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Quantum entanglement is an important re-
source in quantum information technologies.
Here, we study and characterize in a precise

mathematical language some of the weird and nonin-
tuitive features of quantum entanglement. We begin
by illustrating why entanglement implies action at a
distance. We then introduce a simple criterion for de-
termining when a pure quantum state is entangled.
Finally, we present a measure for the amount of en-
tanglement for a pure state.
Quanta 2020; 9: 1–6.

1 Quantum Mechanics in a Nutshell

Entanglement is an important concept in quantum theory
and many scientists believe it is responsible for much of
the weirdness and nonintuitive nature of this theory [1–3].
Albert Einstein called entanglement “spooky action at
a distance” and there are many people who agree. As
strange as it may be, entanglement is a useful resource
and it is the underlying basis for the speed and power of
quantum computation [3–6].

We begin with a nutshell summary of quantum mechan-
ics. The basic framework consists of a complex Hilbert
space H with inner product 〈φ, ψ〉 and the set of (bounded)
linear operators L(H) on H. For simplicity, we shall as-
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sume that H is finite dimensional in which case L(H) is
represented by a set of complex matrices. This is general
enough to include the theory of quantum computation and
information [3–7]. It also has the advantage of making
this article accessible to anyone who has had a first course
in linear algebra. In the sequel, when we discuss a quan-
tum state, we shall mean a pure state. There is a more
general concept of mixed states, but we only mention
these briefly.

A simplified version of the main axioms of quantum
mechanics are the following [3, 4, 7].

Axiom 1. The states of a quantum system are represented
by unit vectors in H.

Axiom 2. The quantum events are represented by projec-
tions on H.

Axiom 3. If ψ ∈ H is a state and P ∈ L(H) is a projection,
then

Pψ(P) = 〈ψ, Pψ〉

is the probability that P occurs in the state ψ and if P
does occur, then ψ is updated to the state

ψ′ =
Pψ
||Pψ||

Axiom 4. If H1,H2 represent two interacting quantum
systems, then the combined system is represented by the
tensor product H1 ⊗ H2.

Axiom 5. If P1, P2 are events in system 1 and 2, respec-
tively, then P1 ⊗ I2, I1 ⊗ P2 are the corresponding events
in the combined system, where I1 ∈ L(H1), I2 ∈ L(H2)
are the identity operators.
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We now briefly elaborate on these axioms. Quantum
mechanics can be thought of as a generalized probability
theory [2, 4, 7]. A unit vector ψ ∈ H satisfies

||ψ||2 = 〈ψ, ψ〉 = 1

and ψ gives a quantum probability measure in accordance
with Axiom 3. Recall that P ∈ L(H) is a projection if
P2 = P = P∗. Axiom 3 connects the abstract concepts
of states and events to the outcomes of experiments in
the laboratory. Quantum mechanics cannot make precise
predictions, it can only produce probabilities for the oc-
currence of events. The zero operator 0 represents the
event that never occurs and I represents the event that
always occurs. An event P occurs if and only if its com-
plement P′ = I − P does not occur and

Pψ(P′) = 〈ψ, (I − P)ψ〉 = 〈ψ, ψ〉 − 〈ψ, Pψ〉 = 1 − Pψ(P)

The updating ψ 7→ ψ′ in Axiom 3 is sometimes called
the “collapse” of the state upon performing a measure-
ment. This corresponds to the “ontic” viewpoint in which
ψ is considered to be a real, physical object [2]. An-
other way of viewing this is that once the occurrence of
P is confirmed, this information gives a “more precise”
state ψ′. We then call ψ′ the state ψ conditioned on the
occurrence of the event P, which is similar to a condi-
tional probability of ordinary statistics. This corresponds
to the “epistemic” viewpoint in which ψ is not considered
to be a physical object but is only a carrier of our knowl-
edge of the system [2]. One can employ either of these
philosophies and still get the same quantum predictions.
Once we are in the state ψ′, then P must occur because
Axiom 3 gives

Pψ′(P) =
〈
ψ′, Pψ′

〉
=

1

||Pψ||2
〈
Pψ, P2ψ

〉
=

1

||Pψ||2
〈Pψ, Pψ〉 = 1

Notice that there is no problem with dividing by ||Pψ||
because if P has occurred, then

||Pψ||2 = 〈Pψ, Pψ〉 = 〈ψ, Pψ〉 = Pψ(P) , 0

Also notice that since P or P′ must occur, the state ψ is
updated to Pψ/ ||Pψ|| or P′ψ/ ||P′ψ|| when P is tested.

The tensor product H1 ⊗ H2 is an important way to
combine two Hilbert spaces. If {φi},

{
ψ j

}
are orthonormal

bases for H1,H2, respectively, then by definition, any
vector in H1 ⊗ H2 has the form

γ =
∑
i, j

ci jφi ⊗ ψ j, ci j ∈ C (1)

The main properties of H1 ⊗ H2 are that φ ⊗ ψ is linear in
both arguments and that

〈α1 ⊗ β1, α2 ⊗ β2〉 = 〈α1, α2〉〈β1, β2〉

It follows that γ in (1) is a state if and only if
∑ ∣∣∣ci j

∣∣∣2 = 1.
If A ∈ L(H1), B ∈ L(H2) then A ⊗ B ∈ L(H1 ⊗ H2) and

A ⊗ B(α ⊗ β) = Aα ⊗ Bβ

and any operator on H1 ⊗ H2 has the form
∑

ci jAi ⊗ B j,
ci j ∈ C. If P1 is an event in system 1, then P1 ⊗ I2 is
the corresponding event in the combined system because
P1 ⊗ I2 occurs in H1 ⊗ H2 if and only if P1 occurs in H1.
Another way of describing Axiom 5 is that if P1 is an
event in system 1 and we test whether P1 occurs in the
combined system, then this test should not be affected
by system 2. This statement is made precise in the next
lemma where c denotes the complex conjugate of c ∈ C.
Also, note that we use the physics convention that the
inner product is anti-linear in the first argument.

Lemma 1. If γ ∈ H1 ⊗ H2 is a state and P1 ∈ L(H1) is
an event, then there exist states αi ∈ H1 and λi ∈ [0, 1]
with

∑
λi = 1 such that

〈γ, P1 ⊗ I2γ〉 =
∑

λi〈αi, P1αi〉 (2)

Proof. The state γ has the form (1) with
∑ ∣∣∣ci j

∣∣∣2 = 1. We
then have that

〈γ, P1 ⊗ I2γ〉 =
〈∑

ci jφi ⊗ ψ j, P1 ⊗ I2

∑
crsφr ⊗ ψs

〉
=

∑
ci j

∑
crs

〈
φi ⊗ ψ j, P1φr ⊗ ψs

〉
=

∑
i, j,r

ci jcr j〈φi, P1ψr〉

Letting
α j =

∑
i

ci jφi/
∑

i

∣∣∣ci j
∣∣∣2

and λ j =
∑

i

∣∣∣ci j
∣∣∣2 we conclude that α j are states in H1,∑

λ j = 1 and that (2) holds. �

Equation (2) says that there are states αi ∈ H1 such that
Pγ(P1 ⊗ I2) is a convex combination of Pαi(P1). In this
way, a test of the occurrence of P1 ⊗ I2 only depends on
states in H1 and is independent of system 2. The function
P1 7→

∑
λi〈αi, P1αi〉 in (2) is called a mixed state [3, 7]

and we shall not pursue these further.
We now come to our main definition. A state

γ ∈ H1 ⊗ H2 is factorized (or a product state) if γ = α⊗β

for states α ∈ H1, β ∈ H2. Otherwise, γ is entangled.
When γ = α ⊗ β, we call α and β the local parts of γ.
The local parts are not unique because if α and β are local
parts, then so are eiθα, e−iθβ where θ ∈ R, i =

√
−1 .
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Example 1. If α, β are orthogonal states in H, then

δ = 1√
2

(α ⊗ β − β ⊗ α) (3)

is an entangled state in H ⊗ H. To show this suppose
that δ = φ ⊗ ψ for states φ, ψ ∈ H. Taking the inner
product with α⊗α gives 〈α, φ〉〈α, ψ〉 = 0 so 〈α, φ〉 = 0 or
〈α, ψ〉 = 0. Suppose 〈α, φ〉 = 0 and take the inner product
with α ⊗ β to obtain

1√
2

= 〈α, φ〉〈β, ψ〉

which gives a contradiction. If 〈α, ψ〉 = 0, take the inner
product with β ⊗ α to again get a contradiction. Hence δ
is entangled. �

2 Action at a Distance

Alice and Bob prepare an interacting pair of electrons in a
state γ at a lab in New York; Alice keeps her electron (sys-
tem 1) in New York and Bob takes his electron (system 2)
to a lab on the moon. Since all electrons have the same
properties, both systems give a copy of a Hilbert space H
and the combined system has Hilbert space H ⊗ H. For
this experiment, γ is the factorized state α ⊗ β where α, β
are orthogonal states in H. Let P be an event that per-
tains to an electron (say, spin-up in the z-direction). Alice
sends her electron through an apparatus that tests P. She
confirms that P occurs so by Axioms 3 and 5, γ updates
to

γ′ =
P ⊗ I(α ⊗ β)
||P ⊗ I(α ⊗ β)||

=
Pα ⊗ β
||Pα||

It is fairly clear that Bob’s electron is unaffected. To
make sure, suppose Bob tests an event Q pertaining to his
electron. According to γ, we have

Pγ(I ⊗ Q) = 〈α ⊗ β, I ⊗ Q(α ⊗ β)〉

= 〈α ⊗ β, α ⊗ Qβ〉 = 〈β,Qβ〉

Moreover, we obtain

Pγ′(I ⊗ Q) =
1

||Pα||2
〈Pα ⊗ β, (I ⊗ Q)(Pα ⊗ β)〉

=
1

||Pα||2
〈Pα ⊗ β, Pα ⊗ Qβ〉 = 〈β,Qβ〉

We conclude that Bob’s electron is in the same state after
Alice’s measurement as it was before.

Next Bob returns to New York where he and Alice
prepare a pair of electrons in the entangled state δ of (3).
Alice keeps her electron in New York and Bob again takes
his to the moon. Now Alice performs her experiment that
tests P and confirms that P occurs. (It actually does not

matter if P occurs. If it does not, then P′ occurs and our
conclusion will be the same.) The updated state becomes

δ′ =
(P ⊗ I)δ
||(P ⊗ I)δ||

We have that

||(P ⊗ I)δ||2 = 1
2 〈Pα ⊗ β − Pβ ⊗ α, Pα ⊗ β − Pβ ⊗ α〉

= 1
2 (〈α, Pα〉 + 〈β, Pβ〉)

Letting N = 1√
2

(〈α, Pα〉 + 〈β, Pβ〉)1/2 we obtain

δ′ = 1
N (P ⊗ I)δ = 1

N (Pα ⊗ β − Pβ ⊗ α)

It appears as if the state of Bob’s electron is instanta-
neously changed without Bob doing anything. This is the
spooky action at a distance that bothered Einstein and oth-
ers. This effect in various forms really happens because
it has been exhibited in thousands of experiments around
the world. It does not violate special relativity which
postulates that no signal or object can move faster than
the speed of light. This is because further study shows
that this action cannot relay any useable information or
communication [1, 2, 8].

In order to be sure about this, let us show that the state
of Bob’s electron has indeed been changed. As before,
let Q be an event for Bob’s electron. Before Alice made
her measurement, the joint state was δ and the probability
that Q occurs is

〈δ, I ⊗ Qδ〉 = 1
2 〈α ⊗ β − β ⊗ α, α ⊗ Qβ − β ⊗ Qα〉

= 1
2 (〈β,Qβ〉 + 〈α,Qα〉) (4)

After Alice makes her measurement, the joint state is δ′

and the probability that Q occurs becomes

〈
δ′, I ⊗ Qδ′

〉
= 1

N2 (Pα ⊗ β − Pβ ⊗ α, Pα ⊗ Qβ − Pβ ⊗ Qα)

= 1
N2 (〈α, Pα〉〈β,Qβ〉 − 〈α, Pβ〉〈β,Qα〉

−〈β, Pα〉〈α,Qβ〉 + 〈β, Pβ〉〈α,Qα〉)
(5)

We see that (4) and (5) are definitely different. As a simple
example, suppose P = Q = Pα is the one-dimensional
projection given by Pαψ = 〈α, ψ〉α for all ψ ∈ H. Then
(4) is 1/2 while (5) is zero. We conclude that Alice’s
measurement on her electron has instantaneously altered
Bob’s electron.
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3 Entangled or Not Entangled

This section presents a simple criterion that determines
whether a state is entangled or not [9].

Example 2. It is not so easy to tell whether a state is
entangled. Let {φi}, {ψi}, i = 1, 2, 3, be orthonormal
bases for H1,H2, respectively and form the joint state
ψ ∈ H1 ⊗ H2 given by

ψ = 1
N (4φ1 ⊗ ψ1 − 3iφ1 ⊗ ψ2 + 5φ1 ⊗ ψ3

− 8φ2 ⊗ ψ1 + 6iφ2 ⊗ ψ2 − 10φ3 ⊗ ψ3

+ 12φ3 ⊗ ψ1 − 9iφ3 ⊗ ψ2 + 15φ3 ⊗ ψ3)

where i =
√
−1 and N = 10

√
7 is the norm of the vector

in parentheses. Is ψ factorized and if it is, what are the
local parts of ψ? If you can answer this outright, you are
better than I. I prefer to use the following result [9, 10]. �

Theorem 2. Let {φ1, φ2, . . . , φm} , {ψ1, ψ2, . . . , ψn} be or-
thonormal bases for H1,H2, respectively and let

ψ =
∑

ci jφi ⊗ ψ j ∈ H1 ⊗ H2

be a state, where
∑

ci j , 0. Then ψ is factorized if and
only if for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n we have that

ci j

∑
i, j

ci j =
∑

j

ci j

∑
i

ci j (6)

Moreover, if ψ is factorized, then the local parts are
α/ ||α||, β/ ||β|| where α =

∑
aiφi, β =

∑
b jψ j, ai =

1
c

∑
j ci j, b j =

∑
i ci j, c =

∑
i j ci j.

Proof. We know that ψ is factorized if and only if ψ =

α⊗ β for some states α ∈ H1, β ∈ H2. Let α =
∑

aiφi and
β =

∑
b jψ j. It follows that

∑
i, j

ci jφi ⊗ ψ j =

∑
i

aiφi

⊗
∑

j

b jψ j

 =
∑
i, j

aib jφi ⊗ ψ j

Hence, ψ is factorized if and only if there exist sequences
of complex numbers {ai},

{
b j

}
, i = 1, 2, . . . ,m, j =

1, 2, . . . , n such that ci j = aib j where
∑
|ai|

2 =
∑ ∣∣∣b j

∣∣∣2 = 1.
If (6) holds, letting c =

∑
i, j ci j, a′i = 1

c
∑

j ci j, b′j =
∑

i ci j

we have that ci j = a′ib
′
j. Since ||ψ|| = 1 we have that∑

i

∣∣∣a′i ∣∣∣2 ∑
j

∣∣∣b′j∣∣∣2 =
∑
i, j

∣∣∣c2
i j

∣∣∣ = 1

Letting ai = a′i
/√∑ ∣∣∣a′i ∣∣∣2 and b j = b′j

/√∑ ∣∣∣∣b′j∣∣∣∣2 we ob-

tain ci j = aib j and
∑
|ai|

2 =
∑ ∣∣∣b j

∣∣∣2 = 1. Hence, ψ
is factorized. Conversely, suppose that ψ is factorized

so there exist sequences {ai},
{
b j

}
with ci j = aib j. We

conclude that∑
j

ci j

∑
i

ci j = aib j

∑
i, j

aib j = ci j

∑
i, j

ci j

so (6) holds. The last sentence follows from our previous
work. �

Theorem 2 gives a necessary and sufficient condition
for factorizability under the condition that

∑
ci j , 0. A

more complicated criterion than (6) gives such a charac-
terization in terms of the ci j without this condition [9].
Theorem 5(b) will give another characterization.

Example 3. We use Theorem 2 to answer the question in
Example 2. Except for the common factor 1/N we have
that c11 = 4, c12 = −3i, c13 = 5, c21 = −8, c22 = 6i,
c23 = −10, c31 = 12, c32 = −9i, c33 = 15. We then obtain∑

i, j ci j = 6(3 − i),
∑

j c1 j = 3(3 − i),
∑

j c2 j = 6(i − 3),∑
j c3 j = 9(3 − i),

∑
i ci1 = 8,

∑
i ci2 = −6i,

∑
i ci3 = 0.

It is easy to check that (6) holds (the factor 1/N cancels
from both sides). Also, the local parts become

α =
1
√

14
(φ1 − 2φ2 + 3φ3),

β =
1

5
√

2
(4ψ1 − 3iψ2 + 5ψ3). �

The following Schmidt decomposition theorem [5–7]
is important in this work.

Theorem 3. Any state ψ ∈ H1 ⊗ H2 has a Schmidt de-
composition

ψ =

r∑
i=1

√
λi φi ⊗ ψi (7)

where λi > 0,
∑
λi = 1 and {φi}, {ψi} are orthonormal

vectors in H1,H2, respectively.

In the Schmidt decomposition, the singular-values
√
λi are unique, i = 1, 2, . . . , r. It follows that ψ is fac-

torized if and only if r = 1 in (7). Why not just use
this to test whether ψ is factorized? One reason is that
the Schmidt decomposition can be difficult to construct.
Another reason is that Theorem 2 generalizes to multi-
partite systems (more than two parts) where no Schmidt
decomposition is available [9].

4 An Entanglement Measure

We now present a measure of entanglement. Using this
measure, we can decide how entangled a state is and when
one state is more entangled than another. If a state ψ ∈
H1⊗H2 has Schmidt decomposition ψ =

∑r
i=1
√
λi φi⊗ψi,
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λi > 0,
∑
λi = 1, then λ = (λ1, λ2, . . . , λr) is a probability

distribution. The entanglement number of ψ is

e(ψ) =

1 − r∑
i=1

λ2
i

1/2

=

∑
i, j

λiλ j


1/2

=

∑
i

λi(1 − λi)

1/2

(8)
Relative to the distribution λ, the last expression in (8)
shows that e(ψ) is the average deviation of λ from 1.
Notice that ψ is factorized if and only if e(ψ) = 0 which
is an important property for an entanglement measure.

There are various justifications for the definition (8)
[10]. One is that if the distribution λ is peaked near 1,
then e(ψ) should be near 0 and if λ is spread fairly equally,
then e(ψ) should be large. For example, suppose ψ has
Schmidt decomposition

ψ =

√
99

10
φ1 ⊗ ψ1 +

1
10

φ2 ⊗ ψ2

Then λ =
(

99
100 ,

1
100

)
and ψ has the dominate factorized

term
√

99
100 φ1 ⊗ ψ1 together with a very subordinate term

1
10 φ2 ⊗ ψ2 so e(ψ) should be small. Indeed,

e(ψ) =

1 − (
99
100

)2

−

(
1

100

)21/2

≈ 0.14

We call r in the Schmidt decomposition of ψ the index
of ψ and write n(ψ) = r. We say that ψ is maximally
entangled with index n(ψ) = r ≥ 2, if λi = 1/r, i =

1, 2, . . . , r. In this case, the distribution λ is uniformly
spread so the entanglement should be large. The next
result verifies this and is a standard calculus maximization
problem whose proof we leave to the reader.

Theorem 4. e(ψ) ≤
[

n(ψ)−1
n(ψ)

]1/2
and equality is achieved

if and only if ψ is maximally entangled with index n(ψ).

Example 4. Let {φ1, φ2, φ3} , {ψ1, ψ2, ψ3} be orthonormal
bases for H1,H2, respectively. Define the following
states:

α = 1√
2
φ1 ⊗ ψ1 + 1√

2
φ2 ⊗ ψ2

β = 1√
3
φ1 ⊗ ψ1 + 1√

3
φ2 ⊗ ψ2 + 1√

3
φ3 ⊗ ψ3

γ = 1√
2
φ1 ⊗ ψ1 + 1√

3
φ2 ⊗ ψ2 + 1√

6
φ3 ⊗ ψ3

δ = 1
3 φ1 ⊗ ψ1 + 1

3 φ2 ⊗ ψ2 +

√
7
9 φ3 ⊗ ψ3

The distributions for these states are
(

1
2 ,

1
2

)
,
(

1
3 ,

1
3 ,

1
3

)
,(

1
2 ,

1
3 ,

1
6

)
,
(

1
9 ,

1
9 ,

7
9

)
, respectively. We see that α, β are

maximally entangled with indexes 2, 3, respectively and

e(α) = 1√
2

, e(β) =

√
2
3 , e(γ) =

√
11
18 , e(δ) =

√
30
9 .

Hence,
e(δ) < e(α) < e(γ) < e(β) �

We mentioned in Section 3 that the Schmidt decompo-
sition can be hard to compute. This is especially true for
large index r and is similar to finding the eigenvalues for
an r × r matrix. We conclude that finding e(ψ) using (8)
can be quite difficult. We now give an efficient method
for finding e(ψ) that applies to any orthonormal basis
{φi} ,

{
ψ j

}
for H1,H2, respectively. Let ψ =

∑
ci jφi ⊗ ψ j

and define the matrix C =
[
ci j

]
. Denoting the adjoint of C

by C∗, we define the positive semidefinite, square matrix
|C| = (C∗C)1/2. For a square matrix A =

[
ai j

]
, we define

the trace of A by tr (A) =
∑
i

aii.

Theorem 5. (a) e(ψ) =
[
1 − tr

(
|C|4

)]1/2
. (b) ψ is fac-

torized if and only if tr
(
|C|4

)
= 1. (c) We have that

tr
(
|C|4

)
=

∑
r,s

∣∣∣∣∑
i

cricsi

∣∣∣∣2
Proof. (a) By the singular-value theorem [3], we can
write C = UDV where U,V are unitary matrices and D is
a diagonal matrix

D = diag(λ1/2
1 , λ1/2

2 , . . . , λ1/2
n )

with λi ≥ 0 and
√
λi are the singular-values of C. These

singular-values coincide with those given in (7). Now

|C|2 = C∗C = V∗DU∗UDV = V∗D2V

and hence, |C|4 = V∗D4V . Therefore∑
λ2

i = tr (D4) = tr
(
|C|4

)
We conclude from (8) that (a) holds. (b) follows from
(a). To verify (c) we have that

|C|4i j = (C∗C)(C∗C)i j =
∑

k

(C∗C)ik(C∗C)k j

=
∑
k,r

C∗irCrk

∑
C∗ksCs j =

∑
r,s,k

cricrkcskcs j

Hence,

tr
(
|C|4

)
=

∑
i

|C|4ii =
∑
i,k,r,s

cricrkcskcsi

=
∑
r,s

∑
i

cricsi

∑
k

crkcsk

 =
∑
r,s

∣∣∣∣∑
i

cricsi

∣∣∣∣2 �
Example 5. Let H be a 2-dimensional Hilbert space with
orthonormal basis {φ1, φ2} and let ψ ∈ H ⊗ H be the state

ψ = 1√
10

(φ1 ⊗ φ1 − 2iφ1 ⊗ φ2 + φ2 ⊗ φ1 − 2iφ2 ⊗ φ2)

We then have that

C =
1
√

10

[
1 −2i
1 −2i

]
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Applying Theorem 5(c) gives

tr
(
|C|4

)
=

2∑
r,s=1

|cr1cs1 + cr2cs2|
2

=
(
|c11|

2 + |c12|
2
)

+
(
|c21|

2 + |c22|
2
)

+ 2 |c11c21 + c21c22|
2

=
1

100

[
(1 + 4)2 + (1 + 4)2 + 2(1 + 4)2

]
= 1

It follows from Theorem 5(b) that ψ is factorized. In fact,
ψ = α⊗ β where α = 1√

2
(φ1 + φ2), β = 1√

5
(φ1 − 2iφ2).�

Example 6. We change Example 5 slightly and let

ψ = 1√
10

(φ1 ⊗ φ1 − 2iφ1 ⊗ φ2 + φ2 ⊗ φ1 + 2iφ2 ⊗ φ2)

We then have

C =
1
√

10

[
1 −2i
1 2i

]
As in Example 5

tr
(
|C|4

)
= 1

100

[
(1 + 4)2 + (1 + 4)2 + 2(1 − 4)2

]
= 17

25

We conclude that ψ is entangled with

e(ψ) =

(
1 −

17
25

)1/2

=
2
√

2
5

�

In the previous two examples, we used Theorem 5(c)
to find e(ψ). However, it is usually easier just to find |C|4

directly and use Theorem 5(a) as the following example
shows.

Example 7. For H defined as in Examples 5 and 6, let

ψ =
√

3
2 φ1⊗φ1 + 1

2
√

3
φ1⊗φ2 + 1

2
√

3
φ2⊗φ1 + 1

2
√

3
φ2⊗φ2

The corresponding matrix becomes

C =
1

2
√

3

[
3 1
1 1

]
Hence,

|C|2 =
1
6

[
5 2
2 1

]
, |C|4 =

1
36

[
29 12
12 5

]
We conclude that tr

(
|C|4

)
= 17/18 and hence,

e(ψ) =

(
1 −

17
18

)1/2

=
1

3
√

2
�

References

[1] R. Horodecki, P. Horodecki, M. Horodecki,
K. Horodecki. Quantum entanglement. Re-
views of Modern Physics 2009; 81(2):865–
942. arXiv:quant-ph/0702225. doi:

10.1103/RevModPhys.81.865.

[2] L. M. Lederman, C. T. Hill. Quantum Physics for Po-
ets. Prometheus Books, Amherst, New York, 2011.

[3] M. A. Nielsen, I. L. Chuang. Quantum Computa-
tion and Quantum Information. Cambridge Uni-
versity Press, Cambridge, 2010. doi:10.1017/
cbo9780511976667.

[4] S. Gudder. Quantum computation. The American
Mathematical Monthly 2003; 110(3):181–201. doi:
10.1080/00029890.2003.11919955.

[5] C. P. Williams, S. H. Clearwater. Explorations in
Quantum Computing. Springer, New York, 1998.

[6] C. P. Williams. Explorations in Quantum Com-
puting. 2nd Edition. Texts in Computer Science.
Springer, London, 2011. doi:10.1007/978-1-
84628-887-6.

[7] T. Heinosaari, M. Ziman. The Mathematical Lan-
guage of Quantum Theory: From Uncertainty to
Entanglement. Cambridge University Press, Cam-
bridge, 2012. doi:10.1017/cbo9781139031103.

[8] P. Busch. The role of entanglement in quantum mea-
surement and information processing. International
Journal of Theoretical Physics 2003; 42(5):937–941.
doi:10.1023/a:1025462220957.

[9] S. Gudder. A characterization for entangled vectors
2019; arXiv:1902.08853.

[10] S. Gudder. A theory of entanglement. Quanta 2020;
9(1):7–15. doi:10.12743/quanta.v9i1.115.

Quanta | DOI: 10.12743/quanta.v9i1.113 June 2020 | Volume 9 | Issue 1 | Page 6

http://arxiv.org/abs/quant-ph/0702225
http://doi.org/10.1103/RevModPhys.81.865
http://doi.org/10.1103/RevModPhys.81.865
http://doi.org/10.1017/cbo9780511976667
http://doi.org/10.1017/cbo9780511976667
http://doi.org/10.1080/00029890.2003.11919955
http://doi.org/10.1080/00029890.2003.11919955
http://doi.org/10.1007/978-1-84628-887-6
http://doi.org/10.1007/978-1-84628-887-6
http://doi.org/10.1017/cbo9781139031103
http://doi.org/10.1023/a:1025462220957
http://arxiv.org/abs/1902.08853
http://doi.org/10.12743/quanta.v9i1.115
http://dx.doi.org/10.12743/quanta.v9i1.113

	Quantum Mechanics in a Nutshell
	Action at a Distance
	Entangled or Not Entangled
	An Entanglement Measure

