊗ Pφi

and B is the entanglement operator. We also have

P 1√
2

(φi⊗φ j−φ j⊗φi)
= A − B. �

Example 8. Let H = H1⊗H2 with dim H1 = dim H2 = n
and let ψ ∈ H be the maximally entangled vector given
by

ψ = 1√
n

∑
φi ⊗ ψi

where A = {φi}, B = {ψi} are orthonormal bases for
H1,H2, respectively. Letting λi = 1/n, i = 1, 2, . . . , n and
E = (λ,A,B) we have that ψ = ψE with corresponding
pure state PE and entanglement operator

BE = 1
n

∑
|φi〉〈φ j| ⊗ |ψi〉〈ψ j|.

LettingD =
{
φi ⊗ ψ j

}
be the resulting orthonormal basis

for H and RD be the corresponding residual map we

have BE = RD(PE). It follows from Theorem 7 that
the nonzero eigenvalues of BE are 1 − 1

n and − 1
n . The

eigenvalue 1 − 1
n has multiplicity 1 and corresponding

eigenvector ψ while the eigenvalue − 1
n has multiplicity

n − 1 whose eigenspace is the subspace of H generated
by

{
φi ⊗ ψ j : i , j

}
and orthogonal to φ. �

Until now we have considered the entanglement num-
ber for a pure state Pφ. For the remainder of this article
we shall discuss mixed states. If ρ is a mixed state on H
that is not pure, then ρ possesses an uncountably infinite
number of decompositions ρ =

∑
λiPi, λi > 0,

∑
λi = 1

where Pi are pure states [2]. Also, ρ has a spectral de-
composition ρ =

∑
µiQi, µi > 0,

∑
µi = 1, where Qi are

mutually orthogonal pure states. The µi are the nonzero
eigenvalues of ρ and the ranges of Qi are the correspond-
ing eigenvectors of ρ. The next example is based on
Example 6.13 in [2].

Example 9. Let H = C2 ⊗C2, let {φ1, φ2} be an orthonor-
mal basis for C2 and define φ = 1√

2
(φ1 + φ2). We now
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consider the separable state

ρ = 1
2 (|φ ⊗ φ〉〈φ ⊗ φ| + |φ1 ⊗ φ1〉〈φ1 ⊗ φ1|) .

The eigenvalues of ρ are 0 (multiplicity 2), 1/4 and 3/4.
The eigenvectors for 0 are

ψ1 = 1√
2

(φ2 − φ1) ⊗ φ2,

ψ2 = 1√
6

[
(φ1 + φ2) ⊗ φ2 − 2φ2 ⊗ φ1

]
.

The eigenvectors for 1/4 and 3/4 are

ψ3 = 1
2
√

3

[
(3φ1 + φ2) ⊗ φ1 + (φ1 + φ2) ⊗ φ2

]
ψ4 = 1

2
[
(φ2 − φ1) ⊗ φ1 + (φ1 + φ2) ⊗ φ2

]
.

The unique spectral decomposition of ρ becomes

ρ = 1
4 Pψ3 + 3

4 Pψ4 . (4)

Notice that ψ3 and ψ4 are entangled. This gives an exam-
ple of a separable state whose unique spectral decomposi-
tion consists of entangled pure states. �

Example 9 shows that a spectral decomposition cannot
be used to determine an entanglement number for a mixed
state. Indeed, in (4) since ρ is separable the entanglement
number for ρ should be zero, yet the entanglement number
for Pψ3 and Pψ4 are positive.

We now define the entanglement number for a mixed
state ρ. Suppose ρ =

∑
λiPi, λi > 0,

∑
λi = 1 is a

decomposition of ρ into pure states Pi, where Pi , P j,
i , j. LetA = {Pi} and define

eA(ρ) =
∑

λie(Pi).

We define the entanglement number e(ρ) by

e(ρ) = inf
A

[
eA(ρ)

]
. (5)

Since a pure state has the decomposition P = P, (5)
reduces to the usual definition of entanglement number
for pure states. We say that the infimum is (5) is attained
if there is an A such that e(ρ) = eA(ρ). It is an open
problem whether the infimum is always attained.

Theorem 10. A state ρ is separable if and only if e(ρ) is
attained and e(ρ) = 0.

Proof. If ρ is separable we have that ρ =
∑
λiPi where

Pi are factorized pure states. Since e(Pi) = 0 for all i,
we have that eA(ρ) = 0 for A = {Pi}. Hence, e(ρ) = 0.
Conversely, suppose e(ρ) is attained at A = {Pi} and
e(ρ) = eA(ρ) = 0. Since ρ =

∑
λiPi, λi > 0,

∑
λi = 1 and∑

λie(Pi) = e(ρ) = 0

we conclude that e(Pi) = 0 for all i. It follows that Pi is
factorized for all i and hence ρ is separable. �

It follows that if ρ is separable, then e(ρ) = 0 and if
e(ρ) > 0 or is not attained, then ρ is entangled.
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